hMETS*

A Hypergraph Partitioning Package
Version 1.5.3

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science & Engineering
Army HPC Research Center
Minneapolis, MN 55455

{karypis, kumay@cs.umn.edu
November 22, 1998

Metis [MEE tis]: Metis was a titaness in Greek mythology. She was the consort of Zeus and the mother of Athena.
She presided over all wisdom and knowledge.

*hMETS is copyrighted by the regents of the University of Minnesota. This work was supported by IST/BMDO through Army Research
Office contract DA/DAAH04-93-G-0080, and by Army High Performance Computing Research Center under the auspices of the Department
of the Army, Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content
of which does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to
computing facilities were provided by Minnesota Supercomputer Institute, Cray Research Inc. Related papers are available via WWW at URL:

http://www.cs.umn.edu/"karypis

Contents

1 Introduction

2 What is hMENS

2.1

Overview of the Algorithmsused hiMeETS

3 hMETS’s Stand-Alone Programs

3.1
3.2
3.3
3.4
3.5
3.6

shmetis e
hmetis e
khmetis e
Format of Hypergraph InputFile
FormatoftheFixFile
Formatof OutputFile

4 hMETS’s Library Interface

4.1
4.2

HMETISPartRecursive o o o e e e e e e
HMETISPartKway

5 General Guidelines on How to Usé&aMETIS

5.1

5.2

Selecting the Proper Parameters

5.1.1 Effectofthe CType Parameter
5.1.2 Effectofthe RType Parameter
Computing &-way Partitioning
5.2.1 Effectofthe Nruns Parameter
5.2.2 Effect of the Reconst Parameter

6 System Requirements and Contact Information

1 Introduction

Hypergraph partitioning is an important problem and has extensive applications in many areas, including VLSI design
[2], efficient storage of large databases on disks [13], transportation management, and data-mining [5]. The problem
is to partition the vertices of a hypergraphkmoughly equal parts, such that the number of hyperedges connecting
vertices in different parts is minimized. A hypergraph is a generalization of a graph, where the set of edges is replaced
by a set of hyperedges. A hyperedge extends the notion of an edge by allowing more than two vertices to be connected
by a hyperedge.

2 What is hM EINS

hMETS is a software package for partitioning large hypergraphs, especially those arising in circuit design. The algo-
rithms inhMETS are based on multilevel hypergraph partitioning described in [10, 11, 7], and they are an extension of
the widely usedVIETIS graph partitioning package described in [9, 8]. Traditional graph partitioning algorithms com-
pute a partition of a graph by operating directly on the original graph as illustrated in Figure 1(a). These algorithms
are often too slow and/or produce poor quality partitions. Multilevel partitioning algorithms, on the other hand, take a
completely different approach[6, 9, 8, 10]. These algorithms, as illustrated in Figure 1(b), reduce the size of the graph
(or hypergraph) by collapsing vertices and edges (during the coarsening phase), partition the smaller graph (initial
partitioning phase), and then uncoarsen it to construct a partition for the original graph (uncoarsening and refinement
phase) hMEIS uses novel approaches to successively reduce the size of the hypergraph as well as to further refine the
partition during the uncoarsening phase. During coarsehMgliS employs algorithms that make it easier to find a
high-quality partition at the coarsest graph. During refinem@VENS focuses primarily on the portion of the graph

that is close to the partition boundary. These highly tuned algorithms &lldiS to quickly produce high-quality
partitions for a large variety of hypergraphs.

Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

Traditional partitioning algorithms compute
a partition directly on the original graph!

@

Initial Partitioning Phase

(b)
Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.

The advantages ¢IMENS compared to other similar algorithms are the following:

O Provides high quality partitions!
Experiments on a large number of hypergraphs arising in various domains including VLSI, databases, and data
mining show thahMETIS produces partitions that are consistently better than those produced by other widely
used algorithms, such as KL, FM, LA, PROP, CL&R;.

O Itis extremely fast!
Experiments on a wide range of hypergraphs has showhMgiS is one to two orders of magnitude faster than
other widely used partitioning algorithmsMETS can produce extremely high quality bisections of hypergraphs
with 100,000 vertices in well under 3 minutes on an R10000-based SGI workstation and a Pentium Pro-based
personal computer.

2.1 Overview of the Algorithms used in hM ETIS

In the rest of this section, we briefly describe the various phases of the multilevel algorithm. The reader should refer
to [10] for further details.

Coarsening Phase During the hypergraph coarsening phase, a sequence of successively smaller hypergraphs
is constructed. The purpose of coarsening is to create a small hypergraph, such that a good bisection of the small
hypergraph is not significantly worse than the bisection directly obtained for the original hypergraph. In addition

to that, hypergraph coarsening also helps in successively reducing the size of the hyperedges. That is, after several
levels of coarsening, large hyperedges are contracted to hyperedges connecting just a few vertices. This is particularly
helpful, since refinement heuristics based on the Kernighan-Lin algorithm [12, 4] are very effective in refining small
hyperedges but are quite ineffective in refining hyperedges with a large number of vertices belonging to different
partitions. The group of vertices that are contracted together to form single vertices in the next level coarse hypergraph
can be selected in different waylMEIS implements various such grouping schemes (also cai@ithing schemégs

some of which are described in [10].

Initial Partitioning phase During the initial partitioning phase, a bisection of the coarsened hypergraph is com-
puted. Since this hypergraph has a very small number of vertices (usually less than 100 vertices) many different
algorithms can be used without significantly affecting the overall runtime and quality of the algohtMEnS uses

multiple random bisections followed by the Fiduccia-Mattheyses(FM) refinement algorithm.

Uncoarsening and refinement phase During the uncoarsening phase, the partitioning of the coarsest hyper-
graph is used to obtain a partitioning for the finer hypergraph. This is done by successively projecting the partitioning
to the next level finer hypergraph and using a partitioning refinement algorithm to reduce the cut and thus improve
the quality of the partitioning. Since the next level finer hypergraph has more degrees of freedom, such refinement
algorithms tend to improve the qualityMeTS implements a variety of algorithms that are based on the FM algorithm

[4]. The details of some of these schemes can be found in [10].

