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Lecture 18: Synchronization and Transactional Memory
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Synchronization and its 
Implementation



Review:

Synchronization Can Prevent Operation Reordering

X=1 Memory Fence

Memory fences are one type of synchronization

r1=Y
Reordering prevented

r1=Y

Fence implementation depends on reordering implementation



Review: Synchronization For Real Programmers

Y=1

r1=Y

Memory fences are wrapped up in locks, etc.

Reordering prevented
Unlock

r1=Y

Direct use of fences can be tricky and you will usually use a library

Lock



Data Races

Y=1
Lock 

Unlock

Synchronization imposes happens-before on otherwise 
unordered operations

r1=Y
Unlock

Data Race: Unordered operations to the same memory 
location, at least one write.

Data race prevented

Lock



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct Executions

Thread 0 Thread 1

r1=Y 

X=1
Fence

r2=X

Y=1 Fence

r1=Y r2=X

We will see later that this 
program can produce very 
strange results if not 
sychronized



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct Executions

Thread 0

r1=X 
r1++ 
X=r1

Fence

Thread 1

What happens with this 
program? Where can we put 
the fence?

r2=X 
r2++ 
X=r2



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct
Executions

r1++
X=r1

Fence

Thread 0

r1=X

Thread 1

r2=X How about fences 
everywhere? Does this fix our 
problem?

r2++
X=r2

Fence
Fence
Fence



Some programs also require atomicity

r1=X 
r1++ 
X=r1

Fence

Thread 0 Thread 1

Fences don’t provide atomicity, 
but we have other primitives that 
we can use for atomic operations

r2=X 
r2++ 
X=r2

Defining Atomicity:
Given a critical region that requires 
atomic execution by multiple different 
threads, all threads’ executions of the 
region were atomic if the resulting 
execution is equivalent to some 
serialization of the atomic regions.



Some programs also require atomicity

r1=X 
r1++ 
X=r1

Serialization #1

r2=X 
r2++ 
X=r2

Defining Atomicity:
Given a critical region that requires 
atomic execution by multiple different 
threads, all threads’ executions of the 
region were atomic if the resulting 
execution is equivalent to some 
serialization of the atomic regions.

r1=X 
r1++ 
X=r1

Serialization #2

r2=X 
r2++ 
X=r2



Mutual exclusion (mutex) locks enforce
atomicity (and ordering)

r1=X 
r1++ 
X=r1

Thread 0 Thread 1

r2=X 
r2++ 
X=r2

Lock Behavior:
A thread acquires a lock L, does stuff 
while holding L, and then releases lock L.

If a thread tries to acquire L while L is 
held, the thread keeps trying to acquire L 
until L is unheld, when its attempt to 
acquire succeeds.

Lock L

Unlock L

Lock L

Unlock L



SpinLocks are one implementation of 
synchronization

r1=X 
r1++ 
X=r1

Thread 0 Thread 1

r2=X 
r2++ 
X=r2

Lock L Lock L

Unlock L Unlock L

spinlock(L){

while( sync_bool_compare_and_swap(&L,0,1) == 0 ){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }



SpinLocks are one implementation of 
synchronization

spinlock(L){

while( sync_bool_compare_and_swap(&L,0,1) == 0 ){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

Turtles all the way down?



SpinLocks are one implementation of 
synchronization

spinlock(L){

while( sync_bool_compare_and_swap(&L,0,1) == 0 ){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

175b: 48 8b 02 mov (%rdx),%rax //load L into %rax

175e: 48 8d 48 01 lea 0x1(%rax),%rcx //add 1 to %rax, into %rcx

1762: f0 48 0f b1 0a lock cmpxchg %rcx,(%rdx) //compare & exchange

1767: 75 f2 jne 175b //loop to mov if cmpxchg fails



SpinLocks are one implementation of 
synchronization

spinlock(L){

while( sync_bool_compare_and_swap(&L,0,1) == 0 ){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1762: f0 48 0f b1 0a

//if (%rdx) == %rax{

lock cmpxchg %rcx,(%rdx) 

(%rdx) = %rcx }

Implemented directly in the machine microarchitecture. Even if multiple 
threads executing, hardware guarantees no inter-thread interactions



SpinLocks are one implementation of 
synchronization

spinlock(L){

while( sync_bool_compare_and_swap(&L,0,1) == 0 ){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1890: 0f ae f0 mfence Fence



Lock ordering matters

x++ 
y++

Thread 0
Lock LX
Lock LY

Thread 1

x++ 
y++

Lock Ordering:
If you manipulate more than one piece 
of data in a critical region, you will need 
to acquire the locks in the same order for 
all critical regions or face deadlock

Unlock LX 
Unlock LY

Unlock LX 
Unlock LY

Lock LX 
Lock LY

x++ 
y++

Unlock LY
Unlock LX

Lock LY 
Lock LX



Directly Using Compare and Swap

r1=X 
r1++ 
X=r1

Thread 0 Thread 1

r2=X 
r2++ 
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

How general is a CAS operation for implementing critical regions that need to 
execute atomically? What are the limitations on a CAS operation?



