
Fall 2023

Lecture 12: Adv. Architecture: Superscalar and Out of Order, cont.

Credit: Brandon Lucia

Today: More Advanced Architecture Concepts

• (more) VLIW

• Vector machines & SIMD

• Dataflow as a hardware/software boundary design problem

• Systolic Array Architectures (if time)

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read
Issue Time

Is
su

e
 W

id
th

Change the ISA! In VLIW, the ISA exposes issue width architecturally. Each
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read
Issue Time

Is
su

e
 W

id
th

What do we rely on for VLIW to work? What assumptions do we depend
on for VLIW to work and be efficient?

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

Issue Time

Is
su

e
 W

id
th

Like single-issue scalar execution

Issue Time

Is
su

e
W

id
th

Like SMT superscalar, exploiting
thread-level parallelism in prog.

Issue Time
Is

su
e

 W
id

th

Like multi-issue superscalar execution

Software-constructed (compiler-constructed) bundles
of instructions can come from anywhere

EPIC assumes in-order execution (static scheduling) and presence
of ILP exploiting features, e.g., branch pred., load speculation

Issue
Issue Time

Is
su

e
 W

id
th

Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Superscalar OoO is great at finding ILP to reduce
CPI, but EPIC eliminates dynamic scheduling. Why?

Goal for static & dynamic scheduling: Find instructions to
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Issue
Issue Time

Is
su

e
 W

id
th

Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Dynamic Scheduling vs. Static VLIW

Goal for static & dynamic scheduling: Find instructions to
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Dynamic scheduling has a limited scope
for analysis and optimization
Short window limits reordering distance

ld x11 (x8)

mul t1 x10 x11

mul x10 x8 x9

… //other ops taking t_mul cycles

add x2 x3 x4

st x10 (x8)

Latency = t_mul

At this point, muls are
done and we keep
rolling, overlapped
latency.

Static scheduling has global scope
for reordering / optimization
Long window allows long reorderings

Effective scheduling relies on approximately
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory
operations?

div

add

add

add

add

add

Effective scheduling relies on approximately
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory
operations?
• Unpredictable stalls in the pipeline waiting for memory operations.

• Can tolerate latencies by scheduling same-latency operations together, if
compiler has an expectation about memory latency, cache structure, and
producer / consumer relationships.
• This is a very difficult compilers problem!!

Branch instructions in EPIC

• EPIC / VLIW does branches differently than in SS/OoO

• Option 1: Waste space in a bundle, run branches like in SS/OoO
• if taken, grab taken bundle, if not, grab sequentially next bundle

• Option 2: Predication
• run both sides of branch and commit only insns with true predicate

• Predication takes pressure off of control logic & branch prediction
(why?)
• Do we need a branch predictor?

• Costs of predication?
Type
(5b)

P P P

1 Insn1 (41b) 2 Insn2 (41b) 3 Insn3 (41b)

If !P nullify insn

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

x9 = x7+x8
x10 =

X9-x11

x9 =
x10+x14If cond2

St x9 (0xabc)

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

Store predicate results in explicit
predicate registers
P1=!cond

P2=cond||(!cond&&cond2)

(P1)Add x9 x7 x8

(P2)Sub x10 x9 x11

(P2)Add x9 x10 x14

St x9 (0xabc)

Add explicit predicates to the
code that executes. Predicates
evaluate dynamically using
predicate registers.

No branch instructions here!
Microarchitectural implication?

Pipeline Characteristics
• Execute 2 bundles (6insns) per cycle
• 10 stage pipeline
• 4 Integer Units (2 of which do Ld/St)
• 2 Floating Point Units
• 3 Branch Units
• Issue in order, execute in order
• Simple register dependence tracking

using a “scoreboard”

Control Characteristics
• Predication and sophisticated two-level branch

predictor (why?)
• Instruction queues connect fetch to execute

units hiding some fetch bubble latency with
execute latency (how?)

Register File

Intel Itanium EPIC Architecture

• Fairly complex and highly abundant
• Separate predicate / branch, int, and FP regs
• “Register stack engine” efficiently doles out

physical registers, avoiding structural hazard

VLIW / EPIC is a Very Cool HW/SW Interface!

• Why did Itanium not seize the
(any?) market as Intel
anticipated?

• (In the top500
supercomputers, we mostly
have x86-64, not IA64)

VLIW / EPIC is a Very Cool HW/SW Interface!