V-Cycle Refinement The idea behind this refinement algorithm is to use the power of the multilevel paradigm

to further improve the quality of a bisection. Thecycle refinement algorithm consists of two phases, namely a
coarsening and an uncoarsening phase. The coarsening phase preserves the initial partitioning that is input to the
algorithm. We will refer to this agestricted coarseningcheme. In this restricted coarsening scheme, the groups of
vertices that are combined to form the vertices of the coarse graphs correspond to vertices that belong only to one of
the two partitions. As a result, the original bisection is preserved through out the coarsening process, and becomes the
initial partition from which we start performing refinement during the uncoarsening phase. The uncoarsening phase
of the V-cycle refinement algorithm is identical to the uncoarsening phase of the multilevel hypergraph partitioning
algorithm described earlier. It moves vertices between partitions as long as such moves improve the quality of the
bisection. Note that the various coarse representations of the original hypergraph, allow refinement to further improve
the quality as it helps it climb out of local minima.

3 hMEIS’s Stand-Alone Programs

hMET'S provides theshmetis, hmetis, andkhmetis programs that can be used to partition a hypergraphkimarts.
The first two programsshmetis andhmetis) compute &-way partitioning using multilevel recursive bisection [10].
Theshmetis program is suited for those users who want tohMEelS without getting into the details of the underlying
algorithms, whilehmetis is suited for those users that want to experiment with the various algorithms ubbERS.
Both shmetis andhmetis can also compute kway partitioning when certain vertices of the hypergraph have pre-
assigned partitions.é., there are at mosgt sets of vertices each fixed to a particular partition).

The third programkKhmetis) computes &-way partitioning using multilevet-way partitioning [8]. This is a new
feature ofAMETIS 1.5, and the underlying algorithms are still under development.

3.1 shmetis

Theshmetis program is invoked by providing three or four arguments at the command line as follows:

shmetis HGraphFile Nparts UBfactor
or
shmetis HGraphFile FixFile Nparts UBfactor

The meaning of the various parameters is as follows:

HGraphFile
This is the name of the file that stores the hypergraph (the format is described in Section 3.4).

FixFile This is the name of the file that stores information about the pre-assignment of vertices to partitions (the
format is described in Section 3.5).

Nparts This is the number of desired partitionshmetis can partition a hypergraph into an arbitrary number
of partitions, using recursive bisection. That is, for a 4-way partitelnmetis first computes a 2-way
partition of the original hypergraph, then constructs two smaller hypergraphs, each corresponding to one of
the two partitions, and then computes 2-way partitions of these smaller hypergraphs to obtain the desired
4-way partitiort. Note thatshmetis, while constructing the smaller hypergraphs, completely removes the
hyperedges that were cut during the bisecion

UBfactor This parameter is used to specify the allowed imbalance between the partitions during recursive bisection.
This is an integer number between 1 and 49, and specifies the allowed load imbalance in the following
way. Consider a hypergraph withvertices, each having a unit weight, andbdie theUBfactor. Then, if
the number of desired partitions is twice(, we perform a bisection), then the number of vertices assigned
to each one of the two partitions will be betweg&® — b)n/100 and(50 + b)n/100. For example, for
b = 5, then we will be allowing a 45-55 bisection, that is, the number of vertices in each partition will be
between 35n and 055n. Note that this allowed imbalance is applied at each bisection step, so if instead
of a 2-way partition we are interested in a 4-way partition, thexBéactorof 5 will result in partitions that
can contain between46?n = 0.20n and 055°n = 0.30n vertices. Also note thathmetis does not allow
you to produce perfectly balanced partitions. This is a limitation that will be lifted in future releases.

Upon successful executioghmetis displays statistics regarding the quality of the computed partitioning and the
amount of time taken to perform the partitioning (the times are shown in seconds). The actual partitioning is stored in
a file namedHGraphFile.part.Nparts whose format is described in Section 3.6.

Figure 2 shows the output shmetis for partitioning a hypergraph into four parts. From this figure we see that

shmetis initially prints information about the hypergraph, such as its name, the number of vettittg (the num-
ber of hyperedgestHedgey and also the number of desired partitio#®drtg and allowed imbalancéJBfactor).
Next, prints information about the different bisections that were computed. In this example, since we asked for four
partitions, the algorithm computes a total of three bisections, and for each one prints information regarding the size
of the hypergraph that is bisected and the quality of the computed bisections. In particular, with respect to quality, it
prints the minimum and average number of cuts, and also the balance corresponding to the minimum cut.

The overall quality of the obtained partitioning is summarized by computing the following quality measures (in the
case of hypergraphs with weighted hyperedges, these definitions are extended in a straight-forward manner):

1. Hyperedge Cut This is the number of the hyperedges that span multiple partitions. The partitioning routines
in hMETIS try to directly minimize this quantity.

Ishmetis can handle non-power of 2 partitions, by performing unbalanced bisections. That is, for a 3-way partition it computes a 2-way partition
such that the first part hag 2 of the total number of vertices, and the other part h@s 1t then it bisects the first part into two equal-size parts,
each containing /B of the original number of vertices.

2Thehmetis program allows you to change this behavior.

2. Sum of External Degrees The external degrede(P;)| of a partitionP,, is defined as the number of hyper-
edges, that are incident but not fully inside this partition. The sum of the external degrdesaf/aartitioning,
is thenY K _, |E(P)].

3. Scaled Cost This is defined as

1 Zk: E(R)]
nk—1 & wR) ’
wherew(P)) is the sum of the vertex weights of partitiéh (note that if the vertices do not have weights, then
w(PR) = |R).

4. Absorption Thisis defined as
k

lenkh|l—1
2, T

i=1 ecEjenP, 0

whereE is the set of hyperedgele N P, | is the number of vertices of hyperedgthat are also in partitioR®,
and|e| is the number of vertices in the hyperedge

Following these quality measured)metis prints the size of the various partitions as well as the external degrees of
each partition. Finally, it shows the time taken by the various phases of the algorithm. All times are in seconds.

ﬁrompt% shmetis ibm02.hgr 4 5 \

HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information
Name: ibm02.hgr, #Vitxs: 19601, #Hedges: 19584, #Parts: 4, UBfactor: 0.05
Options: HFC, FM, Reconst-False, V-cycles @ End, No Fixed Vertices

Recursive Partitioning...

