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Lecture 15: Sparsity
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Today: Sparse Problems

• What is a sparse problem? Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)



Graph Processing Problems are Sparse Problems

Path Planning Social network analysis Protein-Protein Interaction

The canonical examples of sparse problems are graph processing applications.



Machine Learning Problems are Sparse Problems

Graph Convolutional NetworksData Mining



What does a graph processing program look like?

for e in EL: 

dstData[e.dst] =

f(srcData[e.src],dstData[e.dst])

dstData 

srcData

stores vertex property information
if srcData == dstData, updating in-place;
often “swap” srcData & dstData from 1 iteration to the next iteration



What does a graph processing program look like?

PageRank(-ish){

for e in EL: 

rank_n[e.dst] =

rank_nminus1[e.src] + rank_n[e.dst]

}

dstData 

srcData rank_n is a webpage’s rank in this iteration,
rank_nminus1 is rank_n from the last iteration



Graph Analytics can be mapped to Sparse Linear Algebra
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Graph Analytics can be mapped to Sparse Linear Algebra
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Graph Analytics can be mapped to Sparse Linear Algebra
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How do graph applications correspond to linear algebra?

Src

Dst

10



Src

Dst

How do graph applications correspond to linear algebra?

1 

Initial xi vector is starting vertex for BFS.

=

1

111

T

Matrix-transpose-vector product is one BFS iteration

ATxi = xi+1



Src

Dst

How do graph applications correspond to linear algebra?

1

Initial xi vector is starting vertex for BFS.

=

1

T

Matrix-transpose-vector product is one BFS iteration

ATxi = xi+1

xi xi+1

Initial xi+1 is vertices reachable from xi

A Transpose

121



Src

Dst

How do graph applications correspond to linear algebra?

1=

1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

transpose vector product

1

1

1
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Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

1

1

1

transpose vector product

1

1

1

1
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Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Matrix transpose vector product is one BFS iteration

ATxi = xi+1

The next iteration is computed by performing the next matrix

xi xi+1

1

1

1

transpose vector product

1

1

1

1

1

1

1

1

1

1

1

1
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=

Search done when no new vertices added (or all
visited)



Src

Dst

How do graph applications correspond to linear algebra?

=1

T

Turns out that other graph applications also correspond to 
roughly this formulation if you change the operations you 
use (min/+ instead of +/*) or consider weighted edges

ATxi = xi+1
SSSP, BFS, PageRank, Connected-Components, Betweenness-Centrality,
triangle counting… BFS is a representative sparse problem.

xi xi+1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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=

Search done when no new vertices added (or all
visited)



Nobody EVER uses the adjacency matrix!

Src

Dst

Why would the Adjacency Matrix not be used?
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Nobody EVER uses the adjacency matrix!

Src

Dst Reasons Adjacency Matrix is never used:

● Sparsity: % of Non-Zero Entries ~ 10-5

18

● Total Size: 32M nodes => (32M * 32M) = 1PB



Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size
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2 1 1 2 1
Vertex Property Array 
i.e., srcData / dstData

Often we will leave the vertex property array 
implicitly defined when we talk about sparse 
structures, but it is always there
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Src

Dst

Offsets Array (OA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Neighbors Array (NA)

EdgeList sorted by 
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size

OA indexed by vertex ID of src of edge 
Value in OA is offset into NA

start index for edges w/ src == vertex i = OA[i]
#edges with src == vertex i = OA[i+1] – OA[i]

Dense encoding of sparse structure

index is src id
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Src

Dst

Offsets Array (OA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Column (CSC)
Incoming Neighbors

Neighbors Array (NA)

EdgeList sorted by 
DstIDs

The CSC is the transpose of the CSR

Offsets Array (OA)

Neighbors Array (NA)

EdgeList sorted by 
SrcIDs

Compressed Sparse Data Structures for Feasible Memory Size



Building the CSR / CSC from a Graph’s Edge List

for e in EL: 

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count



Building the CSR / CSC from a Graph’s Edge List

for e in EL: 

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

neigh_count_dup

sum = 0

for i in 0 .. |V|: 

tmp = neigh_count[i]

neigh_count[i] = sum; 

neigh_count_dup[i] = sum; 

sum += tmp

2 1 1 2 1



Building the CSR / CSC from a Graph’s Edge List

for e in EL: 

