18-344: Computer Systems and the Hardware-Software Interface ~ Fail 2023

Course DBSB”D"U" Lecture 14: The Compiler Is Here To Help

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. Credit: Brandon Lucia

Today: The Compiler is Here to Help

* Next we will look to how the compiler represents and reasons about a
program

* We will learn about compiler optimizations and how they get defined
and applied

* Note: This lecture was intended to fall after VLIW and vector
machines and before VM in the schedule, but was bumped back by
one lecture to give you more time on the VM lab.

* When studying later, you may want to review it at that point in your flow.

Purpose & Operation of a Compiler

* Compilers process high-level

Dependencies Function

Ia ngu age COd etfo (eve ntua | |y) Language dependent; Bt cnd il Transform language to
. machine independent language common intermediate form
produce machine code
]] Intermediatc?
* Organized into a front-end,] | rprassgiation
. omewhat language dependent; High-level For example, loop
”m |dd |e_end"’ a nd back_end . largely machine independent optimizations transformations and

procedure inlining
(also called
procedure integration)

* Middle-end

analyzes/transforms program macine ceoondoneies it

represented as an (e.g., register counts/types)

“ .

I nte rm ed Iate Highly machine dependent; e ceneriil Detailed instruction selection

Represe ntation” language independent ug and machine-dependent
optimizations; may include
or be followed by assembler

Including global and local
optimizations + register
allocation

Global
optimizer

Front-end Phases in the Compiler

Input: High-level
Language / C Program

¥

Generation of
Semantic Intermediate

Analysis Representation
(IR)

$

Output: IR to process
in middle-end

Scanning / Lexing ‘ Parsing ‘

Scanning / Lexing: Reading in raw characters

* Process input string from “while (save[i] == k) :
code file into characters i+=1;"

* Use finite state machine to
process characters into
lexemes to match tokens Ve’ Nar vyl ver N[y AT/

e Maximal Munch Rule: I
Always match longest
available lexeme to token

e Qutput: series of tokens
identified by a (string) name .
. \\Whlle// AN (\\ \\Savell ANY [\\
that Can be pa rsed to glve \\] 144 A\ /4 \\==\\ \\k// \\) 144

1

Semantic meaning A\ Wy /4 _|_=\\ \\ll/ N\ , 7/

1 ’

S A VA VR R VA W A “scanner” or “lexer”
sses text into tokens

Parsing tokens

* Assemble tokens into an abstract
syntax tree (AST) that represents
the syntactic structure of the
program

* Tree represents recursive
substructure of program

* Includes sufficient information to
assign semantics to components
of the tree for analysis,
optimization, and mapping to
machine instructions

while statement
|

while condition

statement body

array access

identifier

array expression
identifier factor
save identifier

k

expression += assignment
|
I I
== comparison left-hand side expression
|
[|
expression expression identifier factor
factor factor I number

1

Semantic Checking & Analysis

* Programmatically examine the AST to
find a broad class of common errors

* Creates a symbol table mapping names
& types in program
* Type checking (most): make sure

computations only applied to correct
kinds of values

* Ownership/Borrow Checking (some):
make sure only zero or one writable
reference to a memory location

 Data-race checking (some): make sure
that no code allows data races

* Security / data integrity checking:
make sure that non-trustworthy
operations to do not see secret data

while statement

while condition

expression

== comparison

[
expression

factor

|

array access

|

expression

factor

identifier

|

array expression

identifier l factor

| |
save identifier
|

k

statement body Type:
| (integer,
+= assignment| .
| ; ”nteger)
left-hand side expression
identifier factor
| number
Type: |
integer !
Type:
integer

Converting to Intermediate Representation
(IR)