Bisecting a hgraph of size [vertices=19601, hedges=19584, balance=0.50]
The mincut for this bisection = 262, (average = 277.8) (balance = 0.46)

Bisecting a hgraph of size [vertices=9028, hedges=8501, balance=0.50]
The mincut for this bisection = 186, (average = 241.4) (balance = 0.49)

Bisecting a hgraph of size [vertices=10573, hedges=10821, balance=0.50]
The mincut for this bisection = 192, (average = 193.5) (balance = 0.47)

Summary for the 4-way partition:

Hyperedge Cut: 619 (minimize)

Sum of External Degrees: 1305 (minimize)
Scaled Cost: 4.56e-06 (minimize)

Absorption: 19336.20 (maximize)

Partition Sizes & External Degrees:
4669[382] 4303[276] 5048[338] 5581[309]

Timing Information
Partitioning Time: 73.340sec
/O Time: 0.230sec

\ J

Figure 2: Output of shmetis for ibm02.hgr and a 4-way partition

3.2 hmetis

The programhmetis is invoked by providing 9 or 10 command line arguments as follows:

hmetis HGraphFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl
or
hmetis HGraphFile FixFile Nparts UBfactor Nruns CType RType Vcycle Reconst dbglvl

The meaning of the various parameters is as follows:

HGraphFile, FixFile, Nparts, UBfactor
The meaning of these parameters is identical to thosamietis.

Nruns This is the number of the different bisections that are performethiostis. It is a number greater or equal
to one, and instructsmetis to computeNrunsdifferent bisections, and select the best as the final solution.
A default value of 10 is used tshmetis.

Section 5.2.1 provides an experimental evaluation of the effect of Nruns in the quatiyay partition-
ings.

CType This s the type of vertex grouping scheme.(matching scheme) to use during the coarsening phase. It
is an integer parameter and the possible values are:

1 Selects the hybrid first-choice scheme (HFC). This scheme is a combination of the first-choice and
greedy first-choice scheme described later. This is the scheme usadeyis.

2 Selects the first-choice scheme (FC). In this scheme vertices are grouped together if they are presentin
multiple hyperedges. Groups of vertices of arbitrary size are allowed to be collapsed together.

3 Selects the greedy first-choice scheme (GFC). In this scheme vertices are grouped based on the first-
choice scheme, but the grouping is biased in favor of faster reduction in the number of the hyperedges
that remain in the coarse hypergraphs.

4 Selects the hyperedge scheme. In this scheme vertices are grouped together that correspond to entire
hyperedges. Preference is given to hyperedges that have large weight.

5 Selects the edge scheme. In this scheme pairs of vertices are grouped together if they are connected by
multiple hyperedges.

You may have to experiment with this parameter to see which scheme works better for the classes of
hypergraphs that you are using. Section 5.1.1 provides an experimental evaluation of the various values of
CType for a range of hypergraphs.

RType This is the type of refinement policy to use during the uncoarsening phase. Itis an integer parameter and
the possible values are:

1 Selects the Fiduccia-Mattheyses (FM) refinement scheme. This is the scheme sisetbtiy.

2 Selects the one-way Fiduccia-Mattheyses refinement scheme. In this scheme, during each iteration of
the FM algorithm, vertices are allowed to move only in a single direction.

3 Selects the early-exit FM refinement scheme. In this scheme, the FM iteration is aborted if the quality
of the solution does not improve after a relatively small number of vertex moves.

Experiments have shown that FM and one-way FM produce better results than early-exit FM. However,
early-exit FM is considerably faster, and the overall quality is not significantly worse. Section 5.1.2 pro-
vides an experimental evaluation of the various values of RType for a range of hypergraphs.

Vcycle This parameter selects the typebfcycle refinement to be used by the algorithm. Itis an integer parameter
and the possible values are:

Reconst

dbglvl

Does not perform any form &f -cycle refinement.

PerformsV -cycle refinement on the final solution of each bisection step. That is, only the best of the
Nrunsbisections are refined using-cycles. This is the options used blgmetis.

Performs/-cycle refinement on each intermediate solution whose quality is equally good or better than
the best found so far. That is, Bmetis computesNrunsbisections, for each bisection that matches or
improves the best one, it is also further refined usdiRgycles.

PerformsV -cycle refinement on each intermediate solution. That is, each one Nftmsbisections
is also refined usiny -cycles.

Experiments have shown that the second and third choices offer the best time/quality tradeoffs. If time is
not an issue, the fourth choiceeg, Vcycle = 3) should be used.

This parameter is used to select the scheme to be used in dealing with hyperedges that are being cut during
the recursive bisection. It is an integer parameter and the possible values are:

0

This scheme removes any hyperedges that were cut while constructing the two smaller hypergraphsin
the recursive bisection step. In other words, once a hyperedge is being cut, it is removed from further
consideration. Essentially this scheme focuses on minimizing the number of hyperedges that are being
cut. This is the scheme that is useddhymetis.

This scheme reconstructs the hyperedges that are being cut, so that each of the two partitions retain the
portion of the hyperedge that corresponds to its set of vertices.

Section 5.2.2 provides an experimental evaluation of the effect of Reconst in the quiityagfpartition-
ings.

This is used to requebMETIS to print debugging information. The value dlfglvlis computed as the sum
of codes associated with each optiorhafetis. The various options and their values are as follows:

o A~ N L O

Show no additional information.

Show information about the coarsening phase.
Show information about the initial partitioning phase.
Show information about the refinement phase.
Show information about the multiple runs.

16 Show additional information about the multiple runs.

For example, if we want to see all information about the multiple runs the valabgfl should be
8+ 16 = 24. Note that some of the options may generate a lot of output. Use them with caution.

Upon successful executiolmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actual partitioning is stored in a file né@regh-
File.part.Nparts whose format is described in Section 3.6. Figure 3 shows the outputetis for a 2-way partition.

3.3 khmetis

Thekhmetis program is invoked by providing 7 command line arguments as follows:

khmetis HGraphFile Nparts UBfactor Nruns CType OType Vcycle dbglvl

The meaning of the various parameters is as follows:

HGraphFile, Nparts, Nruns, CType, Vcycle, dbglvl
The meaning of these parameters is identical to thoseneftis.

ﬂrompt% hmetis ibm03.hgr 2 5 10 1 1 3 0 24 \

HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information
Name: ibm03.hgr, #Vixs: 23136, #Hedges: 27401, #Parts: 2, UBfactor: 0.05
Options: HFC, FM, Reconst-False, Always V-cycle, No Fixed Vertices

Recursive Partitioning...