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

sum = 0

for i in 0 .. |V|: 

tmp = neigh_count[i]

neigh_count[i] = sum; //OA 

neigh_count_dup[i] = sum; 

sum += tmp

0 2 3 4 6 OA (also OA_dup)



Building the CSR / CSC from a Graph’s Edge List

for e in EL:

neigh_ind = OA[e.src] 

NA[neigh_ind] = e.dst 

OA[e.src]++ /*sacrificial OA*/

//i.e., NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6 OA (also OA_dup)

0 2 3 4 6

1 2 0 0 0 2 0

OA_dup

NA

Completed CSC



Src

Dst

for dst in G:

for src in in_neighs(dst):

dstData[dst] += srcData[src]

Pull (CSC Traversal)

OA

NA

CSC
26

Compressed Representations ⇒ Irregular Memory Accesses

from source vertex

dstData

srcData

0 1 2 3 4

e.g., current rank of page I,
e.g., current shortest path

5 20 10 2 1

Pull traversal performs irregular read operations that lack locality

i.e., xi+1



Src

Dst

for src in G:

for dst in out_neighs(src):

dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

0 1 2 3 4

e.g., current rank of page I,

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

i.e., xi+1

CSR e.g., current shortest path
from source vertex
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0 1 2 3 4

srcData 5 20 10 2 1

e.g., current rank of page I,

Src

Dst

for src in G:

for dst in out_neighs(src):

dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

Compressed Representations ⇒ Irregular Memory Accesses

Push traversal performs irregular write operations that lack locality
i.e., xi+1

Irregular Data Footprint >> LLC Size
Size of srcData ~ 256MB (32M vertices * 8B)

CSR

e.g., current shortest path
from source vertex

28

dstData



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

29
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Running on RMAT27 
Graph w/ 35MB LLC

Why such bleak cache performance? 
Consequence of bleak cache performance?



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

30
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

0

miss

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

31
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0

0 0 0 0 0

miss

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

32
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0

0 0 0 0 0

(You get lucky sometimes)

hit

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

33
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

0

miss

0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

34
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

35
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

36
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



LLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

0 0 0 0 0

miss

0 0

Dst coordinate of edge is index in dstData:

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Running on RMAT27
Graph w/ 35MB LLC

37
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

totally input dependent & random!!!



Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

38
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Cache miss latency cannot be hidden by anything else 
in the program. Each miss incurs DRAM latency!



Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

39
Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;



Even Building the CSR / CSC is an Irregular Access Pattern!

for e in EL: 

neigh_count[e.dst]++;

2 1 1 2 1 neigh_count

Why is this irregular?



Even Building the CSR / CSC is an Irregular Access Pattern!

for e in EL: 

neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count 
array are to random elements 
determined by order of edges 
in edge list



Even Building the CSR / CSC is an Irregular Access Pattern!

Why is the NA update part irregular?

for e in EL:

NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6

1 2 0 0 0 2 0

OA

NA

Completed CSC



Even Building the CSR / CSC is an Irregular Access Pattern!

Updates to NA based on EL order & OA[e.src] 
NA[ OA[e.src]++ ] = e.dst

for e in EL:

NA[ OA[e.src]++ ] = e.dst

0 2 3 4 6

1 2 0 0 0 2 0

OA

NA

Completed CSC



Roofline Performance Analysis of Graph Applications

44



The Roofline Model

45

Throughput 
(operations per 

second)

Operational Intensity
(operations per byte)

Compute-
Bound

Peak ops/s

Memory-
Bound

GFLOPS = Giga-Floating
Point Operations Per Second

Yes, this is not a proper acronym



The Roofline Model

46

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

What does Roofline help us 
understand about a program?



The Roofline Model

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1
What does Roofline help us

understand about a program?
Tell us what limits performance 
& how close to peak an app is.

Operational Intensity
(FLOPS/Byte) 47



The Roofline Model

Throughput
(GFLOP/s)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

“Ridge point” is a 
property of a 
particular machine

What does Roofline help us
understand about a program?

Tell us what limits performance 
& how close to peak an app is.

