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Recap: Sparse Problems

* What is a sparse problem? Why are they called “sparse”?
* What makes sparse problems hard?
* Roofline performance modeling

* Hardware and software strategies for optimizing sparse problems



Graph Processing Problems are Sparse Problems
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The canonical examples of sparse problems are graph processing applications.



What does a graph processing program look like?

OIOIN|O|-=IN|O
WIHB|WNINIO|IO|I-

for e in EL:
Co0 dstData[e.dst] =
(EdgeList) f(srcDatal[e.src],dstDatal[e.dst])

Edge

B dstData
I srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration



How do graph applications correspond to linear algebra?

Turns out that other graph applications also correspond to
roughly this formulation if you change the operations you
use (min/+ instead of +/%) or consider weighted edges

Ty, —
A Xi B Xi+
SSSP, BFS, PageRank, Connected-Components, Betweenness-Centrality,
triangle counting... BFS is a representative sparse problem.

1
Edge ---- @l _——-
s 1le
Do D1 Dy D3 D4T X. X. “1" _ o @ -
o © 1171 T
AR e |6
il T ) = O
l Sz "J-lJJ"J'_l S Search done when no new vertices added (or all
S R W S SN I visited)
Se| 1 11 >




Compressed Sparse Data Structures for Feasible Memory Size

Offsets Array (OA)

Neighbors Array (NA)

Edge
st — Vertex Property A
ertex Property Array
D )
L - D1 , b2 , D3, b4 l.e., srcData / dstData
S0 '
S1] 1 E 1
Src s; (101 )
l S3| 1 1
S4l1: 11

011|368
21014|10|1|3|1(4|0]2

Compressed Sparse Row (CSR)
Outgoing Neighbors

2 1 1 (2 |1

Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there



Compressed Representations = Irreqular Memory Accesses

Push (CSR Traversal)

Dst —
. DOEDl DfEDS = c| 4 | for src in G:
AR EnEr for dst in out_neighs(src):
VAR : dstData[dst] += srcData[src]
pos el ] 5 | . . . .
o r =+ v Push traversal performs irregular write operations that lack locality

l.e., X.

dstData

) srcData

e.g., current rank of page |,
CSR e.g., current shortest path 7
from source vertex



Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
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PageRank SSSP-BF  SSSP-DS BC PageRank Collaborative Breadth-First Betweenness

Filtering Search Centrality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;



Even Building the CSR / CSCiis an Irreqular Access Pattern!

O|IO|N|O|-INIO
WA WINIO|IO|—

COO
(EdgeList)

for e in EL:
neigh_count[e.dst]++; /*xe.srcx/

Updates to the neigh_count
array are to random elements
determined by order of edges
in edge list



Even Building the CSR / CSCis an Irreqular Access Pattern!

for e in EL:
NA[ OA[e.src]++ | = e.dst

OINIO|RIN|IO
WA ININIO|IO|-

0

o r s
(@0]0)

Completed CSC

Updates to NA based on EL order & OA[e.src]
NA[ OAl[e.src]++ ] = e.dst



Graph Applications are Memory-Bound
A

Memory-Bou Compute-Bo
nd < | | > und
Peak
Throughput FlLOPS
(GFLOP/s)
/DRAM BW utilization in \

graph apps is “50%

Why would we have spare

BW capacity to go to >

250
Operational Intensity
(FLOPS/Byte)

Qnemory and not use it?
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Improving Operational Intensity (Ol) by Improving Locality
A

CPU Memory-Bou Compute-Bo
(compute, flop/s) nd < | | > und

DRAM Bandwidth
(GB/s)

Peak
FLOPS

DRAM Throughput
(data, GB) (GFLOP/S)

Key Question: So how do we improve
. locality, to reduce data movement

. from memory, to increase Ol, and

. move to peak performance?