Bisecting a hgraph of size [vertices=23136, hedges=27401, balance=0.50]

Cut of trial 0 979 [0.50]
Cut of trial 1: 957 [0.46]
Cut of trial 2: 979 [0.50]
Cut of trial 3: 982 [0.48]
Cut of trial 4: 1010 [0.47]
Cut of trial 5: 956 [0.46]
Cut of trial 6: 990 [0.50]
Cut of trial 7: 957 [0.46]
Cut of trial 8: 1142 [0.48]
Cut of trial 9: 956 [0.46]

The mincut for this bisection = 956, (average = 990.8) (balance = 0.46)

Summary for the 2-way partition:

Hyperedge Cut: 956 (minimize)

Sum of External Degrees: 1912 (minimize)
Scaled Cost: 7.18e-06 (minimize)

Absorption: 27029.76 (maximize)

Partition Sizes & External Degrees:
12419[956] 10717[956]

Timing Information
Partitioning Time: 85.190sec
/O Time: 0.280sec

\C J

Figure 3: Output of hmetis for ibm03.hgr and a 2-way partition

UBfactor This parameter is used to specify the allowed imbalance betweérpttitions. This is an integer greater
than 5 and specifies the allowed load imbalance as follows. A valbefaf UBfactorindicates that the
weight of the heaviest partition should not be more th#ngreater than the average weight. For example,
forb = 8, k = 5, and a hypergraph with vertices (each having unit vertex weight), the weight of the
heaviest partition will be bounded from above h@8x n/5. Note that this specification of the allowed
imbalance between thepartitions isdifferent from the specification used by eith&mmetis or hmetis.

OType This determines which objective function the refinement algorithm tries to minimize. It is an integer pa-
rameter and the possible values are:
1 Minimizes the hyperedge cut.
2 Minimizes the sum of external degrees (SOED).

This feature was introduced with version 1.5.3.

Upon successful executiokhmetis displays statistics regarding the quality of the computed partitioning and
the amount of time taken to perform the partitioning. The actual partitioning is stored in a file né@regh-
File.part.Nparts whose format is described in Section 3.6. Figure 4 shows the outgtliroétis for a 10-way
partitioning.

ﬂrompt% khmetis ibm04.hgr 10 10 10 11224 \

HMETIS 1.5.3 Copyright 1998, Regents of the University of Minnesota

HyperGraph Information
Name: ibm04.hgr, #Vitxs: 27507, #Hedges: 31970, #Parts: 10, UBfactor: 1.10
Options: HFC, Cut-minimization, V-cycle for Min

K-way Partitioning...

Partitioning a hgraph of size [vertices=27507, hedges=31970, balance=1.10]
Cut/SOED of trial 0: 3259 7333 [1.10]
Cut/SOED of trial 3498 7946 [1.09]
Cut/SOED of trial 3397 7728 [1.10]
Cut/SOED of trial 3192 7242 [1.10]
Cut/SOED of trial 3277 7283 [1.10]
Cut/SOED of trial 3314 7555 [1.07]
Cut/SOED of trial 3390 7554 [1.10]
Cut/SOED of trial 3414 7723 [1.06]
Cut/SOED of trial 3307 7357 [1.10]
Cut/SOED of trial : 3322 7433 [1.10]
The mincut for this partitioning = 3192, (average = 3337.0) (balance = 1.10)

oNORrWNE

Summary for the 10-way partition:

Hyperedge Cut: 3192 (minimize)

Sum of External Degrees: 7242 (minimize)
Scaled Cost: 1.06e-05 (minimize)

Absorption: 30250.46 (maximize)

Partition Sizes & External Degrees:
2504[701] 2796[515] 2728[634] 2836[1092] 3020[1007]
2686[794] 2662[549] 2706[740] 2906[508] 2663 702]

Timing Information
Partitioning Time: 136.720sec
/0O Time: 0.310sec

\ /

Figure 4: Output of khmetis for ibm04.hgr and a 10-way partition

Note thatkkhmetis should nevebe used to compute a bisectiar(, 2-way partitioning) as it produces worse results
thanhmetis. Furthermore, the quality of the partitionings producedkbgnetis for small values ok will be worse,
in general, than the corresponding partitionings computelrbgtis. However,khmetis is particularly useful for
computingk-way partitionings for relatively large values lof as it often produces better partitionings and it can also
enforce tighter balancing constraints.

3.4 Format of Hypergraph Input File

The primary input ohMETiS is the hypergraph to be partitioned. This hypergraph is stored in a file and is supplied to
hMETS as one of the command line parameters. A hypergiaph (V, EM) with V vertices ancE" hyperedges is
stored in a plain text file that contain&"| + 1 lines, if there are no weights on the vertices &80 + |V| + 1 lines
if there are weights on the vertices. Any line that starts with ‘%’ is a comment line and is skipped.

The first line contains either two or three integers. The first integer is the number of hyperépgife second
is the number of verticeg¥{|), and the third integeififf) contains information about the type of the hypergraph. In
particular, depending on the valuefait, the hypergrapld can have weights on either the hyperedges, the vertices,
or both. In the case thad is unweightedi(e., all the hyperedges and vertices have the same wefgfttls omitted.

10

After this first line, the remainingE"| lines store the vertices contained in each hyperedge—one line per hyperedge. In
particular, thath line (excluding comment lines) contains the vertices that are included in+tH8th hyperedge. This
formatis illustrated in Figure 5(a). Weighted hyperedges are specified as shown in Figure 5(b). The firstinteger in each
line contains the weight of the respective hyperedge. Note, hyperedge weights are integer quantities. Furthermore,
note that thédmt parameter is equal to 1, indicating the fact thiithas weights on the hyperedges. Finally, weights
on the vertices are also allowed, as illustrated in Figure 5(c). In this ¢dsdines are appended to the input file
containing the weight of thg/| vertices. Note that the value &htis equal to 10. As was the case with hyperedge
weights, vertex weights are integer quantities. Figure 5(d) shows the case when both the hyperedges and the vertices
are weightedfmtin this case is equal to 11.

Figure 5 shows th&lGraphFile expected byhMETS for the example hypergraphs shown in the figure. It shows
the four cases in which the hypergraph is unweighted, has weighted hyperedges, has weighted vertices and has both
hyperedges and vertices weighted. The hypergraph shown in Figure 5(a) has four unweighted hypetedges
andd. Number of vertices in the hypergraph is 7. When the hypergraph is unweighted, first lineHGtaphFile
contains two integers denoting the number of hyperedges and the number of the vertices in the hypergraph. After
that, each line corresponds to a hyperedge containing an entry for each vertex in the hyperedge. Hypergraph shown in
Figure 5(b) has hyperedge weights equal to 2, 3, 7, and 8 on each of the hypgredgendd respectively. For this
weighted hyperedges first line of thi&GraphFile consists of three integers. Third integer specify that the hyperedges
are weighted and is equal to 1. Each line corresponding to each hyperedge, has first entry equal to its weight. The
following entries corresponds to the vertices in the respective hyperedge. The case when both the vertices are weighted
fmtis equal to 10, and 7 lines corresponding to the 7 vertices are appended to the input file each containing weight
of the respective vertex. This is shown in Figure 5(c). Figure 5(d) shows the case when both the hyperedges and the
vertices are weighted.

