CMOS Power Consumption
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Textbook: [Sections 5.5 5.6 6.2 (p. 257-263) 11.7.1 ]



Overview

= Low-power design
~Motivation
mSources of power dissipation in CMOS
~1Power modeling
~1Optimization Techniques (a survey)



Why worry about power?
-- Heat Dissipation
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Power Density Trends
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High End Power Consumption

= While you can probably afford to pay for 100-200W of
power for your desktop...

m Getting that heat off the chip and out of the box is
expensive



A Booming Market: Portable Devices
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Expected Battery Lifetime increase
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Where Does Power Go in CMOS?

Vdd

= Switching power: due to charging and discharging of output
capacitances:

Energy/transition = C| * Vddz
Power = Energy/transition * f=C| * Vddz L
= Short-circuit power: due to non-zero rise/fall times

= Leakage power (important with decreasing device sizes)
Typically between 0.1nA - 0.5nA at room temperature




Short-Circuit Power

= Inputs have finite rise and fall
times Voo + Vi
Depends on device sizes

th .

= Direct current path from Vpp
to GND while PMOS and Imax
NMOS are ON
simultaneously for a short
period

mean




Leakage Current
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New Problem: Gate Leakage

= Now about 20-30% of all leakage, and growing

m Gate oxide is so thin, electrons tunnel thru it...
m NMOS is much worse than PMOS

4|




Gate/Circuit-Level Power Estimation

m [t is a very difficult problem

~1Challenges

=Vpp, T C a@re known
» Actually, the layout will determine the interconnect capacitances

xINeed node-by-node accuracy
* Power dissipation is highly data-dependent

xINeed to estimate switching activity accurately
* Simulation may take days to complete



Dynamic Power Consumption - Revisited

Power = Energy/transition * transition rate
— 2
=CL " Vaa” "fo1

=CL* Vaa* *Pys*f
Switching activity (factor)

_ 2
=Cgrr " Vaa™ *f on a signal line
o 2
P = CL( vdd /2) fclk
Cere = Effective Capacitance=C * P, ,,

Power Dissipation is Data Dependent
Function of Switching Activity



Example: Static 2 Input NOR

Assume:
o I P(A=1) = 1/2
R R P(B=1) = 1/2
0 1 0
1 0 0 Then:
1 1 0 P(Out=1) = 1/4 (this is the signal probability)
Truth Table of 2 input NOR gate P(O N 1) = P(Out = 0) : P(Out - 1)

=3/4 x 1/4 = 3/16 (this is the transition probability)
Cepp =3/16C



Power Consumption is Data Dependent
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Suppose now that only patterns 00 and 11
can be applied (w/ equal probabilities). Then:

0—0 0-—0
0—1 0—1
1-0 1-0
-1 11

11
1-0
0—1 => P(0->1)=1/4
0—0

Similarly, suppose that every 0 applied to the
input A is immediately followed by a 1 while
every 1 applied to B is immediately followed
bya0.P(0->1)=7



Transition Probabilities for Basic Gates

Py
AND (1-P AP )P Py,
OR (1-Pp X(1-PR)(1-(1-Px X(1-Pp))
EXOR | (1- (P, + Pp- 2P \Pp))(P4 + Py, - 2P APp)

Switching Activity for Static CMOS

Py ,1=Po.Pq



(Big) Problem: Re-convergent Fanout

In this case, Z=B as it
can be easily seen.

B The previous analysis
simply fails because
the signals are not
independent!

- : J
Reconvergence

P(z=1) = P(B=1) -P(X=1| B=1) = P(B=1)

Main issue: Becomes complex and intractable real fast!