, loop:
[t skt # comments are written like this--source code often included
;whi/ecclmdition mgl% # while (savel[i] == k)
F’E | l t la rl00, save # r100 = &save[0]
expression += assignmen ‘| d r 1 O 1 , _]-
——comlm ’Ieﬂ-hanm‘ lv;pressi?v‘ 11 r\loz’ 8
—t— T T mul rl103, rl101, rl102
expression ’expression‘ identifier | {factor} ‘ add 104 , r103 , r100
s L - e 1d r105, 0(r104) ff r105 = saveli]
| I ‘ - | ! 1d P1A6; K
array access lidentifier‘ ’ 1 ‘ bne t”105, |"106, exit
, Ff_L__T' l #i+=1
ar]ay exprelssxon M -| d r\ 1 O 6 ’ ‘i
[identier | [factor | addi r107, rl06, i # increment
N | sd r107, 1
(= »‘denl“ﬁe‘- N loop # next iteration
i | exit:

Purpose of IR: simple set of semi-universal, language- and
machine-independent operations to which to apply analysis & optimizations

Structure of IR: varies depending on the IR model used by compiler, usually
looks assembly-ish & has hierarchical structure (functions, blocks, instructions)

IR: Linear View vs. Control-flow Graph View

loop: \
comments are written like this--source code often included
while (savel[i] == k)
1a r100, save # r100 = &savel[0] 9 Idrli
1d rl01, i 10. addir2, r1, 1
11 r102, 8 1. sdr2,i

mul r103, rl101, rl10Z2

add r104. r103. r100
1d r105, 0(rl104) # r105 savel[i]
1d rl06. k

<
%

\

- 1. lar3, save
’ 2. Idrd4, i
#b#n? +£1$5’ ri06, exit 3. sllir5,r4, 3
T . 4. addr6, 5, r3
1d r106, i 5. Idr7, 0(r6)
addi r107, rl06, i #F increment 6. 1dr8, k
sd r107, 1 7. beqr7,r8, head
] Toop # next iteration
exit: l

Linear: Directly maps to high-level code, no recursive/hierarchical sub-structure

Control-flow Graph: Break code into basic blocks (linear, single entry point,
single exit point) with arcs describing possible control flows

Single Static Assignment (SSA)

All registers in IR are Toop:

J# comments are written like this--source code often included

“fresh” virtual registers, # while (save[i] == k)
T Te—[r100] save # r100 = &save[0]

assigned to exactly once 1d 101l ;
: 11 r102] 8
anywhere.m the code. i |riam| pial. plis
These registers do not add [r104f r103, r100 |
1d |r105}) 0(r104) # r105 = saveli]
correspond to any 1d |r106} k
. bne |rl105} rl06, exit
machine. N —
1d r106, 1
addi r107, rl06, i #F increment
Why? sd rl07, i
J Toop # next iteration

exit:

SSA Makes Dependence Chains Easy

Definition — Use Chains (or
Def-Use Chains) emerge
directly from analysis of
virtual register
assignments and uses

loop:

J# comments are written like this--source code often included
while (savel[i] == k)

1a 100 ,
1d r101,
11 r102,
mul rl103,
add r104,
1d r105,
1d r106,
bne rl05,
#i+=1

1d r106,
addi rl107,
sd r107/,
J lToop

exit:

save

:

8

r101, rl102
r103, rl100
0(rl04)

K

r106, exit

;
r106, i
;

r100

r105

&savel0]

saveli]

increment

next iteration

® —nodes: Handling Control-flow Divergence

* When control paths diverge, r100 = 0
need to re-converge eventually If cond

* If single variable conditionally
assigned on both sides of
branch, how to decide its value?

r10l = r102 =
r100+1 r100+2

x = 07 without @, what
if (cond) {x+=1) value would we AE S
(r101,r102)

assign tor103?
else{x+=21};

v = X + 1;

ri04 = r103+1

Compiler Optimizations

* Local Optimization: optimize
operations within a single
basic block; “cleanup” before
global optimizations

* Global Optimization:

optimization across basic
blocks

* Global register allocation:
Register mapping pass
required for making code fast

]

9. Idr1,i
10. addir2,r1, 1
11. sdr2,i

\/

Rl o e

la r3, save
Idr4, i
sllir5,r4, 3

add ro, r5, r3

Id r7, O(r6)

Id r8, k

beq r7, r8, head

|

Optimization Example: Dead Code

Elimination

x = 0;

1f (x>0) {x+=1}
else{x+=2};

y = x + 1;

!