3.5 Format of the Fix File

The FixFile is used to specify the vertices that are pre-assigned to certain partitions. In general, when computing a
k-way partitioning, up td sets of vertices can be specified, such that each set is pre-assigned to orepaitiions.

For a hypergraph withV | vertices, thé=ixFile consists of V| lines with a single number per line. Thtn line of the

file contains either the partition number to which thie vertex is pre-assigned to, or -1 if that vertex can be assigned

to any partition {;e., free to move). Note that the partition numbers start from 0.

3.6 Format of Output File

The output ohMETS is a partition file. The partition file of a hypergraph wiM| vertices, consists d¥/| lines with

a single number per line. Théh line of the file contains the partition number that itievertex belongs to. Partition
numbers start from 0. bo.graph is the name of the file storing the hypergraph, the partition for a 2-way partition
is stored in a file namefo.graph.part.2

4 hMEITS’s Library Interface

The hypergraph partitioning algorithms WMETIS can also be accessed directly using the stand-alone library
libhmetis.a . This library provides th&IMETIS_PartRecursive() andHMETIS_PartKway() routines. The first
routine corresponds to themetis whereas the second routine corresponds toktimaetis program. The calling
sequences and the description of the various parameters of these routines are as follows:

4.1 HMETIS PartRecursive

HMETIS_PartRecursive (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts,
int ubfactor, int *options, int *part, int *edgecut)

11

GraphFile

GraphFile GraphFile
4 7 10 4 7 11
12 212
17586 3175€6
56 4 856 4
2 3 4 72 34
5 5
1 1
8 8
7 7
3 3
9 9
3 3

(c) (d)

Figure 5: (a) HGraphFile for unweighted hypergraph, (b) HGraphFile for weighted hyperedges, (c) HGraphFile for weighted ver-
tices, and (d) HGraphFile for weighted hyperedges and vertices

12

nvtxs, nhedges
The number of vertices and the number of hyperedges in the hypergraph, respectively.

vwgts An array of sizenvtxsthat stores the weight of the vertices. Specifically, the weight of verigestored at
vwgtsj]. If the vertices in the hypergraph are unweighted, thegtscan be NULL.

eptr, eind
Two arrays that are used to describe the hyperedges in the graph. The firstpimay of sizenhedges+1
and it is used to index the second areagdthat stores the actual hyperedges. Each hyperedge is stored as
a sequence of the vertices that it spans, in consecutive locati@isdnSpecifically, the th hyperedge is
stored starting at locatiogind[eptr[i]] up to (but not includinggind[eptrfi + 1]] . Figure 6 illustrates this
format for a simple hypergraph. The size of the agmddepends on the number and type of hyperedges.
Also note that the numbering of vertices starts from 0.

hewgts An array of sizenhedgeshat stores the weight of the hyperedges. The weight of thgeredge is stored
at locationhewgts[]. If the hyperedges in the hypergraph are unweighted, hlergtscan be NULL.

nparts The number of desired partitions.

ubfactor This is the relative imbalance factor to be used at each bisection step. Its meaning is identical to the
UBfactorparameter ofhmetis, andhmetis described in Section 3.

options This is an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. dptions[0]=1, then the remaining elements optionsare
interpreted as follows:

options[1] Determines the number of different bisections that is computed at each bisection step of the
algorithm. Its meaning is identical to théruns parameter ohmetis (described in Sec-
tion 3.2).

options[2] Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning is identical to thETypeparameter ohmetis (described in Section 3.2).

options[3] Determines the scheme to be used for refinement during the uncoarsening phase. Its meaning
is identical to theRTypeparameter ohmetis (described in Section 3.2).

options[4] Determines the scheme to be usedferycle refinement. Its meaning is identical to the
Vcycleparameter ohmetis (described in Section 3.2).

options[5] Determines the scheme to be used for reconstructing hyperedges during recursive bisections.
Its meaning is identical to thReconsparameter ohmetis (described in Section 3.2).

options[6] Determines whether or not there are sets of vertices that need to be pre-assigned to certain
partitions. A value of 0 indicates that no pre-assignment is desired, whereas a value of 1
indicates that there are sets of vertices that need to be pre-assigned. In this later case, the pa-
rametempart is used to specify the partitions to which vertices are pre-assigned. In particular,
part[i] will store the partition number that vertéxs pre-assigned to , andl if it is free to
move.

options[7] Determines the random seed to be used to initialize the random number gendstiiof
A negative value indicates that a randomly generated seed should be used (default behavior).

options[8] Determines the level of debugging information to be printed\NdfiS. Its meaning is iden-
tical to thedbglvlparameter ohmetis (described in Section 3.2). The default value is 0.
part This is an array of sizavtxsthat returns the computed partition. Specificgblgrt[i] contains the partition
number in which vertek belongs to. Note that partition numbers start from O.

Note that ifoptions[6] = 1, then the initial values opart are used to specify the vertex pre-assignment
requirements.

13

edgecut

Hyperedges

eptr: 0126|912

eind: |0]2]0]1]3]4]3]4]6]|2]5]6]

Figure 6: The eptr and eind arrays that are used to describe the hyperedges of the hypergraph.

This is an integer that returns the number of hyperedges that are being cut by the partitioning algorithm.

4.2 HMETIS_Partkway

HMETIS_PartkKway (int nvtxs, int nhedges, int *vwgts, int *eptr, int *eind, int *hewgts, int nparts,

int ubfactor, int *options, int *part, int *edgecut)

nvtxs, nhedges, vwgt, eptr, eind, hewgts, nparts

ubfactor

options

part

The meaning of these parameters is identical to meaning of the corresponding parameters of
HMETIS_PartRecursive.

This is the maximum load imbalance allowed in th&vay partitioning. Its meaning is identical to the
UBfactorparameter okhmetis, Section 3.3.