/Locality wins: If we can operate X
out of cache, higher ceiling &
more leftward ridge point.

y 5 .
Why is cache BW > DRAM BW? 1716 1/8 250

\Smaller SRAM caches much faster. -/ Operational Intensity
(FLOPS/Byte)
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Propagation Blocking: Optimizing Sparse
Irreqular Writes to Improve Cache Locality



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A

( )

\ J
|

| Cache| = 2 vertices

O|O|N|O|- N[O
WD |WNN|IO|O|-

COO0

(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random
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Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A
( \
SR - —
\ J
|

| Cache| = 2 vertices

OIN|O|RIN|O
WD |WNN|IO|O|-

0

COoOo
(EdgeList)

Recall: irregular accesses into
vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= | C| and do multiple sub-spaces of V*s, so that all V*s together =V
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Propagation Blocking: Performance Analysis

Usually save a little space in cache for

Traverse the edge list twice instead of once streaming edge list data. Easy to cache.
Binning Bin Read Ill-_r:lnlln'.é
0[1

2|0
110
02
21311 . . . . . .
04
0[3
Ccoo0
(EdgeList) 0
Bin 1: Bin 1:
dst 0-2 dst 3-5 dstData
Remember: dstData[e.dst] ++
What about the performance of reading the and e.dst is random, from edge list

edge list during binning? 1€



Propagation Blocking

PropagationBlocking EdgeCount (EdgeList E) {

Bins B[];
for edge in E{
add to bin( find bin(edge) )

for bin in B Reducing Pagerank Communication via Propagation Blocking

for e 1n bin{

dstData [ e.dst ] ++ Scott Beamer™ Krste Asanovi¢c  David Patterson
Computational Research Division Electrical Engineering & Computer Sciences Department
} Lawrence Berkeley National Laboratory University of California
} Berkeley, California Berkeley, California
sbeamer@lbl.gov {krste, pattrsn}@eecs.berkeley.edu

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)



Src

2-way Set-Associative

Using The Graph’s Transpose For Optimal Replacement

Dst —
Do D1 Dz D3 Dy

1“1
1->1 13 ] 1

< )

srcData[sS, ]

- J

Pull Traversal Pattern

Pull Execution (CSC Traversal)

for dst in G:

! for src in din_neighs(dst):
' dstData[dst] += srcData[src]
,-' CurrDs Irregular Data Stream
' 1:DO srcData[S, ]
v o
D, | srcData[s,]
Which line should we evict?: Time
o srcData[S,] (nextRef @ D,) V/ | Do | HIEECLEIEN l
e srcData[S,] (nextRef @ D,) D, | srcDatals,]
D, | srcData[s,]

18




Transpose-based OPT (1-OPT) Provides Large Gains

LLC MPKI

App - PageRank

LRU

DRRIP

SHIP-PC  SHIP-MEM-INF HAWKEYE

Cache Replacement Policies

T-OPT

19



Main Technique: Use Quantization To Compress The Transpose

Dst — Epoch-0 Epoch-1 Epoch-2
Do D1 Dy D3 D . . | |
O, 1, 2, 3, 4 c| 4 Divide execution into D0|D1~D2|D3~D4 = 4
R 2| coarse-grained epochs Sof s i .. =
St1|1: 1| = Stl1 L 5
Src s, (1111 & ‘ S;[111! 11 =
¥ ; o BN B B e R =
Voss| it 1| = 3| a2t 1o [1 AL
S4 15 :1 v v S4 1: 1: V" v
Eo E1 Ep
Quantization enables Cof1|0|M
NBRBGE compression of transpose data Ci|2 |1 0]
l l ‘ C,10|0(M
NA Cz|0|1]0
2|0[4[of1]3]1]4]0]2 c. Il o
CSR Rereference Matrix

(Transpose) (Ouantized Transpose) 20



P-OPT Improves Cache Locality

LLC Miss Reduction
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P-OPT’s LLC Miss Reductions Directly Translate To Speedups

1.8

Speedup

B LRU B P-OPT [ Ideal

\

P-OPT provides up

to 1.56x speedup
over LRU

\

J

PageRank (PR) PR-Delta

Components

Applications

Radii

Max Ind. Set
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Today: Parallel Computer Architectures

* Why do we have mainly parallel computers

* How do we make caches work with parallelism
* Memory consistency models & ordering

* Implementing synchronization



Moore’s Law: The number of transistors on microchips doubles every two years [oNaWIE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Year in which the microchip was first introduced

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

OurWorldinData.org - Research and data to make progress against the world'’s largest problems.



42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp
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*11 metal layers
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https://en.wikichip.org/wiki/14_nm_process

Memory Controller

" System
- - Agent

*14 nm process

11 metal layers
*~1,750,000,000 transistors
*~9.19 mm x ~11.08 mm
*~7101.83 mm? die size

4 CPU cores + 24 GPU EUs

Ring .
Interconnect
' Display Ctrl
1/O Ctrl

Shared memory multi-threading
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https://en.wikichip.org/wiki/14_nm_process
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Parallel hardware + parallelizable
software are a direct application of
Amdahl’s Law

Multi-core parallelism was the primary
way to keep performance scaling alive
once single-thread performance hit the
wall

Question: How to we architect a
programmable parallel computer
system?



