
Fall 2023

Lecture 15: Sparsity

Credit: Brandon Lucia

Today: Sparse Problems

• What is a sparse problem? Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)

Graph Processing Problems are Sparse Problems

Path Planning Social network analysis Protein-Protein Interaction

The canonical examples of sparse problems are graph processing applications.

Machine Learning Problems are Sparse Problems

Graph Convolutional NetworksData Mining

What does a graph processing program look like?

for e in EL:

dstData[e.dst] =

f(srcData[e.src],dstData[e.dst])

dstData

srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration

What does a graph processing program look like?

PageRank(-ish){

for e in EL:

rank_n[e.dst] =

rank_nminus1[e.src] + rank_n[e.dst]

}

dstData

srcData rank_n is a webpage’s rank in this iteration,
rank_nminus1 is rank_n from the last iteration

Graph Analytics can be mapped to Sparse Linear Algebra

7

Graph Analytics can be mapped to Sparse Linear Algebra

8

Graph Analytics can be mapped to Sparse Linear Algebra

9

How do graph applications correspond to linear algebra?

Src

Dst

10

Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

111

T

Matrix-transpose-vector product is one BFS iteration

ATxi = xi+1

Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

T

Matrix-transpose-vector product is one BFS iteration

ATxi = xi+1

xi xi+1

Initial xi+1 is vertices reachable from xi

A Transpose

121

Src

Dst

How do graph applications correspond to linear algebra?

1=

1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

transpose vector product

1

1

1

13

Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

1

1

1

transpose vector product

1

1

1

1

14

Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

1

1

1

transpose vector product

1

1

1

1

1

1

1

1

1

1

1

1

15

=

Search done when no new vertices added (or all
visited)

Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Turns out that other graph applications also correspond to
roughly this formulation if you change the operations you
use (min/+ instead of +/*) or consider weighted edges

ATxi = xi+1
SSSP, BFS, PageRank, Connected-Components, Betweenness-Centrality,
triangle counting… BFS is a representative sparse problem.

xi xi+1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

16

=

Search done when no new vertices added (or all
visited)

Nobody EVER uses the adjacency matrix!

Src

Dst

Why would the Adjacency Matrix not be used?

17

Nobody EVER uses the adjacency matrix!

Src

Dst Reasons Adjacency Matrix is never used:

● Sparsity: % of Non-Zero Entries ~ 10-5

18

● Total Size: 32M nodes => (32M * 32M) = 1PB

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

19

2 1 1 2 1
Vertex Property Array
i.e., srcData / dstData

Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there

20

Src

Dst

Offsets Array (OA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Neighbors Array (NA)

EdgeList sorted by
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size

OA indexed by vertex ID of src of edge
Value in OA is offset into NA

start index for edges w/ src == vertex i = OA[i]
#edges with src == vertex i = OA[i+1] – OA[i]

Dense encoding of sparse structure

index is src id

21

Src

Dst

Offsets Array (OA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Column (CSC)
Incoming Neighbors

Neighbors Array (NA)

EdgeList sorted by
DstIDs

The CSC is the transpose of the CSR

Offsets Array (OA)

Neighbors Array (NA)

EdgeList sorted by
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size

Building the CSR / CSC from a Graph’s Edge List

for e in EL:

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Building the CSR / CSC from a Graph’s Edge List

for e in EL:

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

neigh_count_dup

sum = 0

for i in 0 .. |V|:

tmp = neigh_count[i]

neigh_count[i] = sum;

neigh_count_dup[i] = sum;

sum += tmp

2 1 1 2 1

Building the CSR / CSC from a Graph’s Edge List

for e in EL:

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0

for i in 0 .. |V|:

tmp = neigh_count[i]

neigh_count[i] = sum; //OA

neigh_count_dup[i] = sum;

sum += tmp

0 2 3 4 6 OA (also OA_dup)

Building the CSR / CSC from a Graph’s Edge List

for e in EL:

neigh_ind = OA[e.src]

NA[neigh_ind] = e.dst

OA[e.src]++ /*sacrificial OA*/

//i.e., NA[OA[e.src]++] = e.dst

0 2 3 4 6 OA (also OA_dup)

0 2 3 4 6

1 2 0 0 0 2 0

OA_dup

NA

Completed CSC

Src

Dst

for dst in G:

for src in in_neighs(dst):

dstData[dst] += srcData[src]

Pull (CSC Traversal)