This is an array of 9 integers that is used to pass parameters for the various phases of the algorithm. If
options[0]=0 then default values are used. dptions[0]=1, then the remaining elements optionsare
interpreted as follows:

options[1l] Determines the number of differdatvay partitionings that is computed. Its meaning is
identical to theNrunsparameter okhmetis (described in Section 3.3).

options[2] Determines the scheme to be used for grouping vertices during the coarsening phase. Its
meaning is identical to th€Typeparameter okhmetis (described in Section 3.3).

options[3] Determines which objective function the partitioning algorithm tries to minimize. Its meaning
is identical to theDTypeparameter okhmetis (described in Section 3.3). The default value
is 1 (i.e., minimize the hyperedge cut).

options[4] Determines the scheme to be used\fetycle refinement. Its meaning is identical to the
Vcycleparameter okhmetis (described in Section 3.3).

options[5] Not used.
options[6] Not used.

options[7] Determines the random seed to be used to initialize the random number genddif
A negative value indicates that a randomly generated seed should be used (default behavior).

options[8] Determines the level of debugging information to be printed\NdfiS. Its meaning is iden-
tical to thedbglvl parameter okhmetis (described in Section 3.3). The default value is 0.

This is an array of sizavtxsthat returns the computed partition. Specificgblgrt[i] contains the partition
number in which vertek belongs to. Note that partition numbers start from 0.

14

edgecut This is an integer that depending on the valu@ptions[3] returns either the number of hyperedges that
are being cut by the partitioning algorithm or the sum of the external degrees of the partitioning.

5 General Guidelines on How to Use hM EINS

5.1 Selecting the Proper Parameters

The hmetis program allows you to control the multilevel hypergraph bisection paradigm by providing a variety of
algorithms for performing the various phases. In particular, it allows you to control:

1. How the vertices are grouped together during the coarsening phase. This is done by uSihgptparameter.

2. How the quality of the bisection is refinement during the uncoarsening phase. This is done by uRifygpthe
parameter.

In designing theshmetis program, we had to make some choices for the above parameters. However, depending on
the classes of the hypergraphs that are partitioned, these default settings may not necessarily be optimal. You should
experiment with these parameters to see which schemes work better for your classes of problems.

In this section, we present an experimental evaluation of the various choic€Sfpeand RTypefor various
hypergraphs taken from the circuits of the ACM/SIGDA [3] and ISPD98 [1] benchmarks. The characteristics of these
circuits are shown in Table 1. We hope that these experiments will help in illustrating the various quality and/or
runtime trade-offs that are present in the various choices.

Circuit No. of Vertices | No. of Hyperedges|
(i.e., cells + pins) (i.e., nets)
avgsmall 21918 22124
avqglarge 25178 25384
industry2 12637 13419
industry3 15406 21923
$35932 18148 17828
$38417 23949 23843
$38584 20995 20717
golem3 103048 144949
ibm01 12752 14111
ibm03 23136 27401
ibm05 29347 28446
ibm07 45926 48117
ibm09 53395 60902
ibm11 70558 81454
ibm13 84199 99666
ibm15 161570 186608
ibm17 185495 189581

Table 1: The characteristics of the various circuits used in the study of the various parameters of hMETS.

5.1.1 Effect of the CType Parameter

Table 2 shows the quality of the bisections producelrgtis for different vertex grouping schemes. The experiments
in this table were performed by setting the remaining parametdmmefis as follows: Nruns = 2Q UBfactor = 5,
RType = 1Vcycle = 1, andReconst = 0 For each different vertex grouping scheme, the column labeled “Min” shows
the minimum cut out of the 20 trials, the column labeled “Avg” shows the average cut over all 20 trials, and the column
labeled “Time” shows the overall amount of time requiredhoyetis (i.e., the time to perform the 20 trials and the
final V-cycle refinement).

As we can see from this table, different vertex grouping schemes perform better for different circuits. In general,
theHFC scheme (that is used by defaulsihmetis) performs reasonably well for all the circuifsg(, it is within a few
percentage points of the best scheme), but it is not necessarily the best. As this table suggests, one should experiment

15

with the different vertex grouping schemes, to determine which one is suited for the classes of problems that she/he
may have.

5.1.2 Effect of the RType Parameter

Table 3 shows the quality of the bisections producedhimetis for different refinement schemes. The experiments

in this table were performed by setting the remaining parametemmefis as follows: Nruns = 2Q UBfactor = 5,

CType =1 Vcycle = 1, andReconst = 0 For each different refinement scheme, the column labeled “Min” shows the
minimum cut out of the 20 trials, the column labeled “Avg” shows the average cut over all 20 trials, and the column
labeled “Time” shows the overall amount of time requiredhoyetis (i.e., the time to perform the 20 trials and the
final V-cycle refinement).

As we can see from this table, the three refinement schemes offer different quality/time trade-offs. In general, the
EEFM scheme requires half the time required by either the FM or the 1WayFM schemes. Moreover, the quality of
the bisections produced by EEFM, are in general only slightly worse (if any) than those produced by FM or 1WayFM.
For example, in the 17 circuits of Table 3, EEFM performed significantly worse than the other two schemes only for
ibm15 From the remaining two refinement schemes, the results of Table 3 suggest that they perform similarly with
1wayFM producing slightly better results and requiring somewhat less time.

5.2 Computing a k-way Partitioning

hMETIS can compute &-way partitioning (fork > 2) using either the multilevel recursive bisection paradigm (im-
plemented byhmetis) or the multilevelk-way partitioning paradigm (implemented kimetis). In our discussion
of khmetis (Section 3.3), we already provided some general guidelines as to when someone shéulhliser
khmetis. In general, whek is large €.g, k > 16) khmetis should be preferred ovéametis, as it is faster and en-
forces load imbalance constraints that are more natural than the bisection imbalance constraints enfonegid.by

In this section we focus our discussion on udimgetis to compute &-way partitioning. In particular, besides the
CTypeandRTypeparameters discussed in Section 5.1, the quality of the reslivway partitioning also depends on
the choice of thdNrunsandReconsparameters.

5.2.1 Effect of the Nruns Parameter

Recall from Section 3.2, théMrunsis the number of different bisections that are computedhimgtis during each

recursive bisection level. Out of theblunsbisections, the one with the smallest cut is selected and used to bisect

the hypergraph. For example,Nfruns = 2Q then in the case of a 4-way partitioningnetis will first compute 20
bisections of the original hypergraph, and split it into two sub-hypergraphs based on the best bisection. Then, it will
compute 20 bisections of each one of the two sub-hypergraphs, and again select the best solution for each one of the
two sub-hypergraphs. However, an alternate approach of computing the 4-way patrtitioning (using the same overall
number of different bisections), is to ddtuns = 5 run hmetis four times, and select the best 4-way partition out of

these four solutions. That is, instead of running

hmetis xxx.hgr 4 52011100

we can run
hmetis xxx.hgr 4 5511100
hmetis xxx.hgr 4 5511100
hmetis xxx.hgr 4 5511100
hmetis xxx.hgr 4 5511100

and select the best solution. The overall amount of time for both approaches should be comparable (even though the
second approach will be somewhat slower as the amount of time it spe¥idsyicle refinement is four times higher).
However, the quality of the solution obtained from the second approach may be better.

