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Recap: Sparse Problems

•What is a sparse problem?  Why are they called “sparse”?

•What makes sparse problems hard?

•Roofline performance modeling

•Hardware and software strategies for optimizing sparse problems



Graph Processing Problems are Sparse Problems

Path Planning Social network analysis Protein-Protein Interaction

The canonical examples of sparse problems are graph processing applications.



What does a graph processing program look like?

for e in EL:
  dstData[e.dst] =     
     f(srcData[e.src],dstData[e.dst])

dstData

srcData
stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration 
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Src

Dst

How do graph applications correspond to linear algebra?

1

=1

T

ATx
i
 = x

i+1

Turns out that other graph applications also correspond to 
roughly this formulation if you change the operations you 
use (min/+ instead of +/*) or consider weighted edges

x
i
 x
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SSSP, BFS, PageRank, Connected-Components, Betweenness-Centrality, 
triangle counting…   BFS is a representative sparse problem.
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Search done when no new vertices added (or all 
visited)



6

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR) 
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

21 12 1
Vertex Property Array 
i.e., srcData / dstData

Often we will leave the vertex property array 
implicitly defined when we talk about sparse 
structures, but it is always there



Src

Dst
for src in G: 

for dst in out_neighs(src):
dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR 
7

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I, 
e.g., current shortest path 
from source vertex

i.e., x
i+1

 

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
8

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but 
graph processing still entails a large working set with poor locality



Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count 
array are to random elements 
determined by order of edges 
in edge list



Even Building the CSR / CSC is an Irregular Access Pattern!

Updates to NA based on EL order & OA[e.src]
NA[ OA[e.src]++ ] = e.dst

for e in EL:
  NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6 OA

1 0 0 0 0 NA2 2

Completed CSC



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-Bo
und

Memory-Bou
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Peak 
FLOPS

Pe
ak 

Mem
 BW

2501/16

DRAM BW utilization in 
graph apps is ~50%

Why would we have spare 
BW capacity to go to 
memory and not use it?



12

Throughput
(GFLOP/s)

Operational Intensity 
(FLOPS/Byte)

Compute-Bo
und

Memory-Bou
nd

Peak 
FLOPS

Pe
ak 

Mem
 BW

2501/16 1/8

Improving Operational Intensity (OI) by Improving Locality

Pe
ak 

Ca
ch

e B
W

Locality wins: If we can operate 
out of cache, higher ceiling & 
more leftward ridge point. 

Why is cache BW > DRAM BW?
Smaller SRAM caches much faster. 

Key Question: So how do we improve 
locality, to reduce data movement 
from memory, to increase OI, and 
move to peak performance?



Propagation Blocking: Optimizing Sparse 
Irregular Writes to Improve Cache Locality 
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices, 
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together = V
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Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 1: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0 0 0

0    4

Binning Bin Read

Usually save a little space in cache for 
streaming edge list data.  Easy to cache.

What about the performance of reading the 
edge list during binning?

Streaming

Random Access, but always in cache



Propagation Blocking

PropagationBlocking_EdgeCount(EdgeList E){

  Bins B[];
  for edge in E{
    add_to_bin( find_bin(edge) )
  }

  for bin in B{
    for e in bin{
      dstData[e.dst]++
    }
  }

}
Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)
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Src

Dst

for dst in G: 
for src in in_neighs(dst):

dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) ✔
● srcData[S2]  (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Transpose-based OPT (T-OPT) Provides Large Gains 

1.7X

��
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Src

Dst

OA

NA

CSR
(Transpose) 

Rereference Matrix 
(Quantized Transpose)

Divide execution into 
coarse-grained epochs

Quantization enables 
compression of transpose data

Main Technique: Use Quantization To Compress The Transpose



P-OPT Improves Cache Locality

21

P-OPT results are 
only 12% away 
from the Ideal



P-OPT’s LLC Miss Reductions Directly Translate To Speedups

22

P-OPT provides up 
to 1.56x speedup 

over LRU



Today: Parallel Computer Architectures

•Why do we have mainly parallel computers

•How do we make caches work with parallelism

•Memory consistency models & ordering

• Implementing synchronization







•14 nm process
•11 metal layers
•~1,750,000,000 transistors
•~9.19 mm x ~11.08 mm
•~101.83 mm² die size
•4 CPU cores + 24 GPU EUs

https://en.wikichip.org/wiki/14_nm_process


•14 nm process
•11 metal layers
•~1,750,000,000 transistors
•~9.19 mm x ~11.08 mm
•~101.83 mm² die size
•4 CPU cores + 24 GPU EUs

Shared memory multi-threading

https://en.wikichip.org/wiki/14_nm_process


•14 nm process
•682.6 mm² die size
•76 CPU cores
•7,100,000,000 transistors

https://en.wikichip.org/wiki/14_nm_process
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Parallel hardware + parallelizable 
software are a direct application of 

Amdahl’s Law

Multi-core parallelism was the primary 
way to keep performance scaling alive 

once single-thread performance hit the 
wall

Question: How to we architect a 
programmable parallel computer 

system?