Another (Big) Problem: Glitching in Static
CMOS

also called: dynamic hazards

X wasted power

Unit Delay



Example: A Chain of NAND Gates

V (Volt)




Glitch Reduction Using Balanced Paths
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Equalize Lengths of Timing Paths Through Design



Delay is important: Delay vs. Vyy and V;
Think about (Power XDelay) product!

m Delay for a 0->1 transition to

propagate to the output:
f — CL VDD
LH 2
’ kn (VDD o VTn )

Similar for a 1->0 transition



Delay vs. Vpp
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Power-Performance Trade-offs

= Prime choice: Vy reduction

In recent years we have witnessed an increasing interest in supply voltage
reduction (e.g. Dynamic Voltage Scaling)

* High V; on critical path or for high performance
* Low Vpp where there is some available slack
Design at very low voltages is still an open problem (0.6 — 0.9V by 2010!)
* Ensures lower power
* ... but higher latency - loss in performance

= Reduce switching activity
Logic synthesis
Clock gating

= Reduce physical capacitance

Proper device sizing
Good layout



How about POWER?
Ways to reducing power consumption

= Load capacitance (C,)
Roughly proportional to the chip

Voltage supply (Vpp)

— Biggest impact

darea
. . .. 7.50 - N ol I I
= Switching activity (avg. o [
number of transitions/cycle)

5.50

1 Very data dependent

1A big portion due to glitches
(real-delay)

= Clock frequency (f)

Lowering only f decreases 200
average power, but total energy =
Is the same and throughput is il 1 1
Worse \% dd (volts)

5.00

4.50

4.00

3.50

3.00

NORMALIZED DELAY

2.50
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Using parallelism (1)
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Using parallelism (2)
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Using pipelining
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Chain vs. balanced design

0.5x

0.5 }Y
A_IN\W mm) 055 ‘
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= Question for you:

Which of the two designs is more energy efficient?

=1 Assume:

« Zero-delay model

* All inputs have a signal probability of 0.5
Hint: Calculate p,_,, for W, X'and F



Chain vs. balanced design

0.5A

5
A —Div 7/64 - 0.5B —
B Dl 15/256 0.5

2B-pE ST
0.5 D— F -

05 0.5D

= For the zero-delay model
Chain design is better
But ignores glitching

Depending on the gate delays, the chain design may be worse

15/256



Low energy gates — transistor sizing

m Use the smallest transistors that satisfy the delay
constraints

~Increasing transistor size improves the speed but it also
increases power dissipation (since the load capacitances
increases)

=1Slack time - difference between required time and arrival time of a
signal at a gate output
* Positive slack - size down
* Negative slack - size up

= Make gates that toggle more frequently smaller



Low energy gate netlists — pin ordering

(1-0.5x0.2)x(0.5x0.2)=0.09 v (1-0.2x0.1)x(0.2x0.1)=0.0196
0.5 | < l
A __| X _}
= _} - 0f } F
02 C— F | o

m Better to postpone the introduction of signals with a high
transition rate (signals with signal probability close to 0.5)



Control circuits

—..
Inputs Combinational

Logic

—Qutputs

| FF |
Sta’Ee S

n! different possible
encodings (n states)

m State encoding has a big impact on the power efficiency
m Energy driven -> try to minimize number of bit transitions in

the state register

Fewer transitions in state register

Fewer transitions propagated to combinational logic



Bus encoding

= Reduces number of bit toggles on the bus

m Different flavors

=1Bus-invert coding
xiUses an extra bus line invert:

* if the number of transitions is < K/2, invert = 0 and the symbol is
transmitted as is

* if the number of transitions is > K/2, invert = 1 and the symbol is
transmitted in a complemented form

=1Low-weight coding
x1Uses transition signaling instead of level signaling

Encoder




Bus invert coding

Invert/pass
Source . P Data bus Invert/pass DDDD
data }D o0 L %Di 111{]
0000 N . ¥ Received
1 0001 data
1110
K . | Polarity signal
Polarity ’l{ Bus )
decision ‘register  ynder uniform random signal
logic conditions (non-correlated data),
A 25% upper bound on toggle

Hamming distance reduction

Source: M.Stan et al., 1994



Summary

m Power Dissipation is already a prime design
constraint

= Low-power design requires operation at
lowest possible voltage and clock speed

= Low-power design requires optimization at
all levels of abstraction



Announcements

= Project M1:
=1Check off in lab session
~IReport by Friday

= Exam Review Session:
~IMonday Oct 13, 4:30-6:30pm
~IPH 125C
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