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Lecture 12: Adv. Architecture: Superscalar and Out of Order, cont.

Credit: Brandon Lucia



Today: More Advanced Architecture Concepts

• (more) VLIW

• Vector machines & SIMD

• Dataflow as a hardware/software boundary design problem

• Systolic Array Architectures (if time)
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Change the ISA! In VLIW, the ISA exposes issue width architecturally. Each 
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch 
e.g.,
MMI, IIF, MMI 
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.

Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)
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What do we rely on for VLIW to work? What assumptions do we depend 
on for VLIW to work and be efficient?

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch 
e.g.,
MMI, IIF, MMI 
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.

Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)



Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)
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Like single-issue scalar execution
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Like SMT superscalar, exploiting 
thread-level parallelism in prog.
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Like multi-issue superscalar execution

Software-constructed (compiler-constructed) bundles 
of instructions can come from anywhere

EPIC assumes in-order execution (static scheduling) and presence 
of ILP exploiting features, e.g., branch pred., load speculation
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Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Superscalar OoO is great at finding ILP to reduce 
CPI, but EPIC eliminates dynamic scheduling. Why?

Goal for static & dynamic scheduling: Find instructions to
keep the issue window full at all times.

ld x11 (x8) 

add x2 x3 x4 

mul x4 x10 x11 

mul x10 x8 x9 

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14
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Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Dynamic Scheduling vs. Static VLIW

Goal for static & dynamic scheduling: Find instructions to 
keep the issue window full at all times.

ld x11 (x8) 

add x2 x3 x4 

mul x4 x10 x11 

mul x10 x8 x9

st x10 (x8) 

add x6 x8 x11 

mul x9 x6 x13 

add x6 x12 x14

Dynamic scheduling has a limited scope
for analysis and optimization
Short window limits reordering distance

ld x11 (x8) 

mul t1 x10 x11 

mul x10 x8 x9

… //other ops taking t_mul cycles

add x2 x3 x4 

st x10 (x8)

Latency = t_mul

At this point, muls are 
done and we keep 
rolling, overlapped 
latency.

Static scheduling has global scope
for reordering / optimization
Long window allows long reorderings



Effective scheduling relies on approximately 
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short- 

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory 
operations?
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Effective scheduling relies on approximately 
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short- 

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory 
operations?
• Unpredictable stalls in the pipeline waiting for memory operations.

• Can tolerate latencies by scheduling same-latency operations together, if 
compiler has an expectation about memory latency, cache structure, and 
producer / consumer relationships.
• This is a very difficult compilers problem!!



Branch instructions in EPIC

• EPIC / VLIW does branches differently than in SS/OoO

• Option 1: Waste space in a bundle, run branches like in SS/OoO
• if taken, grab taken bundle, if not, grab sequentially next bundle

• Option 2: Predication
• run both sides of branch and commit only insns with true predicate

• Predication takes pressure off of control logic & branch prediction 
(why?)
• Do we need a branch predictor?

• Costs of predication?
Type
(5b)

P P P

1 Insn1 (41b) 2 Insn2 (41b) 3 Insn3 (41b)

If !P nullify insn



If conversion

bne cond, pc+12 

Add x9 x7 x8 

bne cond2 pc+12 

Sub x10 x9 x11 

Add x9 x10 x14 

St x9 (0xabc)

If cond

x9 = x7+x8
x10 =

X9-x11

x9 =
x10+x14If cond2

St x9 (0xabc)



If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11 

Add x9 x10 x14 

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2) 
Which is the same as:
cond || !cond, i.e., unconditional



If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 = 
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

Store predicate results in explicit
predicate registers
P1=!cond 

P2=cond||(!cond&&cond2) 

(P1)Add x9 x7 x8 

(P2)Sub x10 x9 x11 

(P2)Add x9 x10 x14

St x9 (0xabc)

Add explicit predicates to the 
code that executes. Predicates 
evaluate dynamically using 
predicate registers.

No branch instructions here! 
Microarchitectural implication?



