
Fall 2023

Lecture 18: Synchronization and Transactional Memory

Credit: Brandon Lucia

Synchronization and its
Implementation

Review:

Synchronization Can Prevent Operation Reordering

X=1 Memory Fence

Memory fences are one type of synchronization

r1=Y
Reordering prevented

r1=Y

Fence implementation depends on reordering implementation

Review: Synchronization For Real Programmers

Y=1

r1=Y

Memory fences are wrapped up in locks, etc.

Reordering prevented
Unlock

r1=Y

Direct use of fences can be tricky and you will usually use a library

Lock

Data Races

Y=1
Lock

Unlock

Synchronization imposes happens-before on otherwise
unordered operations

r1=Y
Unlock

Data Race: Unordered operations to the same memory
location, at least one write.

Data race prevented

Lock

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0 Thread 1

r1=Y

X=1
Fence

r2=X

Y=1 Fence

r1=Y r2=X

We will see later that this
program can produce very
strange results if not
sychronized

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0

r1=X
r1++
X=r1

Fence

Thread 1

What happens with this
program? Where can we put
the fence?

r2=X
r2++
X=r2

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct
Executions

r1++
X=r1

Fence

Thread 0

r1=X

Thread 1

r2=X How about fences
everywhere? Does this fix our
problem?

r2++
X=r2

Fence
Fence
Fence

Some programs also require atomicity

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

Fences don’t provide atomicity,
but we have other primitives that
we can use for atomic operations

r2=X
r2++
X=r2

Defining Atomicity:
Given a critical region that requires
atomic execution by multiple different
threads, all threads’ executions of the
region were atomic if the resulting
execution is equivalent to some
serialization of the atomic regions.

Some programs also require atomicity

r1=X
r1++
X=r1

Serialization #1

r2=X
r2++
X=r2

Defining Atomicity:
Given a critical region that requires
atomic execution by multiple different
threads, all threads’ executions of the
region were atomic if the resulting
execution is equivalent to some
serialization of the atomic regions.

r1=X
r1++
X=r1

Serialization #2

r2=X
r2++
X=r2

Mutual exclusion (mutex) locks enforce
atomicity (and ordering)

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock Behavior:
A thread acquires a lock L, does stuff
while holding L, and then releases lock L.

If a thread tries to acquire L while L is
held, the thread keeps trying to acquire L
until L is unheld, when its attempt to
acquire succeeds.

Lock L

Unlock L

Lock L

Unlock L

SpinLocks are one implementation of
synchronization

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L Lock L

Unlock L Unlock L

spinlock(L){

while(sync_bool_compare_and_swap(&L,0,1) == 0){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

SpinLocks are one implementation of
synchronization

spinlock(L){

while(sync_bool_compare_and_swap(&L,0,1) == 0){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

Turtles all the way down?

SpinLocks are one implementation of
synchronization

spinlock(L){

while(sync_bool_compare_and_swap(&L,0,1) == 0){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

175b: 48 8b 02 mov (%rdx),%rax //load L into %rax

175e: 48 8d 48 01 lea 0x1(%rax),%rcx //add 1 to %rax, into %rcx

1762: f0 48 0f b1 0a lock cmpxchg %rcx,(%rdx) //compare & exchange

1767: 75 f2 jne 175b //loop to mov if cmpxchg fails

SpinLocks are one implementation of
synchronization

spinlock(L){

while(sync_bool_compare_and_swap(&L,0,1) == 0){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1762: f0 48 0f b1 0a

//if (%rdx) == %rax{

lock cmpxchg %rcx,(%rdx)

(%rdx) = %rcx }

Implemented directly in the machine microarchitecture. Even if multiple
threads executing, hardware guarantees no inter-thread interactions

SpinLocks are one implementation of
synchronization

spinlock(L){

while(sync_bool_compare_and_swap(&L,0,1) == 0){

/*do nothing; pause here on some systems*/

}

}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1890: 0f ae f0 mfence Fence

Lock ordering matters

x++
y++

Thread 0
Lock LX
Lock LY

Thread 1

x++
y++

Lock Ordering:
If you manipulate more than one piece
of data in a critical region, you will need
to acquire the locks in the same order for
all critical regions or face deadlock

Unlock LX
Unlock LY

Unlock LX
Unlock LY

Lock LX
Lock LY

x++
y++

Unlock LY
Unlock LX

Lock LY
Lock LX

Directly Using Compare and Swap

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

How general is a CAS operation for implementing critical regions that need to
execute atomically? What are the limitations on a CAS operation?