• Donald Knuth: “the "Itanium"
approach [was] supposed to be
so terrific—until it turned out
that the wished-for compilers
were basically impossible to
write”

Parallelism Beyond ILP

Flynn’s Taxonomy of Parallel Architectures

SISD SIMD

MIMDMISD

MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Used for …what?

MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Rare, sometimes used in DSP, filter signal using multiple programs

• Modular redundancy, replicated hardware for execution

SIMD – Single Instruction Multiple Data

Apply instruction to many data: Single instruction (fetched, decoded,
etc) applies its operation to a large number of data elements

Amortizes Instruction Costs: Each instruction corresponds to a large
number of operations

A Few Flavors: most notable/effective are Vector machines
• Also: historically, Array Machines but these are not widely used anymore

Data-oriented, Not Necessarily Parallel: Instructions specify what do
to to each element of data, but not how to do it (i.e., parallel, partially
parallel, sequential)

Vector Machines

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

setvl 5

vld v0, a

vld v1, b

vadd v0, v1

vst v0, c

setvl: tell machine length of input vector. Actual in-memory length can be
thousands of elements! Machine returns max it can handle in a vector register
(varies by implementation, can be tens of elements)

vld <vector register>, <mem>: load vector of length vl starting at

memory locationA[0]<mem>[0B]

vst <vreg>, <mem>: store elems of <vreg> to memory starting from memory
location <mem>

vadd <vreg1> <vreg2>: add element-wise store into vreg1

A
[4]

B
[4]

A
[3]

B
[3]

A
[2]

B
[2]

A
[1]

B
[1]

Assumes explicit vector register file that can temporarily store vector operands

vector register file (VRF)

v0

v1

Vector register file

Large, performance-critical structure accessed
potentially many times per-cycle during vector
operation. How large? How critical?

maxvl is an implementation-dependent
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the
excess vectors get set to 0 during ops

Vector register file

Large, performance-critical structure accessed
potentially many times per-cycle during vector
operation. How large? How critical?

maxvl is an implementation-dependent
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the
excess vectors get set to 0 during ops

8B / word * 16 words / VRF entry * 32 VRF entries per VRF = 4kB!
Larger than many L1 Caches

Dealing with limitedA[3]vect][3B or size is easy in SW

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

setvl 8192 //machine says “vl = 5, actually”

for(i = 0…(8192 / vl)): //loop vl at a time

vld v0, a + i*vl

vld v1, b + i*vl

vadd v0, v1

vst v0, c + i*vl

A
[4]

B
[4]

A[2] B[2]

A
[1]

B
[1]

A
[0]

B
[0]

vector register file (VRF)

v0

v1

Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0] A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an
instruction’s operation over an
entire vector of data

Implementation: Parallel
functional units each process
parts of a vector, producing a
vector output. Why simple?

Lane 0 Lane 1

Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0] A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Simple: Vector instruction
operates on v0[i] and v1[i] not
v0[i] and elem *v.

Very simple operand matching
logic, no need to track complex
producer consumer relationships
across inputs of operations.

Primary cost?

Lane 0 Lane 1

Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]

Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]

Vector Masking
vadd v3, v0, v2, v1.t

Behavior of a masked vector operation: For elements up to vl in v3, add elements from
v0 and v2 if that element in v1’s LSB is set to 1, set other v3 elems to 0
What high-level programming concept does this get used to implement?

Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[3]

B[2]

B[1]

B[0]

A [0]

B[4]0

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, v2

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1 v0[0] =

v0[0] +

v1[1] + v1[2] + v1[3]

01110v2

01110v2

dst init
val

Reduction operations accumulate the result
of an operation on a vector into the first
element of a destination vector
Uses for reduction?

input
vec

mask

Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[3]

B[2]

B[1]

B[0]

A [0]

B[4]0

setvl 5

vld v0, a

vld v1, b

vmul v0, v1

vredsum v0, v0, v1, v2

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

11111v2

11111v2

Uses for reduction?
Dot product, e.g.,

for(i = 0..len){

v[i] += a[i] * b[i]

}

Indexed Memory Accesses (Scatter/Gather)

34021v0

v1

3402

B
[4]

B
[0]

B
[2]

34021

B
[4]

B
[0]

B
[2]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

vluxei64 v1, (&B), v0, v2

base

index
vector

addr

dest

Indexed memory loads “gather” elements from all over
memory into a contiguous vector register.

Indexed memory stores “scatter” elements from a
contiguous vector register into locations all over memory

Uses?