1
)

X X
II-||I-
Bt

+ oo~
=~

Why would you
have a program
with weird code
like this in it?

Optimization Example: Constant / Copy

Propagation

x = 0; x=0
1f (x>0) {x+=1}

- X+=2
else{x+=21}; y = x+1

vy = X + 1;

Significantly simplified
from our original code
by applying a
sequence of
optimizations

]

Optimization Example: Common

Subexpression Elimination |

lar3, save
Idr4, i
slir5,r4, 3

add r6, r5, r3

Id r7, O(r6)

Id r8, k

beq r7, r8, head

N OO N =

x[1i] = x[1] + 4

l

// x[1] + 4 // x[1] + 4

la r100,x la r100,x

1d r101,1 1d rl101,1

mul r102,r101,8 slli r102,r101, 3
add r103,r100,r102 ‘ add r103,r100,r102
1d r104, 0 (rl03) 1d r104, 0 (rl03)
// // x[1] 1is in rl104
addi r105, r104,4 addi rl105, r104,4
la rl0o,x sd r105, 0(r103)
1d r107,1I

mul r108,r107,8
add r109,r106,xr107
sd r105,0(r109)

x[1i] = x[1] + 4

// x[1] + 4
la rl100,x
1d r101,1

mul r102,r101,8

add r10s5,r100,r10Z
1d r104, 0 (rl03)
//

addi rl105, r104,4
la rl1l06,x

1d r107,1I

mul r108,r107,8

add r109,r106,xr107
sd r105,0(r109)

>

Optimization Example: Strength Reduction

// x[1] + 4
la rl100,x
1d r101,1

slli r102,r101,3

add r10s5,r100,r10Z
1d r104, 0 (rl03)
// x[1] 1is in rl104
addi rl105, r104,4
sd r105, 0(rl1l03)

Global Optimization Example:
Code Motion / Induction Variable Elimination

“while (save[i] == k):

i+=1;"

addr = save +i*8
via

1d

slli

addi

|

Code Motion:

9. Idr1,i
10. addir2,r1, 1
11. sdr2,i

2dd 1%o | the loop

%

\

lar3, save
Idrd, i
sllir5,r4, 3

add r6, r5, r3
Idr7,0(r6)
6.[1dr8, k

7. beqr7, r8, head

R g 0 TS

ld k every time
around the loop

|

hoisted outside of | 1dr2, i

lar1, save Induction Variable
e, K Elimination: Re-write
sllir3, r2, 3 induction variable
adel (4.5 1 update & address
computation directly

I:dzizi’rl'/, 6,1 |2dd1itol
addir4, r4,8 |add 8 to addr
sdr7,i

Y Y

Id r5, 0(r4)

beq r5, r6, head

|

Global optimizations tend to be more complex and involve
reasoning that is more difficult to prove correct

Optimization Summary

Optimization name Explanation

High level At or near the source level; processor independent

Procedure integration Replace procedure call by procedure body 03

Local Within straight-line code

Common subexpression elimination Replace two instances of the same computation by single copy 01

Constant propagation Replace all instances of a variable that is assigned a constant with the 01
constant

Stack height reduction Rearrange expression tree to minimize resources needed for expression evaluation 01

Global Across a branch

Global common subexpression Same as local, but this version crosses branches 02

elimination

Copy propagation Replace all instances of a variable A that has been assigned X (i.e., A= X) with X 02

Code motion Remove code from a loop that computes the same value each iteration of the loop 02

Induction variable elimination Simplify/eliminate array addressing calculations within loops 02

Processor dependent Depends on processor knowledge

Strength reduction Many examples; replace multiply by a constant with shifts 01

Pipeline scheduling Reorder instructions to improve pipeline performance 01

Branch offset optimization Choose the shortest branch displacement that reaches target 01