16

LT

HFC, CType=1 FC, CType=2 GFC, CType=3 HEDGE, CType=4 EDGE, CType=5
Circuit Min Avg Time Min Avg Time | Min Avg Time | Min Avg Time Min Avg Time
avgsmall 127 145.2 70.48 [131 157.4 81.27 | 127 145.6 6793 127 163.8 | 111.52| 127 174.3 96.99
avglarge 127 152.2 90.69 | 127 159.8 93.41 | 127 133.9 78.24 | 127 163.5| 134.92| 127 181.5| 105.65
industry2 | 163 | 217.2 67.8 183 | 224.1 68.66 | 162 | 2125 60.38 | 172 | 226.4 7591 | 170 | 228.7 70.85
industry3 | 255 | 267.1 97.46 | 249 | 2659 | 106.74| 254 | 273.8 85.78 | 255 | 2749 | 121.38| 255 | 289.2| 109.94
$35932 43 43.6 46.18 43 43.4 46.81 73 73.0 41.69 43 51.4 61.50 41 47.2 48.43
$38417 49 51.8 59.83 50 51.5 61.96 49 51.4 55.88 50 69.8 90.20 50 74.5 79.03
$38584 48 49.0 66.45 48 48.6 66.68 48 50.0 63.69 48 56.6 91.68 48 59.4 75.26
golem3 1333 | 1357.2 | 749.55| 1336 | 1354.5| 805.76 | 1339 | 1420.2 | 900.33 | 1485 | 1846.5| 1518.37 | 1642 | 2159.7 | 1582.20
ibmO1 181 214.2 7466 | 180 | 193.0 7858 181 | 2417 7428 181 | 2525 93.26 | 181 194.7 69.47
ibm03 956 | 1017.3| 216.21| 952 | 1022.4| 223.65| 978 | 1153.4| 209.34| 962 | 1045.0| 295.90(961 | 1051.3| 283.78
ibm05 1715 | 1809.7 | 321.89| 1723 | 1792.0| 300.06 | 1738 | 1808.0 | 355.94 | 1747 | 1856.6 | 474.70 | 1784 | 1892.5| 434.22
ibmO7 851 948.1| 62645 876 | 996.6 | 569.90| 853 | 948.1| 603.37| 896 | 980.2| 63490 852 914.0 | 629.22
ibm09 638 | 704.9| 484.33| 637 | 6941 | 47496 629 | 6755| 41291 636 | 770.0| 597.89| 648 | 718.2| 554.23
ibm11 960 | 1159.2 | 848.06 | 960 | 1051.5| 741.36| 965 | 1184.8| 744.90| 1007 | 1197.2| 1168.02 982 | 1221.1| 925.57
ibm13 869 930.2 | 939.98| 861 | 897.9| 1002.63| 833 | 935.1| 1073.89| 836 | 1063.3| 1304.32| 834 | 987.4| 1115.54
ibm15 2624 | 3058.1 | 2459.89 | 2625 | 2932.7 | 2059.90 | 2753 | 3488.4 | 1903.85| 2676 | 3190.6 | 2732.28 | 2732 | 3241.8 | 2609.96
ibm17 2248 | 2371.5| 2643.27 | 2220 | 2317.1 | 2536.81 | 2324 | 2507.7 | 2358.99 | 2254 | 2457.4 | 2848.69 | 2295 | 2487.6 | 2985.52

Table 2: The performance achieved by different vertex grouping schemes (i.e., different values of CType). All the results correspond to bisections computed by hmetis with Nruns =

20, UBfactor = 5, RType = 1, Vcycle = 1, and Reconst = 0. All times are in seconds on a Pentium Pro @ 200 Mhz

FM, RType=1 1wayFM, RType=2 EEFM, RType=3

Circuit Min Avg Time Min Avg Time Min Avg Time
avgsmall 127 | 154.2 69.97 | 127 | 148.1 7155 127 | 1438 55.51
avglarge 127 149.5 88.99 127 150.1 82.69 127 147.9 61.67
industry2 | 163 | 212.3 62.04| 165 | 2194 64.13 | 162 | 214.8 50.41
industry3 | 258 | 274.6 97.14 | 257 | 277.2 9430 | 241 | 271.2 76.88

$35932 43 43.4 47.53 43 43.5 51.00 43 43.5 38.19
s38417 49 51.4 62.14 49 51.1 64.50 49 52.2 4454
$38584 48 49.2 65.39 48 48.6 70.95 47 48.1 51.84
golem3 1334 | 1352.1| 704.96| 1333 | 1350.0 | 683.02| 1336 | 1359.8 | 519.59
ibmO1 181 | 215.8 7091 180 | 226.9 64.84 | 181 | 220.4 48.48
ibm03 955 | 1015.5| 206.15| 956 | 1010.8| 173.65| 956 | 1034.8 | 14351
ibm05 1723 | 1804.2| 337.72| 1699 | 1765.8| 276.10| 1710 | 1791.9| 19541
ibm07 840 | 935.9| 547.09| 842 933.9| 506.66| 855 | 966.9| 299.25
ibm09 637 | 729.6 | 488.04| 629 699.8 | 477.79| 629 | 691.7| 289.51
ibm11 960 | 1122.9| 778.80| 960 | 1096.7| 690.31| 962 | 1103.0| 435.30
ibm13 859 | 944.3 | 1080.43| 851 963.4 | 755.76| 832 | 1029.8| 633.73

ibm15 2625 | 2975.0 | 2737.74| 2625 | 3044.8 | 2258.74| 2856 | 3082.4 | 1593.12
ibm17 2218 | 2406.9 | 3585.65| 2239 | 2380.7 | 3239.31| 2218 | 2383.4 | 2181.86

Table 3: The performance achieved by different refinement schemes (i.e., different values of RType). All the results correspond to
bisections computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, Vcycle = 1, and Reconst = 0. All times are in seconds
on a Pentium Pro @ 200 Mhz

Table 4 shows the quality of the 4- and 8-way partitionings produced by the above two approaches. As we can see
from this table, the second approach performs better in 16 cases, worse in 10 cases, and similarly for the remaining 8
cases.