Indexed Memory Accesses (Scatter/Gather)

34021v0

v1

3402

B
[4]

B
[0]

B
[2]

34021

B
[4]

B
[0]

B
[2]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

vluxei64 v1, (&B), v0, v2

base
addr

dest

Common Use: indirect array accesses. Common in graph analytics

for(src in 0 .. n){

for(dst in 0..ind[src].len()){

data[ind[src][dst]]++;

}

}

Summary of Benefits: Vector Architectures
• Compared to scalar architectures:

• Single instruction performs many operations: one instruction is the equivalent of executing
an entire loop of a program!

• Control is simpler: no loops, no branches, no misprediction/misspeculation

• Vector interface makes data-independence across vector elements explicit: simplifies
implementations and eliminates complex dependence logic

• Dependence checking of vectors, not elements: what dependence tracking is required
pertains to entire vector registers, not individual elements, amortizing its cost significantly

• Easy to express data parallelism: avoids software complexity of multithreading on a
multiprocessor (i.e., MIMD)

• Maximize value of memory bandwidth: contiguous/strided vector fetch operations are a good
match for highly-banked memories

• Energy efficiency: instruction & data fetch amortize costs across vector saving energy

• Require vector programming style, which means changing all of your code. Code doesn’t
match vector style well? Can’t use the vector architecture without lots of extra work!

Vector execution model saves energy (and
time) over scalar processing

Taken from a very recent research project about optimizing for minimum energy by using a new vector processor (V bars in
the plot) and a customized variant (VDF bars in the plot). V/VDF use RISCV vector insns., scalar plain RISCV insns.

Key take-away: vector processing cuts energy by more than half compared to scalar processing.

What did we just learn?

• We learned about how VLIW and Vector processing are two different
takes on the hardware software boundary that admit more
parallelism than SS/OoO’s ILP focus allows

• VLIW did not take over, vector has been a consistent background hum

• Both approaches require the programmer and the compiler to make
big changes to code to work well with these new hardware/software
interfaces.

What to think about next?

• Next we look at Virtual Memory as an abstraction

• Also look at the underlying mechanisms and options for implementing
virtual memory in a modern CPU

	Slide 1
	Slide 2: Today: More Advanced Architecture Concepts
	Slide 3: Very Large Instruction Word (VLIW) and the EPIC Architecture (Explicit Parallel Instruction Computer)
	Slide 4: Very Large Instruction Word (VLIW) and the EPIC Architecture (Explicit Parallel Instruction Computer)
	Slide 5: Very Large Instruction Word (VLIW) and the EPIC Architecture (Explicit Parallel Instruction Computer)
	Slide 6: Superscalar OoO is great at finding ILP to reduce CPI, but EPIC eliminates dynamic scheduling. Why?
	Slide 7: Dynamic Scheduling vs. Static VLIW
	Slide 8: Effective scheduling relies on approximately equal execution latency for all instructions
	Slide 9: Effective scheduling relies on approximately equal execution latency for all instructions
	Slide 10: Branch instructions in EPIC
	Slide 11: If conversion
	Slide 12: If conversion
	Slide 13: If conversion
	Slide 14: Pipeline Characteristics
	Slide 15: VLIW / EPIC is a Very Cool HW/SW Interface!
	Slide 16: VLIW / EPIC is a Very Cool HW/SW Interface!
	Slide 17: Parallelism Beyond ILP
	Slide 18: Flynn’s Taxonomy of Parallel Architectures
	Slide 19: MISD – Multiple Instruction Single Data
	Slide 20: MISD – Multiple Instruction Single Data
	Slide 21: SIMD – Single Instruction Multiple Data
	Slide 22: Vector Machines
	Slide 23: Vector register file
	Slide 24: Vector register file
	Slide 25: Dealing with limitedA[3]vect][3B or size is easy in SW
	Slide 26: Vector Machines are Easily Parallelizable
	Slide 27: Vector Machines are Easily Parallelizable
	Slide 28: Reduction Operations
	Slide 29: Reduction Operations
	Slide 30: Vector Masking
	Slide 31: Reduction Operations with a vector mask
	Slide 32: Reduction Operations with a vector mask
	Slide 33: Indexed Memory Accesses (Scatter/Gather)
	Slide 34: Indexed Memory Accesses (Scatter/Gather)
	Slide 35: Summary of Benefits: Vector Architectures
	Slide 36: Vector execution model saves energy (and time) over scalar processing
	Slide 37: What did we just learn?
	Slide 38: What to think about next?