“Coherence seeks to make the caches of

a shared-memory system as functionally invisible as
the caches in a single-core system. Correct

coherence ensures that a programmer cannot
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011



Cache Coherence



What is the behavior of this parallel program?
(X initially 0)



Wr X=2 Rd X=2

Wr X=2
Wr X=1 Rd X=1
Rd X=0

Wr X=1 Wr X=2



~

What about this example?
(X initially 0)



X++

X++

~

X++

X++

X++

Rd X=2

Rd X=2

Rd X=1

(and the symmetric case)



: CPU.3

~

What assumptions are we making about the system
to produce the results 0, 1, and 27



~

We assume the updates see one anothers’ results!
(Why wouldn’t they?)



g(++
= X++
$[X]=1 Rd X:?
Memory: X=0
CPU1: X=1
CPU2: X=1

Reality: X=2 (?!)

So what the heck do we do now?



X++

s[x]=1 X++
Memory: X=0
CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)

Never let this happen. Caches should be coherent.

“coherence ensures that a programmer cannot determine whether and
where a system has caches by analyzing the results of loads and stores”



Informally Defining
Coherence

“Coherence serializes all reads with all updates to the same
location by different CPUs/caches, so that each read sees
the result of the most recent update by any other”

“Single Writer/Multiple Reader (SWMR) Invariant
+

Data-Value Invariant”



Epoch Model

S[X]=0
Read/Write X++
Epoch for CPU1 SIX]=1

S[X]=1
Read/WriteX ++
Epoch for CPU25[X]=2
S[X]=2
Read-only Rd X=?
Epoch for all 3[X]=2

Yay! Corresponds to reality!



Epoch Model

R/W vs. R-O Epochs directly enforce SWMR

S[X]=0
Read/Write X++
Epoch for CPU1 SIX]=1

S[X]=1
Read/WriteX ++
Epoch for CPU25[X]=2
S[X]=2
Read-only Rd X=?
Epoch for all 3[X]=2

Yay! Corresponds to reality!

Epoch transitions assume data-value invariant



What do we need to
implement the Epoch Model?

Need to add concept of R/W epoch vs. R-O epoch

Need to add gadget that correctly moves data
between epochs



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state
based on (1)local memory operations; and (2)other CPUs’
memory operations

Add support to get data from (1)local cache; (2)a remote
cache; or (3)main memory, depending on line’s protocol state



High-level sketch of
protocol in action

(1)  cputsays “Iam is writing X”
Others relinquish cached copies of X

and reply “OK go for it” <enter R/W epoch>

$[X]=0 (ditto (1) for CPU2) (2)
Read/Write X++
Epoch for CPU1 >[X1=1
CPU3 says “l want to read only”

o[X]=1 Others reply “
. ply “OK, we all agree
Read/erteX+_+ (4) not to write without saying so”
Epoch for CPU2-(X]=2 <enter R-O epoch>
S[X]=2
CPU1 replies “I have X. Use my Read-only Rd X=?
copy or get it from memory after | Epoch for all S[X]=2

write it back”
(3)

(ditto (3) for CPU 2) (5)



Cache Coherence Protocol

) @,

Per-line coherence states

o



Cache Coherence Protocol

@i (inaccessible)



Cache Coherence Protocol

Local operations perspective

Locally perform a

read or write <\ /l.ocally perform a read
" |

Locally perform a write Locally perform a read
[send invalidations to other CPUs] [send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]




Cache Coherence Protocol

Remote operations perspective

Incoming request to share
[reply with data or write back]

>

Incoming Invalidation Incoming Invalidation
[reply with invalidation acknowledgement] [reply with invalidation acknowledgement]




Can we design another state?

What should we optimize?



Can we design another state?

@ | ’ Q
S A S
Exclupive Read-only I

(Benefit: no invalidation required
to transition from E->M, like from S->M)




Implementing the Protocol

\ i -

Shared bus for coherence messages

% Snoopy Coherence



Implementmg the Protocol

Invalidate

X++



Implementmg the Protocol

Ack Ack

X++



Implementing the Protocol

Entering CPU1’s
write epoch

X++



Implementing the Protocol

RdReqg
X++ Rd X=7



Implementing the Protocol

Got it: X=1 Don’t have it
X++ Rd X=?