“Coherence seeks to make the caches of
a shared-memory system as functionally invisible as 
the caches in a single-core system. Correct
coherence ensures that a programmer cannot 
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011



Cache Coherence



CPU 1 CPU 2 CPU 3

Wr X=1

$ $ $

Wr X=2 Rd X=?

What is the behavior of this parallel program? 
(X initially 0)



CPU 1 CPU 2 CPU 3

Wr X=1

$ $ $

Wr X=2 Rd X=?

Wr X=1
Wr X=2 Rd X=2

Wr X=1
Wr X=2

Rd X=1

Wr X=1 Wr X=2
Rd X=0



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What about this example? 
(X initially 0)

X++



CPU 1 CPU 2 CPU 3

X++

$ $ $

X++ Rd X=?

X++
X++ Rd X=2

X++
X++

Rd X=2

X++

X++
Rd X=1

(and the symmetric case)



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What assumptions are we making about the system
to produce the results 0, 1, and 2?

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

We assume the updates see one anothers’ results!
(Why wouldn’t they?)

X++



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

So what the heck do we do now?

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

Never let this happen.  Caches should be coherent.

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)

“coherence ensures that a programmer cannot determine whether and 
where a system has caches by analyzing the results of loads and stores”



Informally Defining 
Coherence

“Coherence serializes all reads with all updates to the same 
location by different CPUs/caches, so that each read sees 
the result of the most recent update by any other”

“Single Writer/Multiple Reader (SWMR) Invariant
+
Data-Value Invariant”



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant



What do we need to 
implement the Epoch Model?

Need to add concept of R/W epoch vs. R-O epoch

Need to add gadget that correctly moves data 
between epochs



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state 
based on (1)local memory operations; and (2)other CPUs’ 
memory operations

Add support to get data from (1)local cache; (2)a remote 
cache; or (3)main memory, depending on line’s protocol state 



High-level sketch of 
protocol in action

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2

CPU1 says “I am is writing X”
Others relinquish cached copies of X
and reply “OK go for it” <enter R/W epoch>

(ditto (1) for CPU2)

CPU1 replies “I have X. Use my
copy or get it from memory after I
write it back”

(1)

(2)

(3)
(ditto (3) for CPU 2)

CPU3 says “I want to read only”
Others reply “OK, we all agree
not to write without saying so”

(4)

(5)

<enter R-O epoch>



Cache Coherence Protocol

Per-line coherence states

M S

I



Cache Coherence Protocol

Modified (R/W) Shared (R-O)

Invalid (inaccessible)



Cache Coherence Protocol
Local operations perspective

M S

I

Locally perform a read
[send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a read
Locally perform a
read or write



Cache Coherence Protocol
Remote operations perspective

M S

I

Incoming Invalidation
[reply with invalidation acknowledgement]

Incoming request to share
[reply with data or write back]

Incoming Invalidation
[reply with invalidation acknowledgement]



Can we design another state?

M S

I?

What should we optimize?



Can we design another state?

M S

IExclusive Read-only

(Benefit: no invalidation required
to transition from E->M, like from S->M)



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Snoopy Coherence

Shared bus for coherence messages



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Invalidate

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

X++

Ack Ack



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++

(M)
Entering CPU1’s
write epoch



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

RdReq



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

Don’t have itGot it: X=1



CPU 1 CPU 2 CPU 3

X=1 $ X=1

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(S) (S)
Entering R-O
epoch



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What sucks about Snoopy?

Implementing the Protocol



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Bus limits scalability due to congestion and 
complex message arbitration

Implementing the Protocol

Shared 
bus



Intel Sandybridge Multiprocessor: bi-directional ring 
network



Skylake Xeon 2017 2D mesh



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of 
X

(Effectively) Point to Point 
Links



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of 
X



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of 
X

X++

Who has X?



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of 
X

X++

No one does!
Proceed!



CPU 1 CPU 2 CPU 3

$ X=1 X=1

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of 
X

X++

CPUs 2 and 3 do.
Send them Invalidates!

X++
Rd X=?



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Benefit: No broadcast on shared bus

Sharers of 
X



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Drawbacks?

Sharers of 
X

X++



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Centralized directory won’t scale
(In Practice: Distribute Directory)

Sharers of 
X

Sharers of 
Y



CPU 1 CPU 2 CPU 3

$ X X

Rd X Rd XPF X

Optimization: Non-binding Prefetch

Prefetch instruction preemptively 
changes coherence state

Sharers of 
X

CPU 2
CPU 3



CPU 1 CPU 2 CPU 3

X=1 $ $

Rd X Rd X
PF X

Optimization: Non-binding Prefetch

Benefit?