Pipeline Characteristics
• Execute 2 bundles (6insns) per cycle
• 10 stage pipeline
• 4 Integer Units (2 of which do Ld/St)
• 2 Floating Point Units
• 3 Branch Units
• Issue in order, execute in order
• Simple register dependence tracking

using a “scoreboard”

Control Characteristics
• Predication and sophisticated two-level branch 

predictor (why?)
• Instruction queues connect fetch to execute 

units hiding some fetch bubble latency with 
execute latency (how?)

Register File

Intel Itanium EPIC Architecture

• Fairly complex and highly abundant
• Separate predicate / branch, int, and FP regs
• “Register stack engine” efficiently doles out

physical registers, avoiding structural hazard



VLIW / EPIC is a Very Cool HW/SW Interface!

• Why did Itanium not seize the 
(any?) market as Intel 
anticipated?

• (In the top500 
supercomputers, we mostly 
have x86-64, not IA64)



VLIW / EPIC is a Very Cool HW/SW Interface!

• Donald Knuth: “the "Itanium" 
approach [was] supposed to be 
so terrific—until it turned out 
that the wished-for compilers 
were basically impossible to
write”



Parallelism Beyond ILP



Flynn’s Taxonomy of Parallel Architectures

SISD SIMD

MIMDMISD



MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Used for …what?



MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Rare, sometimes used in DSP, filter signal using multiple programs

• Modular redundancy, replicated hardware for execution



SIMD – Single Instruction Multiple Data

Apply instruction to many data: Single instruction (fetched, decoded, 
etc) applies its operation to a large number of data elements

Amortizes Instruction Costs: Each instruction corresponds to a large 
number of operations

A Few Flavors: most notable/effective are Vector machines
• Also: historically, Array Machines but these are not widely used anymore

Data-oriented, Not Necessarily Parallel: Instructions specify what do 
to to each element of data, but not how to do it (i.e., parallel, partially 
parallel, sequential)



Vector Machines

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

setvl 5 

vld v0, a 

vld v1, b 

vadd v0, v1 

vst v0, c

setvl: tell machine length of input vector. Actual in-memory length can be 
thousands of elements! Machine returns max it can handle in a vector register 
(varies by implementation, can be tens of elements)

vld <vector register>, <mem>: load vector of length vl starting at

memory locationA[0]<mem>[0B  ]

vst <vreg>, <mem>: store elems of <vreg> to memory starting from memory 
location <mem>

vadd <vreg1> <vreg2>: add element-wise store into vreg1

A
[4]

B
[4]

A
[3] 

B
[3]

A
[2] 

B
[2]

A
[1] 

B
[1]

Assumes explicit vector register file that can temporarily store vector operands

vector register file (VRF)

v0

v1



Vector register file

Large, performance-critical structure accessed 
potentially many times per-cycle during vector 
operation. How large? How critical?

maxvl is an implementation-dependent 
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the 
excess vectors get set to 0 during ops



Vector register file

Large, performance-critical structure accessed 
potentially many times per-cycle during vector 
operation. How large? How critical?

maxvl is an implementation-dependent 
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the 
excess vectors get set to 0 during ops

8B / word * 16 words / VRF entry * 32 VRF entries per VRF = 4kB!
Larger than many L1 Caches



Dealing with limitedA[3]vect][3B or size is easy in SW

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

setvl 8192 //machine says “vl = 5, actually”

for(i = 0…(8192 / vl) ): //loop vl at a time

vld v0, a + i*vl 

vld v1, b + i*vl 

vadd v0, v1

vst v0, c + i*vl

A
[4] 

B
[4]

A[2] B[2]

A
[1] 

B
[1]

A
[0] 

B
[0]

vector register file (VRF)

v0

v1



Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0] A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an
instruction’s operation over an
entire vector of data

Implementation: Parallel 
functional units each process 
parts of a vector, producing a 
vector output. Why simple?

Lane 0 Lane 1



Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0] A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Simple: Vector instruction 
operates on v0[i] and v1[i] not 
v0[i] and elem *v.

