
CMU 18-344: Computer 
Systems and the 

Hardware/Software Interface
Fall 2023

(Fall 2023)



Course Staff & Logistics
• Prof. Greg Kesden

• (412) 818-7813
• HH A205
• https://www.andrew.cmu.edu/~gkesden/schedule.html

• Teaching Assistants (18-344 Veterans):
• Jue Li 

• M Nguyen 

• Matthew Ngaw 

• Yufei Shi 
• Zhexi “Jeffrey” Cao 

• Lecture: Tuesday and Thursday, 9:30 – 10:50am in HH 1107
• Some lectures are designed to run short, some to run long. We may leave early, we may spill into next week.

• Recitation: Friday, 10-10:50am in HH 1107
• Project focused + Reinforcement

• Office Hours (per website, TBD)

• 5 Labs (more later), 2 Exams, 4 Homeworks

• Gradescope (primarily for handin) & Piazza (for continuous Q&A)

• Late policy: -10% for each day late w/ 15 minute grace period for 11th hour submission problems. i.e., if assignment is due at 
11:59:59pm ET Thursday, then at 12:15:00am ET on Friday your orig. score is multiplied by 0.9, at 12:00:00am ET on Saturday your 
orig. score is multiplied by 0.8, etc. Do your best to not get behind. There are times we have back-to-back labs being assigned. 
Having 2 labs at the same time will be very difficult to manage.



Who 
am I?



What is this course about?



What is the hardware software boundary?



What is computer (μ)architecture?



What constrains a computer system?



Why are these processors different?



How do you measure a computer’s performance?



What makes software runnable?



How do you improve software’s performance?

X =



Are some programs intrinsically slow?



What are the lower-extremities of software?



How (& why?) to do two things at the same time?



How does it all fit together in real systems?

Tartan-Artibeus-1 Batteryless Energy- 
harvesting Nanosatellite System



What are we doing this semester?

• Series of labs (Lab 0 – “bootstrapping” goes out today, due in 1 week)
• Do all labs except lab 0 in pairs. The point is not to make you code or 

experiment for the rest of your life. We want you to learn by doing.

• Labs released via AFS: /afs/ece.cmu.edu/class/ece344/assign
• For each lab, handout.txt is your main reference & documentation. READ IT 

CAREFULLY because it will tell you what you need to know to complete the 
lab

• Labs are not just “code & submit”. Instead, you’ll be building,
studying, measuring, and evaluating systems. Coding it up is step 1.



Course Calendar



Diving into Computer Architecture

Broad introduction to computer 
architecture, understanding the 
architecture / microarchitecture 
distinction, what is an ISA?, what 
limits computer performance?, 
how to think about hardware
using abstractions, Amdahl’s Law



ILP & Dealing with Hazards

Introduction to ILP, pipelining and 
what gets in its way, how control 
flow happens at execution time, 
branch prediction



Caches & Memory Hierarchies

Memory is the real problem! 
Caches, memory hierarchies: an 
architect’s view, cache 
replacement and other cache 
optimizations



Principled Performance Analysis

Measuring a system in a 
meaningful way, understanding 
performance measurement 
pitfalls, Pareto analysis, design 
space iteration & exploration, 
Amdahl’s Law (again)



Microarchitectural Optimizations

Going beyond IPC=1, advanced ILP 
techniques, superscalar & out-of- 
order execution, vector 
processors, Very Large Instruction 
Word processors, other more 
exotic architectures



Midterm Exam

The midterm covers everything from 
the start of the course up to this 
point. The labs & homeworks will 
evaluate what you learn during the 
second half of the course.



Virtual Memory

Virtual Memory, virtualization basics, 
bad ways to do VM, 
hardware/software co-design for 
virtualization, VM advanced topics, 
huge pages, TLB design



Sparse Computation

Introduction to sparsity, what is a 
sparse problem and why is one 
difficult?, understanding the 
performance limiters, sparse 
problem optimization strategies, 
open problems



Parallelism & Concurrency

Parallel computation, parallel 
architectures concurrency, memory 
consistency models, synchronization, 
atomics, transactional memory 
networks on chip



End of semester: computer architecture today

(Subject to change) What is 
happening in the field of computer 
architecture and systems today?
What are the exciting new ideas? 
Reconfigurable dataflow machines, 
encrypted computing, energy- 
harvesting computers, open-ended 
Q/A



Lab 0: Bootstrapping

• 18-344 has lots of moving parts. Lab 0 is about figuring them all out
• You’ll be using each of them again in subsequent labs.