4-way 8-way
Circuit Nruns=20 | 4xNruns=5 [Nruns=20| 4xNruns=5
avgsmall 228 228 370 370
avqglarge 228 228 372 372
industry2 372 355 636 644
industry3 775 744 1546 1502
35932 111 111 163 163
s$38417 99 95 162 151
s38584 131 129 203 205
golem3 2217 2224 2872 2856
ibm01 496 501 758 742
ibm03 1686 1687 2392 2410
ibm05 3081 3062 4468 4449
ibm07 2234 2183 3280 3255
ibm09 1709 1708 2606 2638
ibm11 2331 2368 3503 3445
ibm13 1663 1740 2858 2727
ibm15 5167 5190 6833 6324
ibm17 5442 5385 8723 8870

Table 4: The performance achieved for a k-way partitionings using a single k-way partitioning with Nruns = 20, and four k-way
partitionings with Nruns = 5.

5.2.2 Effect of the Reconst Parameter

Recall from Section 3.2, that tHiReconsparameter controls how a hyperedge that is part of the cut is reconstructed

in the sub-hypergraphs during recursive bisection. In particul&efonst = Qthen a hyperedge that is part of the

cut is removed entirely from the sub-hypergraphs, arildétonst = 1then the hyperedge is reconstructed in each
sub-hypergraph. This is done by creating two hyperedges (one for each partition), that span the vertices of the original
hyperedge that are assigned to each partition.

18

The choice for thd&Reconsparameter can affect the quality and runtime ofkh&ay partitioning. In particular, if
Reconst = Qthen the partitioning algorithm will run faster (as successive hypergraphs will have fewer hyperedges),
and if Reconst = 1 then the partitioning algorithm can potentially do a better job in reducing the sum of external
degrees (SOED) of tHeway partitioning.

This is illustrated in Table 5 that shows the effect of Beconsparameter on the cut, SOED, and runtime, for a
4-way partitioning. From this table we can see tRatonst = Qindeed results in a somewhat faster code, and that
Reconst = 1results in partitionings whose SOED is, in general, smaller. However, what is interesting with the results
of Table 5, is thaReconst = (results in partitionings that have smaller cut, compared to those obtained by setting
Reconst = 1So, if the objective is to obtainlkaeway partitioning that has the smaller cut, one shouldRiseonst = 0
However, if minimizing the SOED is the primary focus, one may want toResegonst = 1

No Reconstruction With Reconstruction
Reconst=0 Reconst =1
Circuit Cut | SOED Time Cut | SOED Time

avgsmall 228 568 111.92 | 246 567 118.28
avglarge 253 605 126.82 257 569 137.67
industry2 | 381 841 107.47 | 429 884 | 110.56
industry3 | 791 1704 | 17345| 821 1647 | 179.89
s$35932 111 232 72.05| 111 226 72.07
s38417 100 224 96.78 | 109 228 99.70
38584 130 294 | 106.35| 138 291 111.90
golem3 2222 4613 | 1162.19| 2239 4519 | 1226.58
ibm01 496 1003 | 12453 | 498 998 128.04
ibm03 1691 3685 | 285.15| 1717 3573 | 301.55
ibm05 3023 6701 | 459.12 | 3119 6611 | 532.71
ibm07 2212 4670 | 786.26 | 2253 4579 | 850.59
ibm09 1691 3485 | 790.61| 1768 3579 | 77453
ibm11 2339 4778 | 1155.37 | 2412 4862 | 1198.74
ibm13 1738 3770 | 1365.23 | 1755 3604 | 1398.37
ibm15 5103 | 10815 | 3339.88| 5299 | 10844 | 3069.92
ibm17 5398 | 11041 | 4420.78 | 5421 | 10984 | 4854.22

Table 5: The performance achieved for a 4-way partitionings using different settings for the Reconst parameter. All the results
correspond to 4-way partitioning computed by hmetis with Nruns = 20, UBfactor = 5, CType = 1, RType = 1, and Vcycle = 1. All
times are in seconds on a Pentium Pro @ 200 Mhz

6 System Requirements and Contact Information

hMETS has been written in C and it has been extensively tested on Sun, SGI, Linux, and IBM. Even tidEgh,
contains no known bugs, it does not mean that it is bug free. If you find any problems, please send email to
metis@cs.umn.edwith a brief description of the problem. Also, any future updateésMdliS will be made available

on WWW athttp://www.cs.umn.edu/"metis

References

[1] Chalres Alpert. The ISPD98 circuit benchmark suitePhoc. Intl. Symposium of Physical Desjdir998.

[2] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitiomirtggration, the VLSI Journal
19(1-2):1-81, 1995.

[3] F. Brglez. ACM/SIGDA design automation benchmarks: Catalyst or anathéfteR Design & Test10(3):87—
91, 1993. Available on the WWW &itttp://visicad.cs.ucla.edu/"cheese/benchmarks.htmi

[4] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network partitionis. Poc. 19th
IEEE Design Automation Conferengeages 175-181, 1982.

19

[5] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad Mobasher. Clustering based on association rule
hypergraphs. IProc. of Workshop on Research Issues on Data Mining and Knowledge Discb96i

[6] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report
SAND93-1301, Sandia National Laboratories, 1993.

[7] G. Karypis and V. Kumar. Multilevek-way hypergraph partitioning. Technical Report TR 98-036, Department
of Computer Science, University of Minnesota, 1998.

[8] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular grapfmurnal of Parallel and
Distributed Computing48(1):96-129, 1998. Also available on WWW at URL http://www.cs.umn.edu/ karypis.

[9] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computind 998 (to appear). Also available on WWW at URL
http://www.cs.umn.edu/"karypis. A short version appears in Intl. Conf. on Parallel Processing 1995.

[10] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Appli-
cation in visi domain. IrProceedings of the Design and Automation Confereh8@7.

[11] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Ap-
plication in visi domain.IEEE Transactions on VLSI Systeri898 (to appear). A short version appears in the
proceedings of DAC 1997.

[12] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphe.Bell System Technical
Journal, 49(2):291-307, 1970.

[13] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for declustering problmes. Technical Re-
port TR 94-18, University of Minnesota, Department of Computer Science, Minneapolis, MN, 1994. Accepted
in Information Systems Journal.

20