Fetch and Add – Further Specializing Atomics

r1=X 
r1++ 
X=r1

Thread 0 Thread 1

r2=X 
r2++ 
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

_fna(&x,1) _fna(&x,1)

1707: f0 48 83 04 d0 01 lock addq $0x1,(%rax,%rdx,8)

How much less general than compare and swap?

sync_fetch_and_add(x,1);



Transactional Memory – Further Generalizing
Atomics

r1=X 
r1++ 
X=r1

Thread 0 Thread 1

r2=X 
r2++ 
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

Limited by single location that can be updated using a CAS. What if we want to 
update 3 (or n) different locations (without using a lock)?



Transactional Memory – Further Generalizing
Atomics

r1=X
r1++ 
X=r1 
r2=Y 
Y++ 
Y=r2

Thread 0
Lock L

Thread 1 Thread 0 Thread 1
Lock L

r3=X
r3++ 
X=r3 
r2=Y 
Y++ 
Y=r2

Unlock L Unlock L

r1 = x + 1

_cas(&x,x,r1) 

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?

r3 = x + 1

_cas(&x,x,r3) 

r4 = y + 1

_cas(&y,y,r4)



Transactional Memory – Further Generalizing
Atomics

r1=X
r1++ 
X=r1 
r2=Y 
Y++ 
Y=r2

Thread 0
Lock L

Thread 1 Thread 0 Thread 1
Lock L

r3=X
r3++ 
X=r3 
r2=Y 
Y++ 
Y=r2

Unlock L Unlock L

r1 = x + 1

_cas(&x,x,r1) 

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.

r3 = x + 1

_cas(&x,x,r3) 

r4 = y + 1

_cas(&y,y,r4)



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

Transaction attempts to execute atomically, 
as if protected by a lock

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin() starts a transaction 
xend() ends the transaction 
started by the most recent 
xbegin()



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

y = r2

ABORT

Transaction aborts if another thread 
accesses a location accessed in transaction 
(or if explicitly aborted)

y = 17



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

y = r2

ABORT?

Transaction aborts if another thread 
accesses a location accessed in transaction 
(or if explicitly aborted)

… = y



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

y = r2

ABORT?

Transaction aborts if another thread reads a location 
written by the transaction or writes a location
accessed by the transaction (“Conflicting” accesses)

… = y



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

Reads don’t conflict and
transactions can read-share data

… = y



What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

These threads are contending for memory 
locations causing repeated aborts.

How to deal with contention in a 
transactional memory system?



Lock-based Fallback Path

if(xbegin()==OK){ 

rlk = 

read_spinlock(L) 

r1 = x + 1

r2 = y + 1 

x = r1 

xend()

}else{

//fallback 

lock(L) 

r1 = x+1 

r2 = y+1 

x = r1

y = r2 

unlock(L)

}

Add a fallback path & abort handling code 
Fallback should use spinlocks, not TM. Why? 
TM case needs to read spinlock lock word. Why? 
In fallback, can do arbitrary code.
Can also retry TM version repeatedly before giving up and running 
fallback. Up to you the programmer what sequence to follow.

Precise Intel TSX syntax is available in the lab handout and tm.h in 
the lab release files.



What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1 

ABORT

xbegin() 

r1 = x + 1 

r2 = y + 1 

x = r1

y = r2

xend()

xbegin() 

r1 = x + 1 

r2 = y + 1

These threads are contending for memory 
locations causing repeated aborts.

How to deal with contention in a 
transactional memory system?

Random delay for 
contention 
avoidance



A Note About Lock-based Fallback Paths

for(i = 0..MAX_TRIES){

if(xbegin()){

…; xend(); goto done;

}//abort code here

}

//Fallback code here

lock(Lx); lock(Ly);

r1 = x+1 

r2 = y+1 

x = r1 

y = r2

unlock(Lx); unlock(Ly);

}

done:

//continue

Run your transaction some number of times (MAX_TRIES)
If you commit once, skip past your fallback. Often use ‘goto’…

Locks are tricky in code like this: which locks do you need to
acquire? Often need to acquire them all before you make accesses 
associated with locks.