• SPEC2017: collection of benchmark programs designed for evaluating 
computer architectures

• Needlessly complex and very difficult to change infrastructure. SPEC will be a 
pain, but will give you the Real Computer Systems Experience.

• Pin: binary instrumentation tool used to insert code into program 
binaries to implement computer architecture simulators

• Destiny: memory modeling tool useful for evaluating the time & 
energy to access different cache/memory designs



Lab 1: Branch Prediction

• As you will learn, (and as you may recall from 213) microarchitectures 
predict the outcome of their branch instructions

• Write a branch predictor simulator

• Evaluate different implementations
• Cost, accuracy, implementation feasibility

• Write-up in English prose characterizing and explaining your design,
and with quantitative evaluation of your design’s performance.



Lab 2: Memory Hierarchy Design Space

• Cache hierarchies are big complex microarchitectural components

• Which is best for a given set of programs?

• You will start by writing a cache, and then a whole memory hierarchy.

• Then you will run a design space exploration process to optimize your 
memory hierarchy implementation, subject to physical constraints 
and performance & efficiency goals

• You will explore different replacement policies

• Write-up in English prose summarizing your design space exploration 
and conclusions, including quantitative evaluation.



Lab 3: Virtual Memory

• Virtual memory provides process isolation and access control using paging 
and some hardware support

• You will implement an emulation of a page table and the basic functions 
that you will use to manipulate the page table

• You will implement simulated hardware to accelerate translate of virtual to 
physical addresses and evaluate its impact on system performance

• You will study your implementation and quantitatively analyze your page 
table and hardware support

• Write-up describing your design, including quantitative evaluation of your 
system and its performance



Lab 4: Sparse Workload Optimization

• Sparse workloads are programs that work on datasets that have 
sparse structure, like graphs that have lots of vertices and far fewer 
edges (sparse adjacency matrix). Sparse workloads are hard to cache.

• Given a simple unoptimized sparse workload implementation, you 
will use a highly specialized optimization called Propagation Blocking 
to optimize, yielding a much higher performance implementation

• You will study your optimized version, and quantitatively analyze your 
design choices.

• Write-up including description of your implementation and summary 
of quantitative results



Lab 5: Synchronization for Parallel Code

• Parallel programs require synchronizing to avoid confusing 
interactions between threads.

• There are many ways to implement synchronization

• You will implement different synchronization mechanisms (from spin 
locks to transactional memory) for two performance-sensitive test 
programs

• You will quantitatively study your implementations and their 
performance on the two test programs

• Write-up including description of your synchronization alternatives 
and a quantitative analysis of performance


	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Course Staff & Logistics
	Slide 3: Who am I?
	Slide 4: What is this course about?
	Slide 5: What is the hardware software boundary?
	Slide 6: What is computer (μ)architecture?
	Slide 7: What constrains a computer system?
	Slide 8: Why are these processors different?
	Slide 9: How do you measure a computer’s performance?
	Slide 10: What makes software runnable?
	Slide 11: How do you improve software’s performance?
	Slide 12: Are some programs intrinsically slow?
	Slide 13: What are the lower-extremities of software?
	Slide 14: How (& why?) to do two things at the same time?
	Slide 15: How does it all fit together in real systems?
	Slide 16: What are we doing this semester?
	Slide 17: Course Calendar
	Slide 18: Diving into Computer Architecture
	Slide 19: ILP & Dealing with Hazards
	Slide 20: Caches & Memory Hierarchies
	Slide 21: Principled Performance Analysis
	Slide 22: Microarchitectural Optimizations
	Slide 23: Midterm Exam
	Slide 24: Virtual Memory
	Slide 25: Sparse Computation
	Slide 26: Parallelism & Concurrency
	Slide 27: End of semester: computer architecture today
	Slide 28: Lab 0: Bootstrapping
	Slide 29: Lab 1: Branch Prediction
	Slide 30: Lab 2: Memory Hierarchy Design Space
	Slide 31: Lab 3: Virtual Memory
	Slide 32: Lab 4: Sparse Workload Optimization
	Slide 33: Lab 5: Synchronization for Parallel Code

