
Fall 2023

Lecture 11: Advanced Architecture: Superscalar and Out of Order

Credit: Brandon Lucia

Today: Advanced Microarchitecture Techniques

• Advanced Instruction-Level Parallelism: Multiple Issue, Out of Order
Execution, Register Renaming, SMT

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

instruction

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

What is the best performance that we can ever get out of
a pipeline like the one we have been studying?
(how do we answer this question?)

Pipelined scalar design

Fetch Decode Execute Memory
Register
Write-Back

Iron Law of Processor Performance:

Instr / Prog x Cycles / Instr x Seconds / Cycle

Fundamental limits to each of these terms in our current pipeline?

TThhiinnkkiinngg aabboouutt llaatteennccyy ((aaggaaiinn)) ttoo
ooppttiimmiizzee ffoorr ccyyccllee ttiimmee

Fetch Decode Execute Memory
Register
Write-Back

1ns
non-mul: 1ns
mul: 3ns

1ns 1ns 1ns

What is the implication of mul having a 3ns latency,
compared to the latency of each of the other stages?

Fetch Decode Execute Memory
Register
Write-Back

1ns
non-mul: 1ns
mul: 3ns

1ns 1ns 1ns

What is the implication of mul having a 3ns latency,
compared to the latency of each of the other stages?
333MHz max clock frequency
(despite 1GHz being OK for non-mul operations)

Thinking about latency (again) to optimize for
cycle time

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Break the multiply unit into 3 parts, each of
which takes 1ns, equalizing all stages’ latencies

1ns 1ns

1ns

1ns 1ns

1ns 1ns 1ns

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul mul

mul mul mul

mulmul

mul0 mul1 mul2

Back-to-back multiplies keep the mul pipe full, at 1GHz latency

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Back-to-back non-mul ops keep the pipe full, at 1GHz latency

addadd ld

st

shrl

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Question: What about add mul add mul?

addadd mul

add

shrl

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Question: What about add mul add mul?

addadd

mul

add

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Question: What about add mul add mul?

add

mul

add
stall

What if we pipeline the multiplier
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Problem?

add

mul

stall

What if we pipeline the multiplier
independently?

Instructions might complete out of order if
we are not careful!

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

In addition to the unfortunate stall in the memory stage, the
add and the mul execute in the wrong order!

add

mul

stall

Avoiding out-of-order completion

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Hard to avoid the stall…
Can avoid the ordering problem with extra stall logic in Ex

add

mul

stall

Let’s Rewind: Anything interesting about this
snapshot in time?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

add

mul

add
stall

Independent FUs allow us to optimize IPC
directly by increasing ILP

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

This pipeline is Executing multiple instructions at the same time
on different functional units. ILP begets IPC!

add

mul

add
stall

Until now, we’ve considered a
single ALU in a single Ex stage
in the pipeline, but now we
have two independent
functional units.

Superscalar Out of Order Execution

A Superscalar Processor Executes Multiple
Instructions at the Same Time

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Scalar executes one instruction at a time
Superscalar executes multiple instructions at a time

add

mul

add
stall

Front End Challenges:
1)Need to supply
enough instructions
2)Need hw resources
for multiple ID & EX

Superscalar processors

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

(Here, we give up on the detailed pipeline diagram due to the
increased complexity of the design.)

0010

1100

1010

0101

0100

0100

First idea: fetch a block of
data from instruction
memory instead of one
instruction at a time.

Superscalar processors

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

mul

0010

1100

1010

0101

0100

0100

Second idea: Replicate
decode logic to allow
decoding multiple
instructions

add

Superscalar processors

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

mul

0010

1100

1010

0101

0100

0100

Third idea: Add issue queue
of instructions ready to issue
& logic to check whether
they can issue together

add

Issue
a
d
d

m
u
l

m
u
l

a
d
d

add x6 x8 x11

add x12 x6 x13

mul x7 x12 x14

These instructions cannot issue
together (why? two reasons,
actually!)

Question: how much checking
required for n-wide issue?

Superscalar processors

Fetch Decode

ALU (non-
mul)

Memory
Register
Write-Back

mul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

Fourth idea: Decouple
register read from decode.
Register read happens for
issued instructions now

add

Issue

ALU (non-
mul)

Reg. Read

Fifth idea: Add multiple
execute units to which to
dispatch operations after they
read their input registers

a
d
d

m
u
l

m
u
l

a
d
d

Superscalar processors

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

Seventh idea: Add multiple
write ports to register file to
allow simultaneous multiple
register writebacks

a
d
d

m
u
l

m
u
l

a
d
d

Sixth idea: Handle multiple
outstanding memory
operations in memory
system (complex! we will
mostly ignore this part)

Superscalar processors: Challenges & sources
of complexity

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch:

Superscalar processors: Challenges & sources
of complexity

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Superscalar processors: Challenges & sources
of complexity

Decode:

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue:

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Reg Read: Multi-porting
register file has high cost (4-
wide = 8 read ports) & area
cost is proportional to
square of port count

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Reg Read: Multi-porting
register file has high cost (4-
wide = 8 read ports) & area
cost is proportional to
square of port count

Execute / Memory:

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Reg Read: Multi-porting
register file has high cost (4-
wide = 8 read ports) & area
cost is proportional to
square of port count

Execute / Memory: More
execute units, more cache
ports. Forwarding paths &
input operand selection logic
become very complicated.