Implementation sketch of TM

LL33$$

Way 0 Way 1 Way 2 Way 3

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

Se
t 

0 Line

Se
t 

1
Se

t 
2

TM Valid Dirty Tag 32 bytes data

Se
t 

3



CPU 1 CPU 2 CPU 3

X++X++ Rd X=?

$ $ $

Invalidate 

X++

Tracking TM conflicts using coherence msgs

An incoming access request for a 
block with its TM bit set leads to a 
conflict and a transactional abort



Reasons a transaction might abort

• Too many blocks with their TM bits set leaves no room for more TM 
blocks
• Too many defined as “more blocks w/ TM bits set than blocks in a way”

• Conflict with another transaction or non-transactional access
• identified through incoming coherence traffic

• Explicit xabort() instruction when transactional code concludes 
transaction is not useful

• Other, unspecified, but arbitrary conditions left up to the 
microarchitects
• I speculate that these are related to internal buffers of fixed capacity



Why is this reordering situation a problem?

Thread 0 Thread 1

r1=Y

X=1 Fence

r2=X

Y=1 Fence

r1=Y r2=X

Reordering independent 
memory operations that 
access different locations



“computers execute operations in a 
different order than is specified by the 
program. A correct execution is achieved if 
the results produced are the same as 
would be produced by executing the 
program steps in order. For a 
multiprocessor computer, such a correct 
execution by each processor does not 
guarantee the correct execution of the 
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Program”

LESLIE LAMPORT, 1979



“The memory consistency model of a 
shared-memory system specifies the 
order in which memory operations will 
appear to execute to the programmer. 
The memory consistency model affects 
the process of writing parallel programs 
and forms an integral part of the entire 
system, including the architecture, the 
compiler, and the programming 
language.”

Excerpt from “Recent Advances in Memory Consistency 
Models for Hardware Shared-Memory Systems”

Sarita Adve, et al, 1999



Memory Consistency



Memory Consistency 
Model

Informal Definition:

“Defines the value a read operation may read 
at each point during the execution”

“Defines the set of legal observable orders of memory 
operations during an execution”

“Defines which reorderings of memory operations 
are permitted”



Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of 
accesses to a single memory location

Wr X

Wr X
OR



Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of 
accesses to multiple memory locations

Wr X

Wr Y
OR



Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1: 
Instructions are 
executed in program 
order

Invariant #2:
All processors agree 
on a total order of 
executed instructions



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 
Wr X



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 
Wr X 
Rd Y



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 
Wr X 
Rd Y 
Wr Y



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 
Wr X 
Rd Y 
Wr Y 
Rd X



The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution 
Wr X 
Rd Y 
Wr Y 
Rd X 
Rd X



Why is SC Important?

Wr X 
Rd Y 
Wr Y 
Rd X 
Rd X

Rd Y
Wr X

Rd X 
Rd X 
Wr Y

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC)              Weird (not SC) 

Wr X

Rd Y Rd X

Wr Y Rd X

SC prohibits all reordering of instructions (Invariant 1)



Real hardware does not enforce SC

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

The ARMv8 Memory Model:



Reordering #1: Write Buffers

CPU can read its write
buffer, but not others’

Coherent

Buffered writes eventually end up in coherent 
shared memory

CPU

Wri

M

CPU

Wri

M

te Bufferte Buffer



Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program 

Initially X == Y == 0

Is r1==r2==0
a valid result?



Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program  

Initially X == Y == 0

Is r1==r2==0
a valid result?

r1 == r2 == 0 is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

Execution 

r1=Y

Program 

Initially X == Y == 0

Y=1

r2=X

M

X=1

M



Reordering #1: Write Buffers

Execution 

r1=Y r2=X

Y=1

M

X= 1

M

Program 

Initially X == Y == 0



Reordering #1: Write Buffers

Execution 

r1=Y r2=X
Y= 1

M

X= 1

M

Program 

Initially X == Y == 0



Reordering #1: Write Buffers

Program 

Initially X == Y == 0

r2=X

Execution 

Y= 1

M

r1=Y

X= 1

M



Reordering #1: Write Buffers

Execution 

r2=X

Y= 1

M

r1=Y

X= 1

M

Program  

Initially X == Y == 0



Reordering #1: Write Buffers

Execution 
r1=Y [r1 <- 0]

r2=X

Y= 1

M

X= 1

M

Program  

Initially X == Y == 0



Reordering #1: Write Buffers

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

Y= 1

M

X= 1

M

Program 

Initially X == Y == 0



Reordering #1: Write Buffers

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

M M

Program 

Initially X == Y == 0

Y=1
X=1 (Not SC!)