Very simple operand matching 
logic, no need to track complex 
producer consumer relationships 
across inputs of operations.

Primary cost?

Lane 0 Lane 1



Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

A [0]

setvl 5 

vld v0, a 

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]



Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

A [0]

setvl 5 

vld v0, a 

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]



Vector Masking
vadd v3, v0, v2, v1.t

Behavior of a masked vector operation: For elements up to vl in v3, add elements from
v0 and v2 if that element in v1’s LSB is set to 1, set other v3 elems to 0
What high-level programming concept does this get used to implement?



Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[3]

B[2]

B[1]

B[0]

A [0]

B[4]0

setvl 5 

vld v0, a 

vld v1, b

vredsum v0, v0, v1, v2

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1 v0[0] =

v0[0] +

v1[1] + v1[2] + v1[3]

01110v2

01110v2

dst init
val

Reduction operations accumulate the result
of an operation on a vector into the first 
element of a destination vector
Uses for reduction?

input 
vec

mask



Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[3]

B[2]

B[1]

B[0]

A [0]

B[4]0

setvl 5 

vld v0, a 

vld v1, b 

vmul v0, v1

vredsum v0, v0, v1, v2

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

su
m

B
[4]

B
[3]

B
[2]

B
[1]

B
[0]

v0

v1

11111v2

11111v2

Uses for reduction? 
Dot product, e.g.,

for( i = 0..len){

v[i] += a[i] * b[i]

}



Indexed Memory Accesses (Scatter/Gather)

34021v0

v1

3402

B
[4]

B
[0]

B
[2]

34021

B
[4]

B
[0]

B
[2]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

vluxei64 v1, (&B), v0, v2

base

index
vector

addr

dest

Indexed memory loads “gather” elements from all over 
memory into a contiguous vector register.

Indexed memory stores “scatter” elements from a
contiguous vector register into locations all over memory

Uses?



Indexed Memory Accesses (Scatter/Gather)

34021v0

v1

3402

B
[4]

B
[0]

B
[2]

34021

B
[4]

B
[0]

B
[2]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

vluxei64 v1, (&B), v0, v2

base
addr

dest

Common Use: indirect array accesses. Common in graph analytics

for( src in 0 .. n ){

for( dst in 0..ind[src].len() ){ 

data[ ind[src][dst] ]++;

}

}



Summary of Benefits: Vector Architectures
• Compared to scalar architectures:

• Single instruction performs many operations: one instruction is the equivalent of executing
an entire loop of a program!

• Control is simpler: no loops, no branches, no misprediction/misspeculation

• Vector interface makes data-independence across vector elements explicit: simplifies 
implementations and eliminates complex dependence logic

• Dependence checking of vectors, not elements: what dependence tracking is required 
pertains to entire vector registers, not individual elements, amortizing its cost significantly

• Easy to express data parallelism: avoids software complexity of multithreading on a
multiprocessor (i.e., MIMD)

• Maximize value of memory bandwidth: contiguous/strided vector fetch operations are a good 
match for highly-banked memories

• Energy efficiency: instruction & data fetch amortize costs across vector saving energy

• Require vector programming style, which means changing all of your code. Code doesn’t 
match vector style well? Can’t use the vector architecture without lots of extra work!



Vector execution model saves energy (and 
time) over scalar processing

Taken from a very recent research project about optimizing for minimum energy by using a new vector processor (V bars in
the plot) and a customized variant (VDF bars in the plot). V/VDF use RISCV vector insns., scalar plain RISCV insns.

Key take-away: vector processing cuts energy by more than half compared to scalar processing.



What did we just learn?

• We learned about how VLIW and Vector processing are two different 
takes on the hardware software boundary that admit more 
parallelism than SS/OoO’s ILP focus allows

• VLIW did not take over, vector has been a consistent background hum

• Both approaches require the programmer and the compiler to make 
big changes to code to work well with these new hardware/software 
interfaces.



What to think about next?

• Next we look at Virtual Memory as an abstraction

• Also look at the underlying mechanisms and options for implementing 
virtual memory in a modern CPU
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