Superscalar processors: Challenges & sources
of complexity

Decode: Not too bad, just
replication of resources

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Reg Read: Multi-porting
register file has high cost (4-
wide = 8 read ports) & area
cost is proportional to
square of port count

Execute / Memory: More
execute units, more cache
ports. Forwarding paths &
input operand selection logic
become very complicated.

Reg. WB: Write port per
instruction that may complete
that writes a register (4-wide
= 4 write ports)

Fetch Decode

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Remaining limits on performance of this
processor?

add x6 x8 x11

add x12 x6 x13

mul x7 x9 x14

Application itself may
not have ample ILP

In-order issue rule:
“Unlucky” sequence of instructions may
prevent multiple issue. (e.g., the first add
and the mul can issue together, but the
second add prevents it.)

Fetch Decode ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

Out of Order Execution

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue
window that issues instructions to
execute as soon as input operands
are available

Execute instructions from the issue
window fully out of order even if
instructions have a WAW or WAR
dependence that would prevent
them from superscalar issuing
together (how!?)

Commit in order
to respect
original program
semantics

Fetch Decode ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

Register Renaming Resolves Dependences that
Prevent Instructions from Executing Together

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

mul.x6 t1

add2.x6 t2

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

m
u
l

In-order commit tracks instruction completion
and ensures architectural state updates in order

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

d

Out of Order Execution

In-order Commit

w/ ref to
isters

d t1 x8 x11

l x9 t1 x13

d t2 x12 x14

reserve RAW (why?)

Rename table

add1.x6 t1

mul.x6 t1

add2.x6 t2

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

Reorder Buffer

add1 t1 17

mul x9 ???

add2 t2 245

Reorder buffer (ROB) ensures
instructions commit in order. Tracks
instruction, result reg, value, and validity.
On commit, instructions waiting to issue
can issue using newly produced value
now available in the ROB entry

add2 is complete, but waits
to update t2 (i.e., x6) until
mul is done

All Types of Data Hazards Matter in OoO Execution

sub x6 x5 x4

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Multi-cycle latency memory op
lw x6 0xabc lw x6 0xabc lw x6 0xabc

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

sub x6 x5 x4 sub x6 x5 x4

Non-mem-op, single memory cycle

Earlier lw instruction finishes after later sub
instruction. Both write x6. Wrong final value in x6.
Explicitly handled with logic to maintain ordering in
processors that allow this behavior (not our datapath)

Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes x16 before earlier
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4

add x16 x6 x14

lw x11 0xabc

Stalled at decode/reg. read

Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

M1

A2

A3

A4

A1

M2

Question: How can instructions issue to our
out-of-order pipeline in which instructions
may execute and complete out of order?
If WAW or WAR, can’t just dispatch or OoO
execution may read regs not yet updated

Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M2

A2

M1

A3

A4

Rename Table

A1.x6 -> r0

Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

RAW dependence on x6
M1 waiting on result from A1 (r0)

Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6

M2

-> r2

Rename Table

WAW dep b/w A1 & A2 & WAR dep w/ M1
Resolved by renaming output regs

Renaming Example

A1

M1

A2

A3

A4

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8

M2

-> r4

Rename Table

RAW dependence between M1 & A3
Cannot be resolved by renaming

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Renaming Example

A1

M1

A2

A3

A4

M2

WAW dep w/ A1 resolved by renaming
True dep w/ A2 resolved by looking up
renamed result of A2

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

Renaming Example

A1

M1

A2

A3

A4

M2

WAR dep with M2 & WAW w/ A2
resolved by renaming
True deps w/ A3 and M1 resolved by
looking up renamed regs in table

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

Renaming Example

A1

A2

M1

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

Renaming Example

A1

A2

M1

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

Renaming Avoids False Deps

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes r1 before earlier sub
instruction reads x16, which is perfectly ok!

sub x8 x16 x4

add r1 x6 x14

lw x11 0xabc

Stalled at decode/reg. read

Fetch Decode ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

Superscalar Out of Order Execution is
extremely complex to implement

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

We will leave out of order execution details here, but there is
a lot more to learn about this topic.
Register renaming algorithms, how to do forwarding in
SS/OoO, what to do on exceptions in SS/OoO… 447 & 740

Scheduling Techniques to Maximize ILP

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Performance in a superscalar processor depends on the
existence of ILP in the program.

We need there to be parallelizable instructions in the
instruction stream that we fetch, dispatch, and issue.
Question: how to avoid issue slot waste?