Fetch and Add – Further Specializing Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

_fna(&x,1) _fna(&x,1)

1707: f0 48 83 04 d0 01 lock addq $0x1,(%rax,%rdx,8)

How much less general than compare and swap?

sync_fetch_and_add(x,1);

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

Limited by single location that can be updated using a CAS. What if we want to
update 3 (or n) different locations (without using a lock)?

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0
Lock L

Thread 1 Thread 0 Thread 1
Lock L

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Unlock L Unlock L

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0
Lock L

Thread 1 Thread 0 Thread 1
Lock L

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Unlock L Unlock L

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

Transaction attempts to execute atomically,
as if protected by a lock

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin() starts a transaction
xend() ends the transaction
started by the most recent
xbegin()

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)

y = 17

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)

… = y

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread reads a location
written by the transaction or writes a location
accessed by the transaction (“Conflicting” accesses)

… = y

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

Reads don’t conflict and
transactions can read-share data

… = y

What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?

Lock-based Fallback Path

if(xbegin()==OK){

rlk =

read_spinlock(L)

r1 = x + 1

r2 = y + 1

x = r1

xend()

}else{

//fallback

lock(L)

r1 = x+1

r2 = y+1

x = r1

y = r2

unlock(L)

}

Add a fallback path & abort handling code
Fallback should use spinlocks, not TM. Why?
TM case needs to read spinlock lock word. Why?
In fallback, can do arbitrary code.
Can also retry TM version repeatedly before giving up and running
fallback. Up to you the programmer what sequence to follow.

Precise Intel TSX syntax is available in the lab handout and tm.h in
the lab release files.

What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin()

r1 = x + 1

r2 = y + 1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?

Random delay for
contention
avoidance

A Note About Lock-based Fallback Paths

for(i = 0..MAX_TRIES){

if(xbegin()){

…; xend(); goto done;

}//abort code here

}

//Fallback code here

lock(Lx); lock(Ly);

r1 = x+1

r2 = y+1

x = r1

y = r2

unlock(Lx); unlock(Ly);

}

done:

//continue

Run your transaction some number of times (MAX_TRIES)
If you commit once, skip past your fallback. Often use ‘goto’…

Locks are tricky in code like this: which locks do you need to
acquire? Often need to acquire them all before you make accesses
associated with locks.

Implementation sketch of TM

LL33$$

Way 0 Way 1 Way 2 Way 3

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

Se
t

0 Line

Se
t

1
Se

t
2

TM Valid Dirty Tag 32 bytes data

Se
t

3

CPU 1 CPU 2 CPU 3

X++X++ Rd X=?

$ $ $

Invalidate

X++

Tracking TM conflicts using coherence msgs

An incoming access request for a
block with its TM bit set leads to a
conflict and a transactional abort

Reasons a transaction might abort

• Too many blocks with their TM bits set leaves no room for more TM
blocks
• Too many defined as “more blocks w/ TM bits set than blocks in a way”

• Conflict with another transaction or non-transactional access
• identified through incoming coherence traffic

• Explicit xabort() instruction when transactional code concludes
transaction is not useful

• Other, unspecified, but arbitrary conditions left up to the
microarchitects
• I speculate that these are related to internal buffers of fixed capacity

Why is this reordering situation a problem?

Thread 0 Thread 1

r1=Y

X=1 Fence

r2=X

Y=1 Fence

r1=Y r2=X

Reordering independent
memory operations that
access different locations

“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved if
the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”

LESLIE LAMPORT, 1979

“The memory consistency model of a
shared-memory system specifies the
order in which memory operations will
appear to execute to the programmer.
The memory consistency model affects
the process of writing parallel programs
and forms an integral part of the entire
system, including the architecture, the
compiler, and the programming
language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”

Sarita Adve, et al, 1999

Memory Consistency

Memory Consistency
Model

Informal Definition:

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

Wr X

Wr X
OR

Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of
accesses to multiple memory locations

Wr X

Wr Y
OR

Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:
All processors agree
on a total order of
executed instructions

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X

The SC “Switch”
Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X

Why is SC Important?

Wr X
Rd Y
Wr Y
Rd X
Rd X

Rd Y
Wr X

Rd X
Rd X
Wr Y

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC) Weird (not SC)

Wr X

Rd Y Rd X

Wr Y Rd X

SC prohibits all reordering of instructions (Invariant 1)

Real hardware does not enforce SC

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

The ARMv8 Memory Model:

Reordering #1: Write Buffers

CPU can read its write
buffer, but not others’

Coherent

Buffered writes eventually end up in coherent
shared memory

CPU

Wri

M

CPU

Wri

M

te Bufferte Buffer

Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0

Is r1==r2==0
a valid result?