Implementing the Protocol

X++ Rd X=?



Implementing the Protocol

ol 2%

What sucks about Snoopy?



Implementing the Protocol

> > CPUZ3

Shared
bus

Bus limits scalability due to congestion and
complex message arbitration



Figure 1-2. Intel® Xeon® Processor E5 v3-1600/2600/4600 Family -12C Block Diagram

Figure 1-1. Uncore Sub-system Block Diagram of Intel Xeon Processor E5-2600 Family
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Four Intel® SMI
Channels

Ubox contains
Giobal Control

Core 4

Core 6

Intel Sandybridge Multiprocessor: bi-directional ring
network




Figure 1-1.

Intel® Xeon® Processor Scalable Memory Family - Block diagram for a 28C

part
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Implementing the Protocol

\ i -

(Eff ctively) Point to Point

Directory-based



Implementing the Protocol

2 : CPU.3
Sharers o

Directory-based

f



Implementing the Protocol

\ i -

Who has X?

X++

Directory-based



Implementing the Protocol

\ i -

No one does!
Proceed!

X++

Directory-based



Implementing the Protocol
CPU3

CPUs 2 and 3 do.
Send them Invalidates!

X++

X++

Directory-based



Implementing the Protocol

: : CPU.3
Sharers o

Benefit: No broadcast on shared bus

f



Implementing the Protocol

: CPU.3
i\
Sha

Drawbacks?

rers of

X++



Implementing the Protocol

ﬂ : CPU.3
Sharers of )S(harers o

Y

f

Centralized directory won’t scale
(In Practice: Distribute Directory)



Optimization: Non-binding Prefetch

i i o

CPU 2

Prefetch instruction preemptively
changes coherence state



Optimization: Non-binding Prefetch

i i o

Owner of X

CPU 1

Benefit?



Optimization: Speculation

: : CPU3
BP: taken
pecuatve
s

Owner of X

—€pY2—

CPU 1

Speculative operations that squash
behave like non-binding pre-fetch



“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved if
the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979



“The memory consistency model of a
shared-memory system specifies the order
in which memory operations will appear
to execute to the programmer. The
memory consistency model affects the
process of writing parallel programs and
forms an integral part of the entire

system, including the architecture, the
compiler, and the programming

language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999



Memory Consistency



Memory Consistency
Model

Informal Definition:

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”



Coherence is Ordering

Wr X Wr X
OR

Wr X Wr X

Coherence defines the set of legal orders of
accesses to a single memory location



Consistency is Ordering

Wr X WrY
OR

WrY Wr X

Consistency defines the set of legal orders of
accesses to multiple memory locations



Sequential Consistency (SC)

The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:

All processors agree
on a total order of
executed instructions



The SC “Switch”

Wr X Wr Y

RdY Rd X

Execution



The SC “Switch”

Wr X Wr Y

RdY Rd X

Execution
Wr X



The SC “Switch”

Wr X Wr Y

RdY Rd X

Execution
Wr X
RAY



The SC “Switch”

Wr X Wr Y

RdY Rd X

Execution
Wr X

RdY
WrY



The SC “Switch”

Wr X Wr Y

RdY Rd X

Execution
Wr X

RdY

WrY
Rd X



The SC “Switch”

Wr X Wr Y
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Execution
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RdY
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Why is SC Important?

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC)Weird (not SC)

Wr X Rd Y
Wr X fwry Rd'Y Wr X

Wr Y Rd X
RAY I Rd X

Rd X Wr Y

SC prohibits all reordering of instructions (Invariant 1)



ly are Instructions Reordered?

hen does it matter? When does it not matter?



Reordering #1: Write Buffers

CPU can read its write
buffer, but not others’

erte Buffer erte Buffer

Coherent

Buffered writes eventually end up in coherent
shared memory
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Reordering #1: Write Buffers

Program
Initially X ==Y ==
X=1 Y=1
— — rl=yY r2=X

Is rl==r2==0

a valid result?

rl ==r2 ==0is not SC, but it can happen with write buffers
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Reordering #1: Write Buffers

Program
Ij l Initially X ==Y ==
Execution

r1=Y [r1l <- 0]

r2=X [r2 <- 0]



Reordering #1: Write Buffers

Program

D D

Execution

r1=Y [rl <- 0]
WBs let reads finish r2=X[r2 <- 0]
before older writes X=1 (Not SC!)