Register Allocation: Eliminating Memory
Loads and Stores

lar1, save
Id r6, k
Idr2,i
sllir3,r2, 3
add r4, r3, r1
Load/Store
temp Idr2,i
: addir7, r6, 1
varlables addird. r4. 8
before/after | |[sqr7, |
use
A 4 A 4
Id r5, 0(r4)

beq r5, r6, head

|

)

Register

Allocation:

Map to
assembly/
machine
registers

lax10] save
IdXTT, k

Id x12, i

slli x13, x12, 3

add x14, x13, x10

I

addi x12, x12, 1
addi x14, x14, 8

! |

Id x13, 0(x14)
beq x13, x11, head

|

d/Store Elimination:
Remove loads
from/stores to memory
for varsin regs

Register Allocation: Algorithmically

Region-based Register Allocation — Finding Regions:
1. Choose a variable definition, d (assignment); add its basic

lar1, save block to region, R

:S [g:‘ 2. Find uses, u_i of the definition d in other basic blocks, add
sllir3, 2. 3 those basic blocks to R; add any block on a path between a
add r4, r3, r1 definition’s block and the use’s block to R too.

3. Find any other definitions that could affect u_i and add the
blocks containing those definitions to R

Idr2, i 4. Repeat steps 2 and 3 until you do not add any more regions
addir7, r6, 1 R

addir4, r4, 8 to R.

sd r7,i Property of resulting set of blocks: if the variable subject to

definition d is allocated in register in these blocks, then there is

\ \

d 15, 0(r4) no need to load and store the variable after its initial
beq r5, 16, head load/definition
l Proof Intuition: definitions flow through these and only these
blocks along reachable paths to all possible uses. If all uses and

defs use the same register name, no need to write to/read from
memory).

Register Allocation: Algorithmically

Region-based Register Allocation — Mapping to machine registers:
1. Compute regions for each virtual/IR register in program
2. Construct region interference graph,

lar1, save
d 16, k G=(V,E): V = {regions}, E={(r1,r2) | r1 and r2 include a basic
ﬁ,irfé,' 2 3 block in common}
add r4, r3, r1 3. Run graphColor(G) to assign a color to each region such that no
adjacent vertices in G have the same color
4. If #colors <= #machine registers, assign one machine register per
Idr2, i color and register allocate variables in regions.
233: Z: :2:; 5. If #colors > #machine registers, need to spill register to memory
sd r7, i with load/store pair, essentially splitting regions until #colors <=
| | #machine registers
— Key property: regions that do not include overlapping basic blocks

beq 5, 16, head can use the same register for a different value/definition

1

Is the code you write the code you run?

loop:

comments are written like this--source c«
#F while (savel[i] == k)

1a p100 ,
1d r101,
11 r102,
mul r103,
add rl104,
while (save[i] == k]): 13 Pﬁg,
- - r'\ s
x[1] = x[1] + 4 bne rl105
#i+=1
1d r106,
addi rl107,
sd r107/,
J Toop
exit:

Key idea: optimize the inner loop automatically!

save

:

8

ri0l, rl102
r103, r100
0(rl04)

k

ri0e, exit
;

r106, 1
_i

r100 =

r105

&savel0]

saveli]

increment

next iteration

la x10, save

Id x11, k

Id x12, i

sllix13, x12, 3
add x14, x13, x10

addi x12, x12, 1
addi x14, x14, 8

Y \/

Id x13, 0(x14)
beq x13, x11, head

|

Inner loop in initial IR representation is 12 instructions long including 7 mem ops (long time if not cache hits).

Inner loop in optimized version is 5 instructions including 1 mem op.

Intermediate Representation Design

* What properties are desirable 100p:

. . JF comments are written Tlike this--source code often inc
inan IR? (what properties # while (savel[i] == k)
are undesirable in an |R?) la rl100, save # r100 = &save[0]
1d r101, i
1 11 r102, 8
* How to.select.an IR if you are i ning! mini cdds
a compiler writer? add r104, rl103, rl00
1d r105, 0(rl04) #F r105 = savel[i]

* What aspects of the IR do you 1d rl06,

care about if you're a QI e et
? 1d rl106, i
programmer: addi r107, r106, i I increment
* What aspects of the IR do you . ;ég; ‘ F ot Tharation
care about if you're an exit:

architect?