Reordering #1: Write Buffers

X=1

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0

Is r1==r2==0
a valid result?

r1 == r2 == 0 is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Execution

r1=Y

Program

Initially X == Y == 0

Y=1

r2=X

M

X=1

M

Reordering #1: Write Buffers

Execution

r1=Y r2=X

Y=1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution

r1=Y r2=X
Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Program

Initially X == Y == 0

r2=X

Execution

Y= 1

M

r1=Y

X= 1

M

Reordering #1: Write Buffers

Execution

r2=X

Y= 1

M

r1=Y

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]

r2=X

Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

Y= 1

M

X= 1

M

Program

Initially X == Y == 0

Reordering #1: Write Buffers

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

M M

Program

Initially X == Y == 0

Y=1
X=1 (Not SC!)

WBs let reads finish
before older writes

Reordering #2: Write Combining

Coalescing Write Buffer
Program

X,Z in same $ line

X=1
Y=1
Z=1

4 word cache line

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Program

X,Z in same $ line

X=1
Y=1
Z=1

X=1

Y=1

Reordering #2: Write Combining

Coalescing Write Buffer
Program

X,Z in same $ line

X=1
Y=1
Z=1

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Program

X,Z in same $ line

X=1
Y=1
Z=1

Reordering #2: Write Combining

X=1

Y=1

Z=1

Coalescing Write Buffer Coalescing Write Buffer
X=1 Z=1

Y=1

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1

Reordering #3: Interconnect

Execution
X=1
Y=1

r1=X [r1 <- 1]
r2=Y [r2 <- 0]
r3=Y [r3 <- 1]
r4=X [r4 <- 0]

Program

X=1 r1=X Y=1

r2=Y

r3=Y

r4=X
X=1 Y=1

Y=1

X=1
Variable time cost traversing
routed on-chip network

Reordering #4: Compilers

X = 0
for (1 .. 100)

X = 1
print X

X = 0
X = 1
for (1 .. 100)

print X
X = 0

Hoisted!

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When is an Execution Not SC?
When a memory operation happens before itself

Execution
r1=Y [r1 <- 0]
r2=X [r2 <- 0]

X=1
Y=1

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the
execution is not SC

When is an Execution Not SC?
When a memory operation happens before itself

X=1

Happens-Before Graph

Y=1 r1=X r3=Y

r2=Y r4=X

If there is a cycle in the happens-before graph, the
execution is not SC

Execution
X=1
Y=1

r1=X [r1 <- 1]
r2=Y [r2 <- 0]
r3=Y [r3 <- 1]
r4=X [r4 <- 0]

Two Design Constraints at Odds

SC is how programmers think, but restricts all reordering

Reordering allows optimization, but leads to unintuitive non-SC behavior.

Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC

x86-TSO (intel x86s)

“The Write Buffer Memory Model”

r1=Y

X=1

r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.

Relaxes W->R
order

PSO(SPARC)

“The Write Combining Memory Model”

X=1
Z=1
Y=1
Z=1

Partial Store Order - loads and stores may complete
before older stores to different locations complete.

Relaxes W->W
order

In General

X=1
Z=1
Y=1
Z=1

r1=Y

X=1

r1=Y

W->R W->W

r1=Y

r2=X

Y=1

r2=X

r1=Y Y=1

R->R R->W

Starting with PSO and relaxing R->R and R->W yields
Weak Ordering or Release Consistency (alpha)

Depending on the implementation

Implementing Synchronization for Weak
Memory Models
• What does synchronization have to do to prevent SC violations?

• Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent
compiler reorderings

• What does synchronization have to do to prevent other kinds of
problems?
• Enforce mutually exclusive execution by different threads of critical region,

force threads to wait at barriers, enforce wait/notify discipline

SC and Relaxed Consistency

SC is required for correctness and programmer sanity

+

Reordering is required* for performance

Goal: Ensure SC executions while permitting
Relaxed Consistency reorderings

*Usually; MIPS memory model is SC

Memory Models across the
System Stack

Language Compiler Architecture

Java/C++: SC
for data-race-
free programs

Conservative
with reordering
when d-r-f can’t
be proved

Usually very weak for
max optimization
(lots of reordering)

Note: fences from
“above” ensure SC

What did we just learn?