Reordering #2: Write Combining

Coalescing Write Buf

4 word cache line

Program
X,Z in same S line
X=1

Y=1
/=1
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Y=1
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Program
X,Z in same S line
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Reordering #2: Write Combining

X=1

Coalescing Write Buf

Y=1

/=1

Coalescing Write BUFF

X=1 7=1

Y=1

Combining the write to X & Z saves bandwidth,

but reorders Z=1 and Y=1



Reordering #3: Interconnect

=L

Program

r2=Y r4=X

X=1 r1=X Y=1 r3=Y
1

X=

Execution
X=1
Y=1
Variable time cost traversing rl=X(rl<-1
routed on-chip network r2=Y r2 <- O
r3=Y [r3 <- 1]
rd=X |r4 <- O]




Reordering #4: Compilers

Hoisted!

X=0

for (1..100) X=1
X =1 X=0 for (1 .. 100) X =0
print X print X

The compiler hoists the write out of the loop, permitting
new (non-SC) results (e.g., “1000000...”)



When is Reordering a Problem?

When Executions Aren’t SC



When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
r1=Y [rl <- O]
r2=X [r2 <- 0] X=1 Y=1

X=1 ri=y r2=X

Y=1
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When a memory operation happens before itself
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When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
r1=Y [r1l <- O]
r2=X [r2 <-0] « X=1 Y=1
/ X=1 1=Y ><r2—x
——Y=1 e )

If there is a cycle in the happens-before graph, the
execution is not SC



When is an Execution Not SC?

When a memory operation happens before itself

Exe)czu;clﬂ\ Happens-Before Graph
N AR \4 X=1 /Y:P?;x\\)rza:Y
rl=X1[rl1 <-1] V\
\,:2=Y r2<-0; / \ 12=Y  r4=X
3=Y [r3 <- 1] . —
r4=X [r4 <- O]

If there is a cycle in the happens-before graph, the
execution is not SC



So... are Computers Wrong?!

SC is how programmers think.

SC prohibits all reordering of instructions

WBs let reads finish before older writes

Combining writes saves bandwidth but reorders writes



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



X86‘TSO (intel x86s)

“The Write Buffer Memory Model”

ri=Y

<x=1 Relaxes W->R

order
ri=yY

Total Store Order - loads may complete before older
stores to different locations complete.



PSO(SPARC)

“The Write Combining Memory Model”

N >

Relaxes W->W
order

(}i
L T | T
Ll

Partial Store Order - loads and stores may complete
before older stores to different locations complete.



In General

q
0
<
>
]

>

I

[
/};\Il
P R, R

N
I

W->R W->W

rl=Y Y=1
<r2:x <r2:x
ri=Y Y=1

R->R R->W

Starting with PSO and relaxing R->R and R->W vyields
Weak Ordering or Release Consistency (alpha)

Depending on the implementation



SC and Relaxed Consistency

SC is required for correctness and programmer sanity
+

Reordering is required™ for performance

Goal: Ensure SC executions while permitting
Relaxed Consistency reorderings

*Usually; the MIPS memory model is SC (surprising!)



How to ensure SC, but permit
reordering?



Synchronization Prevents
Reordering

Memory fences are another type of synchronization

-l 1=Y

Reordering prevented y=1
\ B Memory Fence

N\ri=Y

Fence implementation depends on reordering implementation

TSO: Stall reads until write buffer is empty



Synchronization For Real
Programmers

Memory fences are wrapped up in locks, etc.

-l 1=Y
| Lock
Reordering prevented X=1
\\ Unlock
~rl=Y

Direct use of fences possible, but inadvisable.
USE A LIBRARY.



Data Races

Synchronization imposes happens-before on otherwise
unordered operations

Lock
Y=1
Unlock HB Order: Data race prevented
Lock
rl=Y
Unlock

Data Race: Unordered operations to the same memory
location, at least one a write



Memory Models across the

System Stack

Language

Java/C++: SC
for
data-race-free
programs

Compiler

Conservative
with reordering
when d-r-f can’t
be proved

Architecture

Usually very weak for
max optimization
(lots of reordering)

Note: fences from
“above” ensure SC