Enter: LLVM the “new” great IR ca. 2004

* Designed to support transparent

rogram analysis and transformation
or arbitrary programs

* Provide high-level information to
compiler at compile-time, link-time
(and run-time); always have a CFG

* Language-independent type system

* Explicit support for typed address
arithmetic

e Uniform abstraction for
exception-handling (setjmp /

longjmp)
* Code representation based on Single

Static Assignment (SSA) with explicit
phi nodes

Z2LLVM
ch OMPILER
INFRASTRUCTURE
LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation

Chris Lattner Vikram Adve
University of lllinois at Urbana-Champaign

{lattner,vadve}@cs.uiuc.edu
http://1lvm.cs.uiuc.edu/

Enter: LLVM the “new” great IR ca. 2004

* LLVM has remained the industry
and research standard IR for
making custom compilers for
nearly two decades

* GCC, which you’re very familiar
with also, is less extensible, but
more robust and with a longer
lifetime of community support

* Recently, new players with
applications changing dramatically

Z2LLVM
ﬁc OMPILER
INFRASTRUCTURE
LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation

Vikram Adve
bana-Champaign
g F.uiuc.edu

iuc.edu/

what an awful logo!

Do we need a better IR?MLIR the

Multi-Level Intermediate
Representation

* “The MLIR project is a novel approach to building reusable and exterisiuic
compiler infrastructure. MLIR aims to address software fragmentation,
improve compilation for heterogeneous hardware, significantly reduce the
cost of building domain specific compilers, and aid in connecting existing
compilers together.”

* Features:
* Ability to represent dataflows directly (including TensorFlow for ML)
* Optimization over dataflow graphs directly
 high-performance-computing-style optimizations across compute kernels

* Hardware dependent features: DMA insertion, cache management, memory tiling
mapping to vector hardware primitives

* Hardware accelerator specific operations
* Interesting to see where this project goes in the next year or two

Do we need an IR specifically made for
machine learning computations?

Relay: A New IR for Machine Learning Frameworks

* Relay IR for Machine Learning /
Tensor processing frameworks

* Map from any high-level ML
framework to IR

* Generate orthogonal control
(runtime code) and scheduling /
hardware mapping (data layout +
operators)

* Highly specialized for ML &
Tensor-specific optimization

v

Jared Roesch ~ Steven Lyubomirsky = Logan Weber Josh Pollock
jroesch@cs.uw.edu sslyu@cs.uw.edu weberlo@cs.uw.edu joshpoll@cs.uw.edu
Marisa Kirisame Tianqi Chen Zachary Tatlock

jerry96@cs.uw.edu tqchen@cs.uw.edu ztatlock@cs.uw.edu

Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle, WA, USA

__

Tensor Operator Description

__

What else can compilers do for you?

* Compilers do more than just map to machines and optimize for you
* Support for debugging and profiling instrumentation
* Analysis to check security properties

Compiling to profile (like gprof)

* Insert code that tracks

. .) \
transitions into every basic ot ————
block a1z
e (reality: track at path granularity b, i, D
to cut down on tracking code) \
e,

* Runtime: randomly sample
using a timer which block active
& make histogram

* More frequent block in histogram
== hot code/inner loop

addi x12, x12, 1
addi x14, x14, 8

Id x13, 0(x14)
beq x13, x11, head

|

Compiling to help with debugging:
Concurrent Data Provenance Tracking

* Compiler inserts code on every
write operation to dynamically
track the last writer instruction
and thread ID of a variable

* On crash or breakpoint, last
writer table helps understand
provenance of value in crash/op

e Useful for concurrency bug
debugging

* https://github.com/bluciala/CTraps-gcc

Thread ID---......_. .Ijly.