OA

NA

CSC
26

Compressed Representations ⇒ Irregular Memory Accesses

from source vertex

dstData

srcData

0 1 2 3 4

e.g., current rank of page I,
e.g., current shortest path

5 20 10 2 1

Pull traversal performs irregular read operations that lack locality

i.e., xi+1

Src

Dst

for src in G:

for dst in out_neighs(src):

dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

0 1 2 3 4

e.g., current rank of page I,

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

i.e., xi+1

CSR e.g., current shortest path
from source vertex

27

0 1 2 3 4

srcData 5 20 10 2 1

e.g., current rank of page I,

Src

Dst

for src in G:

for dst in out_neighs(src):

dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

Compressed Representations ⇒ Irregular Memory Accesses

Push traversal performs irregular write operations that lack locality
i.e., xi+1

Irregular Data Footprint >> LLC Size
Size of srcData ~ 256MB (32M vertices * 8B)

CSR

e.g., current shortest path
from source vertex

28

dstData

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

29
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Running on RMAT27
Graph w/ 35MB LLC

Why such bleak cache performance?
Consequence of bleak cache performance?

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

30
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

0

miss

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

31
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0

0 0 0 0 0

miss

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

32
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0

0 0 0 0 0

(You get lucky sometimes)

hit

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

33
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

0

miss

0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

34
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

35
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

36
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

37
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

38
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Cache miss latency cannot be hidden by anything else
in the program. Each miss incurs DRAM latency!

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

39
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Even Building the CSR / CSC is an Irregular Access Pattern!

for e in EL:

neigh_count[e.dst]++;

2 1 1 2 1 neigh_count

Why is this irregular?

Even Building the CSR / CSC is an Irregular Access Pattern!

for e in EL:

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count
array are to random elements
determined by order of edges
in edge list

Even Building the CSR / CSC is an Irregular Access Pattern!

Why is the NA update part irregular?

for e in EL:

NA[OA[e.src]++] = e.dst

0 2 3 4 6

1 2 0 0 0 2 0

OA

NA

Completed CSC

Even Building the CSR / CSC is an Irregular Access Pattern!

Updates to NA based on EL order & OA[e.src]
NA[OA[e.src]++] = e.dst

for e in EL:

NA[OA[e.src]++] = e.dst

0 2 3 4 6

1 2 0 0 0 2 0

OA

NA

Completed CSC

Roofline Performance Analysis of Graph Applications

44

The Roofline Model

45

Throughput
(operations per

second)

Operational Intensity
(operations per byte)

Compute-
Bound

Peak ops/s

Memory-
Bound

GFLOPS = Giga-Floating
Point Operations Per Second

Yes, this is not a proper acronym

The Roofline Model

46

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

What does Roofline help us
understand about a program?

The Roofline Model

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1
What does Roofline help us

understand about a program?
Tell us what limits performance
& how close to peak an app is.

Operational Intensity
(FLOPS/Byte) 47

The Roofline Model

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a
property of a
particular machine

What does Roofline help us
understand about a program?

Tell us what limits performance
& how close to peak an app is.

Operational Intensity
(FLOPS/Byte) 48

The Roofline Model

49

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1
As a program does more operations per
byte, memory has more time to deliver
next byte, relieving Mem BW pressure

& increasing compute pressure

“Ridge point” is a
property of a
particular machine

The Roofline Model

50

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

“Ridge point” is a
property of a
particular machineApp 1

What is this point?

As a program does more operations
per byte, memory has more time to

deliver next byte, relieving Mem BW
pressure & increasing compute

pressure

The Roofline Model

51

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

What is this point?

As a program does more operations
per byte, memory has more time to

deliver next byte, relieving Mem BW
pressure & increasing compute

pressure

Compare App1 and App2. What
are they doing differently from
one another?

Operational Intensity of Irregular Graph Applications

52

for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a
random update kernel like this one?

Operational Intensity of Irregular Graph Applications

53

for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a
random update kernel like this one?
Operations per byte:

Operational Intensity of Irregular Graph Applications

54

for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a random
update kernel like this one?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 4B srcData, 4B dstData
Operational Intensity = 1 / (8+4+4) = 1/16

Graph Applications are Memory-Bound

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

250

Operational Intensity
(FLOPS/Byte)

55

1/16

Graph Applications are Memory-Bound

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

2501/16

DRAM BW utilization in graph
apps is ~50%

Operational Intensity
(FLOPS/Byte)

56

Why would we have spare
BW capacity to go to memory
and not use it?

Graph Applications are Memory-Bound

57

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

DRAM BW utilization in
graph apps is ~50%

Why would we have
spare BW capacity to go
to memory and not use
it?

Don’t know what to fetch
next (no temporal
locality), can’t use extra
stuff we fetch (no spatial
locality). Limited ability
to send more memory
requests (limited mem.
parallelism).

Graph Applications are Memory-Bound

58

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

How to improve BW
utilization?

