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Today: Advanced Microarchitecture Techniques

• Advanced Instruction-Level Parallelism: Multiple Issue, Out of Order 
Execution, Register Renaming, SMT



Pipelined scalar design
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Pipelined scalar design

Fetch Decode Execute Memory
Register 
Write-Back

What is the best performance that we can ever get out of 
a pipeline like the one we have been studying?
(how do we answer this question?)



Pipelined scalar design

Fetch Decode Execute Memory
Register 
Write-Back

Iron Law of Processor Performance:

Instr / Prog x Cycles / Instr x Seconds / Cycle

Fundamental limits to each of these terms in our current pipeline?



TThhiinnkkiinngg aabboouutt llaatteennccyy ((aaggaaiinn)) ttoo 
ooppttiimmiizzee ffoorr ccyyccllee ttiimmee

Fetch Decode Execute Memory
Register 
Write-Back

1ns
non-mul: 1ns  
mul: 3ns

1ns 1ns 1ns

What is the implication of mul having a 3ns latency, 
compared to the latency of each of the other stages?



Fetch Decode Execute Memory
Register 
Write-Back

1ns
non-mul: 1ns  
mul: 3ns

1ns 1ns 1ns

What is the implication of mul having a 3ns latency, 
compared to the latency of each of the other stages? 
333MHz max clock frequency
(despite 1GHz being OK for non-mul operations)

Thinking about latency (again) to optimize for 
cycle time



What if we pipeline the multiplier 
independently?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Break the multiply unit into 3 parts, each of
which takes 1ns, equalizing all stages’ latencies

1ns 1ns

1ns

1ns 1ns

1ns 1ns 1ns



Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul mul

mul mul mul

mulmul

mul0 mul1 mul2

Back-to-back multiplies keep the mul pipe full, at 1GHz latency

What if we pipeline the multiplier 
independently?



Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Back-to-back non-mul ops keep the pipe full, at 1GHz latency

addadd ld

st

shrl

What if we pipeline the multiplier 
independently?
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Memory
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Write-Back

mul0 mul1 mul2

Question: What about add mul add mul?

addadd mul

add

shrl

What if we pipeline the multiplier 
independently?
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Question: What about add mul add mul?
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What if we pipeline the multiplier 
independently?



Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Question: What about add mul add mul?

add

mul

add
stall

What if we pipeline the multiplier 
independently?



Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Problem?

add

mul

stall

What if we pipeline the multiplier 
independently?



Instructions might complete out of order if 
we are not careful!

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

In addition to the unfortunate stall in the memory stage, the 
add and the mul execute in the wrong order!

add

mul

stall



Avoiding out-of-order completion

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Hard to avoid the stall…
Can avoid the ordering problem with extra stall logic in Ex

add

mul

stall



Let’s Rewind: Anything interesting about this 
snapshot in time?

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

add

mul

add
stall



Independent FUs allow us to optimize IPC 
directly by increasing ILP

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

This pipeline is Executing multiple instructions at the same time 
on different functional units. ILP begets IPC!

add

mul

add
stall

Until now, we’ve considered a 
single ALU in a single Ex stage 
in the pipeline, but now we 
have two independent 
functional units.



Superscalar Out of Order Execution



A Superscalar Processor Executes Multiple 
Instructions at the Same Time

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

Scalar executes one instruction at a time
Superscalar executes multiple instructions at a time

add

mul

add
stall

Front End Challenges:
1)Need to supply 
enough instructions
2)Need hw resources 
for multiple ID & EX



Superscalar processors

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

(Here, we give up on the detailed pipeline diagram due to the 
increased complexity of the design.)

0010

1100

1010

0101

0100

0100

First idea: fetch a block of 
data from instruction
memory instead of one
instruction at a time.



Superscalar processors

Fetch Decode

Execute
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Memory
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mul0 mul1 mul2
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Second idea: Replicate
decode logic to allow
decoding multiple 
instructions

add



Superscalar processors

Fetch Decode

Execute
non-mul

Memory
Register 
Write-Back

mul0 mul1 mul2

mul

0010

1100

1010

0101

0100

0100

Third idea: Add issue queue 
of instructions ready to issue 
& logic to check whether
they can issue together

add

Issue
a
d
d

m
u
l

m
u
l

a
d
d

add x6 x8 x11 

add x12 x6 x13 

mul x7 x12 x14

These instructions cannot issue 
together (why? two reasons, 
actually!)

Question: how much checking 
required for n-wide issue?