Write Insn.

Crash or breakpoint
on ? LWT shows
provenance of Y’s

valueis T3

X

Last Writer Table

Y

<0

T1@

T1@

Y

T1@

3V

TNe

IER 4

Program Execution
T1 T2 T3

Rd X

Y v)"

awil

Information Flow Control Analysis for

Security

* Non-privileged operations not allowed to
access/be influenced by secret data

* Secret number should never flow to any
operation unless we trust that operation
with the secret (i.e., correct guess)

* Compiler uses “taint propagation”
analysis to tag data and operations

* Rule: untrusted op never directly or
indirectly affected by confidential data

* Equivalent rule: High-assurance op never
directly or indirectly affected by
untrusted data

(2]
(3]

(4]

(3]
(6]
(7]
(8]
(9]
(10]

(11]
(12]
(13]
(14]
[15]
(16]

(17]

public class GuessANumber {
int secret;
int tries;

void makeGuess (Integer num)

{

throws NullPointerException

inti=0;
if (num !=null) i = num.intValue();
if(i>=1&&i<=10){
if (tries > 0 && i == secret) {
tries = 0;
finishApp(”You win!”);
}
else {
tries— ;
if (tries > 0)
message.setText("Try again™);
else
finishApp("Game over!”);
}

}

else message.setText(”Out of range™);

What did we just learn?

* A whirlwind tour of compilers and their design and purpose
* Compilers analyze and translate code you write to be code you run
* Many types of optimization get applied to your code

* Register allocation (and other steps that we omitted) map your code
down to the machine

* Compilers are good for a host of other interesting analysis

* Learning LLVM or another compiler-building framework is like a
low-grade super-power. Very worth the effort!

What to think about next?

* Next up: Sparse problem optimization

* Further along: Parallelism/concurrency

REMINDER:

Today’s lecture logically falls after the advanced architecture
lectures, including VLIW and Vector Machines, which we covered
before break.

We intentionally misplaced it to let us cover VM and start the VM
project earlier, just to give you a little more time on the project.

	Slide 1
	Slide 2: Today: The Compiler is Here to Help
	Slide 3: Purpose & Operation of a Compiler
	Slide 4: Front-end Phases in the Compiler
	Slide 5: Scanning / Lexing: Reading in raw characters
	Slide 6: Parsing tokens
	Slide 7: Semantic Checking & Analysis
	Slide 8: Converting to Intermediate Representation (IR)
	Slide 9: IR: Linear View vs. Control-flow Graph View
	Slide 10: Single Static Assignment (SSA)
	Slide 11: SSA Makes Dependence Chains Easy
	Slide 12: Φ –nodes: Handling Control-flow Divergence
	Slide 13: Compiler Optimizations
	Slide 14: Optimization Example: Dead Code Elimination
	Slide 15: Optimization Example: Constant / Copy Propagation
	Slide 16: Optimization Example: Common Subexpression Elimination
	Slide 17: Optimization Example: Strength Reduction
	Slide 18: Global Optimization Example: Code Motion / Induction Variable Elimination
	Slide 19: Optimization Summary
	Slide 20: Register Allocation: Eliminating Memory Loads and Stores
	Slide 21: Register Allocation: Algorithmically
	Slide 22: Register Allocation: Algorithmically
	Slide 23: Is the code you write the code you run?
	Slide 24: Intermediate Representation Design
	Slide 25: Enter: LLVM the “new” great IR ca. 2004
	Slide 26: Enter: LLVM the “new” great IR ca. 2004
	Slide 27: Do we need a better IR?MLIR the Multi-Level Intermediate
	Slide 28: Do we need an IR specifically made for machine learning computations?
	Slide 29: What else can compilers do for you?
	Slide 30: Compiling to profile (like gprof)
	Slide 31: Compiling to help with debugging: Concurrent Data Provenance Tracking
	Slide 32: Information Flow Control Analysis for Security
	Slide 33: What did we just learn?
	Slide 34: What to think about next?