Operational Intensity
(FLOPS/Byte) 48



The Roofline Model

49

Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1
As a program does more operations per 
byte, memory has more time to deliver 
next byte, relieving Mem BW pressure 

& increasing compute pressure

“Ridge point” is a 
property of a 
particular machine



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

“Ridge point” is a 
property of a 
particular machineApp 1

What is this point?

As a program does more operations 
per byte, memory has more time to 

deliver next byte, relieving Mem BW 
pressure & increasing compute 

pressure



The Roofline Model
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Throughput
(GFLOP/s)

Operational Intensity
(FLOPS/Byte)

Memory-
Bound

Compute-
Bound

Peak FLOPS

App 2

App 1

What is this point?

As a program does more operations 
per byte, memory has more time to 

deliver next byte, relieving Mem BW 
pressure & increasing compute 

pressure

Compare App1 and App2. What 
are they doing differently from 
one another?



Operational Intensity of Irregular Graph Applications

52

for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a 
random update kernel like this one?



Operational Intensity of Irregular Graph Applications
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for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a 
random update kernel like this one?
Operations per byte:



Operational Intensity of Irregular Graph Applications

54

for e in EL:

dstData[e.dst] += srcData[e.src]

What is the operational intensity of a random
update kernel like this one?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 4B srcData, 4B dstData
Operational Intensity = 1 / (8+4+4) = 1/16



Graph Applications are Memory-Bound

Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

250

Operational Intensity
(FLOPS/Byte)

55

1/16



Graph Applications are Memory-Bound

Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

2501/16

DRAM BW utilization in graph 
apps is ~50%

Operational Intensity
(FLOPS/Byte)

56

Why would we have spare 
BW capacity to go to memory 
and not use it?



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

DRAM BW utilization in 
graph apps is ~50%

Why would we have 
spare BW capacity to go 
to memory and not use 
it?

Don’t know what to fetch
next (no temporal
locality), can’t use extra 
stuff we fetch (no spatial 
locality). Limited ability 
to send more memory 
requests (limited mem. 
parallelism).



Graph Applications are Memory-Bound
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Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

How to improve BW 
utilization?

Option #1: Improve Locality →
Reduce Bytes moved → Improve OI



Graph Applications are Memory-Bound

59

Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak
FLOPS

250

Operational Intensity
(FLOPS/Byte)

1/16

Option #1: Improve Locality →
Reduce Bytes moved → Improve OI

Option #2: Improve Memory to 
handle more parallel requests

How to improve BW 
utilization?



Operational Intensity of Irregular Graph Applications

60

for e in EL:

dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte: 
Operations: 1 addition 
Bytes to Load: 
Operational Intensity =



Ideal Operational Intensity of Irregular Graph Applications

61

for e in EL:

dstData[e.dst] += srcData[e.src]

Ideal Best Possible Operational Intensity?
Operations per byte:
Operations: 1 addition
Bytes to Load: 8B for edge, 0B srcData, 0B dstData
Operational Intensity = 1 / (8+0+0) = 1/8



Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

2501/16 1/8

Improving Operational Intensity (OI) by Improving Locality

Operational Intensity
(FLOPS/Byte)

62



Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

2501/16 1/8

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate 
out of cache, higher ceiling & 
more leftward ridge point.

Why is cache BW > DRAM BW?
Operational Intensity

(FLOPS/Byte)
63



Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate out 
of cache, higher ceiling &  more 
leftward ridge point.

250Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

1/16 1/8
Operational Intensity

(FLOPS/Byte)
64



Throughput
(GFLOP/s)

Memory- 
Bound

Compute- 
Bound

Peak 
FLOPS

Improving Operational Intensity (OI) by Improving Locality

Locality wins: If we can operate out 
of cache, higher ceiling &  more 
leftward ridge point.

Key Question: So how do we improve 
locality, to reduce data movement 
from memory, to increase OI, and 
move to peak performance?

250Why is cache BW > DRAM BW?
Smaller SRAM caches much faster.

1/16 1/8
Operational Intensity

(FLOPS/Byte)
65



What did we just learn?

• Sparse problems are ones that manipulate large, mostly-zero matrices

• Sparsity makes caching a useful part of the matrix hard

• Roofline model shows how close to peak perf. an app is

(with acknowledgements to Vignesh Balaji, CMU ECE PhD 2021, now at Nvidia for contributions to this material)
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