Option #1: Improve Locality →
Reduce Bytes moved → Improve OI

Graph Applications are Memory-Bound

59

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

Option #1: Improve Locality →
Reduce Bytes moved → Improve OI

Option #2: Improve Memory to
handle more parallel requests

How to improve BW
utilization?

Operational Intensity of Irregular Graph Applications

60

for e in EL:

dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load:
Operational Intensity =

Ideal Operational Intensity of Irregular Graph Applications

61

for e in EL:

dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 0B srcData, 0B dstData
Operational Intensity = 1 / (8+0+0) = 1/8

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

2501/16 1/8

Improving Operational Intensity (OI) by Improving Locality

Operational Intensity
(FLOPS/Byte)

62

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

2501/16 1/8

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate
out of cache, higher ceiling &
more leftward ridge point.

Why is cache BW > DRAM BW?
Operational Intensity

(FLOPS/Byte)
63

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate out
of cache, higher ceiling & more
leftward ridge point.

250Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

1/16 1/8
Operational Intensity

(FLOPS/Byte)
64

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak
FLOPS

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate out
of cache, higher ceiling & more
leftward ridge point.

Key Question: So how do we improve
locality, to reduce data movement
from memory, to increase OI, and
move to peak performance?

250Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

1/16 1/8
Operational Intensity

(FLOPS/Byte)
65

What did we just learn?

• Sparse problems are ones that manipulate large, mostly-zero matrices

• Sparsity makes caching a useful part of the matrix hard

• Roofline model shows how close to peak perf. an app is

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)

	Slide 1
	Slide 2: Today: Sparse Problems
	Slide 3: Graph Processing Problems are Sparse Problems
	Slide 4: Machine Learning Problems are Sparse Problems
	Slide 5: What does a graph processing program look like?
	Slide 6: What does a graph processing program look like?
	Slide 7: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 8: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 9: Graph Analytics can be mapped to Sparse Linear Algebra
	Slide 10: How do graph applications correspond to linear algebra?
	Slide 11: How do graph applications correspond to linear algebra?
	Slide 12: How do graph applications correspond to linear algebra?
	Slide 13: How do graph applications correspond to linear algebra?
	Slide 14: How do graph applications correspond to linear algebra?
	Slide 15: How do graph applications correspond to linear algebra?
	Slide 16: How do graph applications correspond to linear algebra?
	Slide 17: Nobody EVER uses the adjacency matrix!
	Slide 18: Nobody EVER uses the adjacency matrix!
	Slide 19: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 20: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 21: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 22: Building the CSR / CSC from a Graph’s Edge List
	Slide 23: Building the CSR / CSC from a Graph’s Edge List
	Slide 24: Building the CSR / CSC from a Graph’s Edge List
	Slide 25: Building the CSR / CSC from a Graph’s Edge List
	Slide 26: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 27: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 28: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 29: Irregular Accesses Lead to Poor Locality
	Slide 30: Irregular Accesses Lead to Poor Locality
	Slide 31: Irregular Accesses Lead to Poor Locality
	Slide 32: Irregular Accesses Lead to Poor Locality
	Slide 33: Irregular Accesses Lead to Poor Locality
	Slide 34: Irregular Accesses Lead to Poor Locality
	Slide 35: Irregular Accesses Lead to Poor Locality
	Slide 36: Irregular Accesses Lead to Poor Locality
	Slide 37: Irregular Accesses Lead to Poor Locality
	Slide 38: Irregular Accesses Lead to Poor Locality
	Slide 39: Irregular Accesses Lead to Poor Locality
	Slide 40: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 41: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 42: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 43: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 44: Roofline Performance Analysis of Graph Applications
	Slide 45: The Roofline Model
	Slide 46: The Roofline Model
	Slide 47: The Roofline Model
	Slide 48: The Roofline Model
	Slide 49: The Roofline Model
	Slide 50: The Roofline Model
	Slide 51: The Roofline Model
	Slide 52: Operational Intensity of Irregular Graph Applications
	Slide 53: Operational Intensity of Irregular Graph Applications
	Slide 54: Operational Intensity of Irregular Graph Applications
	Slide 55: Graph Applications are Memory-Bound
	Slide 56: Graph Applications are Memory-Bound
	Slide 57: Graph Applications are Memory-Bound
	Slide 58: Graph Applications are Memory-Bound
	Slide 59: Graph Applications are Memory-Bound
	Slide 60: Operational Intensity of Irregular Graph Applications
	Slide 61: Ideal Operational Intensity of Irregular Graph Applications
	Slide 62: Improving Operational Intensity (OI) by Improving Locality
	Slide 63: Improving Operational Intensity (OI) by Improving Locality
	Slide 64: Improving Operational Intensity (OI) by Improving Locality
	Slide 65: Improving Operational Intensity (OI) by Improving Locality
	Slide 66: What did we just learn?