Superscalar processors

Fetch Decode

ALU (non- 
mul)

Memory
Register 
Write-Back

mul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

Fourth idea: Decouple 
register read from decode. 
Register read happens for 
issued instructions now

add

Issue

ALU (non-
mul)

Reg. Read

Fifth idea: Add multiple 
execute units to which to 
dispatch operations after they 
read their input registers

a
d
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Superscalar processors

Fetch Decode

ALU (non- 
mul)
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sw
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Memory
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0010
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0101
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add

Issue

ALU (non-
mul)

Reg. Read

Seventh idea: Add multiple 
write ports to register file to 
allow simultaneous multiple 
register writebacks
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d
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Sixth idea: Handle multiple 
outstanding memory 
operations in memory 
system (complex! we will 
mostly ignore this part)



Superscalar processors: Challenges & sources 
of complexity
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions

Issue: Dependence / hazard 
detection logic complexity. 
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions

Issue: Dependence / hazard 
detection logic complexity. 
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously

Reg Read: Multi-porting 
register file has high cost (4- 
wide = 8 read ports) & area 
cost is proportional to 
square of port count
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions

Issue: Dependence / hazard 
detection logic complexity. 
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously

Reg Read: Multi-porting 
register file has high cost (4- 
wide = 8 read ports) & area 
cost is proportional to 
square of port count

Execute / Memory:
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions

Issue: Dependence / hazard 
detection logic complexity. 
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously

Reg Read: Multi-porting 
register file has high cost (4- 
wide = 8 read ports) & area 
cost is proportional to 
square of port count

Execute / Memory: More 
execute units, more cache 
ports. Forwarding paths & 
input operand selection logic 
become very complicated.
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Decode: Not too bad, just 
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Fetch: Branch prediction 
more complex. Risk of 
overfetch because we’re 
fetching a whole block? 
Must consider multiple, 
sequential fetches based on 
predictions

Issue: Dependence / hazard 
detection logic complexity. 
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously

Reg Read: Multi-porting 
register file has high cost (4- 
wide = 8 read ports) & area 
cost is proportional to 
square of port count

Execute / Memory: More 
execute units, more cache 
ports. Forwarding paths & 
input operand selection logic 
become very complicated.

Reg. WB: Write port per 
instruction that may complete 
that writes a register (4-wide
= 4 write ports)
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Remaining limits on performance of this 
processor?

add x6 x8 x11 

add x12 x6 x13 

mul x7 x9 x14

Application itself may 
not have ample ILP

In-order issue rule:
“Unlucky” sequence of instructions may 
prevent multiple issue. (e.g., the first add 
and the mul can issue together, but the 
second add prevents it.)
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In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue 
window that issues instructions to 
execute as soon as input operands 
are available

Execute instructions from the issue 
window fully out of order even if 
instructions have a WAW or WAR 
dependence that would prevent 
them from superscalar issuing 
together (how!?)

Commit in order 
to respect 
original program 
semantics
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Register Renaming Resolves Dependences that 
Prevent Instructions from Executing Together
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In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11 

mul x9 x6 x13 

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11 

mul x9 t1 x13 

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

mul.x6 t1

add2.x6 t2

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table. Prevent issue only for 
true deps.
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In-order commit tracks instruction completion 
and ensures architectural state updates in order
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Out of Order Execution

In-order Commit

w/ ref to 
isters

d t1 x8 x11 

l x9 t1 x13 

d t2 x12 x14

reserve RAW (why?)

Rename table

add1.x6 t1

mul.x6 t1

add2.x6 t2

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table. Prevent issue only for 
true deps.

Reorder Buffer

add1 t1 17

mul x9 ???

add2 t2 245

Reorder buffer (ROB) ensures 
instructions commit in order. Tracks 
instruction, result reg, value, and validity. 
On commit, instructions waiting to issue 
can issue using newly produced value 
now available in the ROB entry

add2 is complete, but waits 
to update t2 (i.e., x6) until 
mul is done



All Types of Data Hazards Matter in OoO Execution

sub x6 x5 x4 

lw x16 0xabc

Read-After-Write (RAW) Write-After-Read (WAR)

sub x8 x16 x4

add x12 x6 x14 lw x16 0xabc

Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

add x16 x6 x14 sub x6 x5 x4

add x12 x6 x14



Types of Data Hazards
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Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

lw x6 0xabc

Fetch Decode Execute Memory
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Write-BackMemory Memory
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Types of Data Hazards
lw x6 0xabc 

sub x6 x5 x4 

add x12 x6 x14

Write-After-Write (WAW)

Multi-cycle latency memory op
lw x6 0xabc lw x6 0xabc lw x6 0xabc

Fetch Decode Execute Memory
Register 
Write-BackMemory Memory

sub x6 x5 x4 sub x6 x5 x4

Non-mem-op, single memory cycle

Earlier lw instruction finishes after later sub 
instruction. Both write x6. Wrong final value in x6. 
Explicitly handled with logic to maintain ordering in 
processors that allow this behavior (not our datapath)



Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register 
Write-Back

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes x16 before earlier
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4 

add x16 x6 x14 

lw x11 0xabc

Stalled at decode/reg. read



Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

M1

A2

A3

A4

A1

M2

Question: How can instructions issue to our 
out-of-order pipeline in which instructions 
may execute and complete out of order?
If WAW or WAR, can’t just dispatch or OoO 
execution may read regs not yet updated



Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M2

A2

M1

A3

A4

Rename Table 

A1.x6 -> r0



Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table 

A1.x6 -> r0 

M1.x9 -> r1 

M1.x6 <- r0

RAW dependence on x6
M1 waiting on result from A1 (r0)



Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6

M2

-> r2

Rename Table

WAW dep b/w A1 & A2 & WAR dep w/ M1
Resolved by renaming output regs



Renaming Example

A1

M1

A2

A3

A4

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8

M2

-> r4

Rename Table

RAW dependence between M1 & A3
Cannot be resolved by renaming

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9



Renaming Example

A1

M1

A2

A3

A4

M2

WAW dep w/ A1 resolved by renaming 
True dep w/ A2 resolved by looking up 
renamed result of A2

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table 

A1.x6 -> r0 

M1.x9 -> r1 

M1.x6 <- r0 

A2.x6 -> r2 

A3.x7 -> r3 

A3.x9 <- r1 

M2.x8 -> r4 

M2.x6 <- r2



Renaming Example

A1

M1

A2

A3

A4

M2

WAR dep with M2 & WAW w/ A2 
resolved by renaming
True deps w/ A3 and M1 resolved by
looking up renamed regs in table

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table 

A1.x6 -> r0 

M1.x9 -> r1 

M1.x6 <- r0 

A2.x6 -> r2 

A3.x7 -> r3 

A3.x9 <- r1 

M2.x8 -> r4 

M2.x6 <- r2 

A4.x6 -> r5 

A4.x7 <- r3 

A4.x9 <- r1



Renaming Example

A1

A2

M1

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table 

A1.x6 -> r0 

M1.x9 -> r1 

M1.x6 <- r0 

A2.x6 -> r2 

A3.x7 -> r3 

A3.x9 <- r1 

M2.x8 -> r4 

M2.x6 <- r2 

A4.x6 -> r5 

A4.x7 <- r3 

A4.x9 <- r1



Renaming Example

A1

A2

M1

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1

Rename Table 

A1.x6 -> r0 

M1.x9 -> r1 

M1.x6 <- r0 

A2.x6 -> r2 

A3.x7 -> r3 

A3.x9 <- r1 

M2.x8 -> r4 

M2.x6 <- r2 

A4.x6 -> r5 

A4.x7 <- r3 

A4.x9 <- r1



Renaming Avoids False Deps

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register 
Write-Back

sub x8 x16 x4

add x16 x6 x14

Completes quickly and writes reg.

Later add instruction writes r1 before earlier sub
instruction reads x16, which is perfectly ok!

sub x8 x16 x4 

add r1 x6 x14 

lw  x11 0xabc

Stalled at decode/reg. read



Fetch Decode ALU (non- 
mul)

sw

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

Superscalar Out of Order Execution is
extremely complex to implement

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

We will leave out of order execution details here, but there is 
a lot more to learn about this topic.
Register renaming algorithms, how to do forwarding in
SS/OoO, what to do on exceptions in SS/OoO… 447 & 740



Scheduling Techniques to Maximize ILP



ALU (non- 
mul)

sw 

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Performance in a superscalar processor depends on the
existence of ILP in the program.

We need there to be parallelizable instructions in the 
instruction stream that we fetch, dispatch, and issue. 
Question: how to avoid issue slot waste?

Empty issue slot represent 
wasted opportunity to do 
some work on a cycle



ALU (non- 
mul)

sw 

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Question: how to avoid issue slot waste?
• Schedule code in program to avoid dependences
• Schedule code in loops to align with fetch granularity
• Schedule code to avoid oversubscribing functional units (i.e.,

a sequence of consecutive multiplies can’t issue together)

Empty issue slot represent 
wasted opportunity to do 
some work on a cycle



ALU (non- 
mul)

sw 

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

SMT exploits thread-level parallelism (TLP) instead of ILP to
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with 
instructions from another
thread



ALU (non- 
mul)

sw 

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Simultaneous Multi-Threading (SMT)

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Question: Sources of hardware complexity for SMT?
• Need fetch to support multiple streams (including branch prediction logic…)
• Need to tag functional units, rename table entries, ROB entries (and other 

structures) to route values to correct downstream instructions

Fill empty issue slots with 
instructions from another
thread



ALU (non- 
mul)

sw 

lw

sw

lw

lw

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

Very Large Instruction Word (VLIW) Architectures

Out of Order Execution
Issue Time

Is
su

e
 W

id
th

Change the ISA! In VLIW, the ISA exposes the issue width architecturally 
Each fetch / issue is on a packet of instructions, hopefully independent

Insn1 (41b) Insn2 (41b) Insn3 (41b) Type
(5b)

Intel IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch 
e.g.,
MMI, IIF, MMI 
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.



The compiler plays a crucial role

• We will pick up next time with more discussion of hardware/software 
interfaces that expose opportunities for parallelism

• We will study how the compiler exposes parallelism and exploits the 
opportunities for parallelism in the architecture

• More VLIW, Vector architectures

• Then we will look at some compiler fundamentals and see how all of 
these ideas converge in software
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