• Concurrency and parallelism, from the bottom to the top

• Coherence and consistency are both memory ordering principles

• Synchronization exists to spare you data-races and non-SC executions

• Transactional memory is a powerful sync primitive in many x86 CPUs

	Slide 1
	Slide 2: Synchronization and its Implementation
	Slide 3: Review: Synchronization Can Prevent Operation Reordering
	Slide 4: Review: Synchronization For Real Programmers
	Slide 5: Data Races
	Slide 6: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 7: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 8: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 9: Some programs also require atomicity
	Slide 10: Some programs also require atomicity
	Slide 11: Mutual exclusion (mutex) locks enforce atomicity (and ordering)
	Slide 12: SpinLocks are one implementation of synchronization
	Slide 13: SpinLocks are one implementation of synchronization
	Slide 14: SpinLocks are one implementation of synchronization
	Slide 15: SpinLocks are one implementation of synchronization
	Slide 16: SpinLocks are one implementation of synchronization
	Slide 17: Lock ordering matters
	Slide 18: Directly Using Compare and Swap
	Slide 19: Fetch and Add – Further Specializing Atomics
	Slide 20: Transactional Memory – Further Generalizing Atomics
	Slide 21: Transactional Memory – Further Generalizing Atomics
	Slide 22: Transactional Memory – Further Generalizing Atomics
	Slide 23: Transactional Memory: Atomicity for “n-CAS”
	Slide 24: Transactional Memory: Atomicity for “n-CAS”
	Slide 25: Transactional Memory: Atomicity for “n-CAS”
	Slide 26: Transactional Memory: Atomicity for “n-CAS”
	Slide 27: Transactional Memory: Atomicity for “n-CAS”
	Slide 28: What do we do if we have repeated aborts?
	Slide 29: Lock-based Fallback Path
	Slide 30: What do we do if we have repeated aborts?
	Slide 31: A Note About Lock-based Fallback Paths
	Slide 32: Implementation sketch of TM
	Slide 33: Tracking TM conflicts using coherence msgs
	Slide 34: Reasons a transaction might abort
	Slide 35: Why is this reordering situation a problem?
	Slide 36
	Slide 37
	Slide 38: Memory Consistency
	Slide 39: Memory Consistency Model
	Slide 40: Coherence is Ordering
	Slide 41: Consistency is Ordering
	Slide 42: Sequential Consistency (SC) The simplest, most intuitive memory consistency model
	Slide 43: The SC “Switch”
	Slide 44: The SC “Switch”
	Slide 45: The SC “Switch”
	Slide 46: The SC “Switch”
	Slide 47: The SC “Switch”
	Slide 48: The SC “Switch”
	Slide 49: Why is SC Important?
	Slide 50: Real hardware does not enforce SC
	Slide 51: Reordering #1: Write Buffers
	Slide 52: Reordering #1: Write Buffers
	Slide 53: Reordering #1: Write Buffers
	Slide 54: Reordering #1: Write Buffers
	Slide 55: Reordering #1: Write Buffers
	Slide 56: Reordering #1: Write Buffers
	Slide 57: Reordering #1: Write Buffers
	Slide 58: Reordering #1: Write Buffers
	Slide 59: Reordering #1: Write Buffers
	Slide 60: Reordering #1: Write Buffers
	Slide 61: Reordering #1: Write Buffers
	Slide 62: Reordering #2: Write Combining
	Slide 63: Reordering #2: Write Combining
	Slide 64: Reordering #2: Write Combining
	Slide 65: Reordering #2: Write Combining
	Slide 66: Reordering #2: Write Combining
	Slide 67: Reordering #3: Interconnect
	Slide 68: Reordering #4: Compilers
	Slide 69: When is an Execution Not SC? When a memory operation happens before itself
	Slide 70: When is an Execution Not SC? When a memory operation happens before itself
	Slide 71: When is an Execution Not SC? When a memory operation happens before itself
	Slide 72: When is an Execution Not SC? When a memory operation happens before itself
	Slide 73: When is an Execution Not SC? When a memory operation happens before itself
	Slide 74: Two Design Constraints at Odds
	Slide 75
	Slide 76: x86-TSO (intel x86s) “The Write Buffer Memory Model”
	Slide 77: PSO(SPARC) “The Write Combining Memory Model”
	Slide 78: In General
	Slide 79: Implementing Synchronization for Weak Memory Models
	Slide 80: SC and Relaxed Consistency
	Slide 81: Memory Models across the System Stack
	Slide 82: What did we just learn?