Empty issue slot represent
wasted opportunity to do
some work on a cycle

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Question: how to avoid issue slot waste?
• Schedule code in program to avoid dependences
• Schedule code in loops to align with fetch granularity
• Schedule code to avoid oversubscribing functional units (i.e.,

a sequence of consecutive multiplies can’t issue together)

Empty issue slot represent
wasted opportunity to do
some work on a cycle

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

SMT exploits thread-level parallelism (TLP) instead of ILP to
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with
instructions from another
thread

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Simultaneous Multi-Threading (SMT)

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Question: Sources of hardware complexity for SMT?
• Need fetch to support multiple streams (including branch prediction logic…)
• Need to tag functional units, rename table entries, ROB entries (and other

structures) to route values to correct downstream instructions

Fill empty issue slots with
instructions from another
thread

ALU (non-
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Very Large Instruction Word (VLIW) Architectures

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Change the ISA! In VLIW, the ISA exposes the issue width architecturally
Each fetch / issue is on a packet of instructions, hopefully independent

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

Intel IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

The compiler plays a crucial role

• We will pick up next time with more discussion of hardware/software
interfaces that expose opportunities for parallelism

• We will study how the compiler exposes parallelism and exploits the
opportunities for parallelism in the architecture

• More VLIW, Vector architectures

• Then we will look at some compiler fundamentals and see how all of
these ideas converge in software

	Slide 1
	Slide 2: Today: Advanced Microarchitecture Techniques
	Slide 3: Pipelined scalar design
	Slide 4: Pipelined scalar design
	Slide 5: Pipelined scalar design
	Slide 6: Pipelined scalar design
	Slide 7: Pipelined scalar design
	Slide 8: Pipelined scalar design
	Slide 9: Pipelined scalar design
	Slide 10: TThhiinnkkiinngg aabboouutt llaatteennccyy ((aaggaaiinn)) ttoo ooppttiimmiizzee ffoorr ccyyccllee ttiimmee
	Slide 11: Thinking about latency (again) to optimize for cycle time
	Slide 12: What if we pipeline the multiplier independently?
	Slide 13: What if we pipeline the multiplier independently?
	Slide 14: What if we pipeline the multiplier independently?
	Slide 15: What if we pipeline the multiplier independently?
	Slide 16: What if we pipeline the multiplier independently?
	Slide 17: What if we pipeline the multiplier independently?
	Slide 18: What if we pipeline the multiplier independently?
	Slide 19: Instructions might complete out of order if we are not careful!
	Slide 20: Avoiding out-of-order completion
	Slide 21: Let’s Rewind: Anything interesting about this snapshot in time?
	Slide 22: Independent FUs allow us to optimize IPC directly by increasing ILP
	Slide 23: Superscalar Out of Order Execution
	Slide 24: A Superscalar Processor Executes Multiple Instructions at the Same Time
	Slide 25: Superscalar processors
	Slide 26: Superscalar processors
	Slide 27: Superscalar processors
	Slide 28: Superscalar processors
	Slide 29: Superscalar processors
	Slide 30: Superscalar processors: Challenges & sources of complexity
	Slide 31: Superscalar processors: Challenges & sources of complexity
	Slide 32: Superscalar processors: Challenges & sources of complexity Decode:
	Slide 33: Superscalar processors: Challenges & sources of complexity Decode: Not too bad, just replication of resources
	Slide 34: Superscalar processors: Challenges & sources of complexity Decode: Not too bad, just replication of resources
	Slide 35: Superscalar processors: Challenges & sources of complexity Decode: Not too bad, just replication of resources
	Slide 36: Superscalar processors: Challenges & sources
	Slide 37: Superscalar processors: Challenges & sources
	Slide 38: Superscalar processors: Challenges & sources
	Slide 39: Superscalar processors: Challenges & sources
	Slide 40: Remaining limits on performance of this processor?
	Slide 41: Out of Order Execution
	Slide 42: Register Renaming Resolves Dependences that Prevent Instructions from Executing Together
	Slide 43: In-order commit tracks instruction completion and ensures architectural state updates in order
	Slide 44: All Types of Data Hazards Matter in OoO Execution
	Slide 45: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 46: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 47: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 48: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 49: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 50: lw x6 0xabc sub x6 x5 x4 add x12 x6 x14
	Slide 51: sub x8 x16 x4 add x16 x6 x14 lw x11 0xabc
	Slide 52: Renaming Example
	Slide 53: Renaming Example
	Slide 54: Renaming Example
	Slide 55: Renaming Example
	Slide 56: Renaming Example
	Slide 57: Renaming Example
	Slide 58: Renaming Example
	Slide 59: Renaming Example
	Slide 60: Renaming Example
	Slide 61: sub x8 x16 x4 add r1 x6 x14 lw x11 0xabc
	Slide 62: Superscalar Out of Order Execution is extremely complex to implement
	Slide 63: Scheduling Techniques to Maximize ILP
	Slide 64: Superscalar execution exploits ILP to increase IPC
	Slide 65: Superscalar execution exploits ILP to increase IPC
	Slide 66: Simultaneous Multi-Threading (SMT) Also known as “Hyper-threading” on Intel processors, used for decades now.
	Slide 67: Simultaneous Multi-Threading (SMT)
	Slide 68: Very Large Instruction Word (VLIW) Architectures
	Slide 69: The compiler plays a crucial role