Owner of X

CPU 2
CPU 3

X=1

CPU 1

…



CPU 1 CPU 2 CPU 3

X $ $

Rd X Rd X
if(C)

Optimization: Speculation

Speculative operations that squash
behave like non-binding pre-fetch

BP: taken

X=1 speculative

Owner of X

CPU 2
CPU 3
CPU 1

s



“computers execute operations in a 
different order than is specified by the 
program. A correct execution is achieved if 
the results produced are the same as 
would be produced by executing the 
program steps in order.  For a 
multiprocessor computer, such a correct 
execution by each processor does not 
guarantee the correct execution of the 
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979



“The memory consistency model of a 
shared-memory system specifies the order 
in which memory operations will appear 
to execute to the programmer.  The 
memory consistency model affects the 
process of writing parallel programs and 
forms an integral part of the entire 
system, including the architecture, the 
compiler, and the programming 
language.”

Excerpt from “Recent Advances in Memory Consistency 
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999



Memory Consistency



Memory Consistency
Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Informal Definition:



Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of 
accesses to a single memory location

Wr X

Wr X
OR



Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of 
accesses to multiple memory locations

Wr X

Wr Y
OR



Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:
All processors agree
on a total order of
executed instructions



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X



Why is SC Important?

Intuitive (SC)
Wr X
Rd Y
Wr Y
Rd X
Rd X

Weird (not SC)

Wr X
Rd Y

Wr Y
Rd X
Rd X

Wr X

Rd Y

Wr Y

Rd X

Rd X

SC prohibits all reordering of instructions (Invariant 1)

SC is the most complex model that we can ask 
programmers to think about.



Why are Instructions Reordered?
Examples? When does it matter? When does it not matter?



Reordering #1: Write Buffers Execution

Wr X

Rd Y

Wr Y

Rd X

M M

CPU can read its write 
buffer, but not others’

Buffered writes eventually end up in coherent 
shared memory

Coherent

CPU CPU

Write BufferWrite Buffer



Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0



Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

r1 == r2 == 0 is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program
Initially X == Y == 0

X=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program
Initially X == Y == 0

X=1

Y=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program
Initially X == Y == 0

X=1 Y=1



Reordering #1: Write Buffers

Execution

r2=X

M M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y



Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y r2=X



Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r1=Y [r1 <- 0]

r2=X



Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1 Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]



Reordering #1: Write Buffers

ExecutionM M

Program
Initially X == Y == 0

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

WBs let reads finish 
before older writes (Not SC!)



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

4 word cache line



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1

Y=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program
X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Z=1



Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalesce

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1



Reordering #3: Interconnect

Execution

Program

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]

X=1 Y=1r1=X

r2=Y

r3=Y

r4=X

r2=Y [r2 <- 0]

r4=X [r4 <- 0]

X=1 Y=1

Y=1

X=1
Variable time cost traversing 
routed on-chip network



Reordering #4: Compilers

for (1 .. 100)

X = 1 X = 0
print X

X = 0

Compiler for (1 .. 100)
X = 1

X = 0
print X

              Hoisted!

The compiler hoists the write out of the loop, permitting 
new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)



When is Reordering a Problem?

When Executions Aren’t SC



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1 Y=1

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]
r2=Y [r2 <- 0]

r4=X [r4 <- 0]

r3=Yr1=X

r2=Y r4=X



So... are Computers Wrong?!

SC is how programmers think.

SC prohibits all reordering of instructions

WBs let reads finish before older writes

Combining writes saves bandwidth but reorders writes



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



x86-TSO (intel x86s)

“The Write Buffer Memory Model”

X=1

r1=Y

r1=Y

Total Store Order - loads may complete before older 
stores to different locations complete.

Relaxes W->R 
order



PSO(SPARC)

“The Write Combining Memory Model”

X=1

Partial Store Order - loads and stores may complete 
before older stores to different locations complete.

Y=1
Z=1

Z=1 Relaxes W->W 
order



In General

X=1

Y=1
Z=1

Z=1
X=1

r1=Y

r1=Y

r2=X

r1=Y

r1=Y

W->W

r2=X

Y=1

Y=1

R->R R->WW->R

Starting with PSO and relaxing R->R and R->W yields 
Weak Ordering or Release Consistency (alpha)

Depending on the implementation



SC and Relaxed Consistency

SC is required for correctness and programmer sanity

Reordering is required* for performance

Goal: Ensure SC executions while permitting 
Relaxed Consistency reorderings

+

*Usually; the MIPS memory model is SC (surprising!)



How to ensure SC, but permit
reordering?



Synchronization Prevents 
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are another type of synchronization

Reordering prevented

TSO: Stall reads until write buffer is empty



Synchronization For Real 
Programmers

X=1

r1=Y

r1=Y

Unlock

Memory fences are wrapped up in locks, etc.

Reordering prevented

Direct use of fences possible, but inadvisable.
USE A LIBRARY.

Lock



Data Races

Y=1
Unlock

Synchronization imposes happens-before on otherwise 
unordered operations

Data Race: Unordered operations to the same memory 
location, at least one a write

Lock

r1=Y
Unlock

Lock
HB Order: Data race prevented



Memory Models across the 
System Stack

Language Compiler Architecture

Java/C++: SC 
for 
data-race-free 
programs

Conservative 
with reordering 
when d-r-f can’t 
be proved

Usually very weak for 
max optimization 
(lots of reordering)

Note: fences from 
“above” ensure SC