WBs let reads finish 
before older writes



Reordering #2: Write Combining

Coalescing Write Buffer
Program  

X,Z in same $ line

X=1 
Y=1 
Z=1

4 word cache line



Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Program  

X,Z in same $ line

X=1 
Y=1 
Z=1



X=1

Y=1

Reordering #2: Write Combining

Coalescing Write Buffer
Program  

X,Z in same $ line

X=1 
Y=1 
Z=1



Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Program  

X,Z in same $ line

X=1 
Y=1 
Z=1



Reordering #2: Write Combining

X=1

Y=1

Z=1

Coalescing Write Buffer Coalescing Write Buffer
X=1 Z=1

Y=1

Combining the write to X & Z saves bandwidth, 
but reorders Z=1 and Y=1



Reordering #3: Interconnect

Execution 
X=1
Y=1 

r1=X [r1 <- 1] 
r2=Y [r2 <- 0]
r3=Y [r3 <- 1] 
r4=X [r4 <- 0]

Program 

X=1 r1=X Y=1

r2=Y

r3=Y

r4=X
X=1 Y=1

Y=1

X=1
Variable time cost traversing 
routed on-chip network



Reordering #4: Compilers

X = 0
for (1 .. 100)

X = 1
print X

X = 0
X = 1
for (1 .. 100)

print X
X = 0

Hoisted!

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)



When is an Execution Not SC?
When a memory operation happens before itself

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph



When is an Execution Not SC?
When a memory operation happens before itself

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge



When is an Execution Not SC?
When a memory operation happens before itself

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

X=1 
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge 

Causal Order HB Edge



When is an Execution Not SC?
When a memory operation happens before itself

Execution 
r1=Y [r1 <- 0] 
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC



When is an Execution Not SC?
When a memory operation happens before itself

X=1

Happens-Before Graph

Y=1 r1=X r3=Y

r2=Y r4=X

If there is a cycle in the happens-before graph, the 
execution is not SC

Execution  
X=1 
Y=1

r1=X [r1 <- 1]
r2=Y [r2 <- 0] 
r3=Y [r3 <- 1] 
r4=X [r4 <- 0]



Two Design Constraints at Odds

SC is how programmers think, but restricts all reordering

Reordering allows optimization, but leads to unintuitive non-SC behavior.



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



x86-TSO (intel x86s)

“The Write Buffer Memory Model”

r1=Y 

X=1

r1=Y

Total Store Order - loads may complete before older 
stores to different locations complete.

Relaxes W->R 
order



PSO(SPARC)

“The Write Combining Memory Model”

X=1 
Z=1 
Y=1 
Z=1

Partial Store Order - loads and stores may complete 
before older stores to different locations complete.

Relaxes W->W 
order



In General

X=1 
Z=1 
Y=1 
Z=1

r1=Y 

X=1

r1=Y

W->R W->W

r1=Y 

r2=X

Y=1

r2=X

r1=Y Y=1

R->R R->W

Starting with PSO and relaxing R->R and R->W yields 
Weak Ordering or Release Consistency (alpha)

Depending on the implementation



Implementing Synchronization for Weak 
Memory Models
• What does synchronization have to do to prevent SC violations?

• Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent 
compiler reorderings

• What does synchronization have to do to prevent other kinds of 
problems?
• Enforce mutually exclusive execution by different threads of critical region, 

force threads to wait at barriers, enforce wait/notify discipline



SC and Relaxed Consistency

SC is required for correctness and programmer sanity

+

Reordering is required* for performance

Goal: Ensure SC executions while permitting 
Relaxed Consistency reorderings

*Usually; MIPS memory model is SC



Memory Models across the 
System Stack

Language Compiler Architecture

Java/C++: SC 
for data-race- 
free programs

Conservative 
with reordering 
when d-r-f can’t 
be proved

Usually very weak for 
max optimization 
(lots of reordering)

Note: fences from
“above” ensure SC



What did we just learn?

• Concurrency and parallelism, from the bottom to the top

• Coherence and consistency are both memory ordering principles

• Synchronization exists to spare you data-races and non-SC executions

• Transactional memory is a powerful sync primitive in many x86 CPUs
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