Computer Architecture:
SIMD /Vector/GPU

Prof. Onur Mutlu (edited by seth)
Carnegie Mellon University

Vector Processing:
Exploiting Regular (Data) Parallelism

Data Parallelism

Concurrency arises from performing the same operations
on different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits instruction-level parallelism
o Multiple instructions concurrent: instructions happen to be the same

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space
Multiple processing elements

Time-space duality
o Array processor: Instruction operates on multiple data
elements at the same time

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps

Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR

PEOJ | PE1] | PE2] | PE3 LD | JADD| IMUL] | ST

Instruction Stream Same op @ same time

Different ops @ time

LD VR € A[3:0] (oo Lp1 [LD2 LDJ LDO
ADD VR € VR, 1 (‘
; ADO| AD1 |[AD2 AD3
MUL VR € VR, 2 LD1| ADO
ST A[3:0] € VR MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 (Lp3| AD2 [Mu1 sTO)
——
Different ops @ same space AD3 MUZ ST1
MU3 ST2
Time Same op @ space ST3
Space Space >

SIMD Array Processing vs. VLIW

= VLIW

Frogman) dri2r3 | 4r5+4 | 62 | mul r7.r8.9

? dd r1.r2, |load r4, £ I8,

Counter a 1LIE,T. ﬁ 4, ro+: mg\rr I mgfr I
Instruction
Execution

PE PE PE PE

SIMD Array Processing vs. VLIW

= Array processor

Program| J
) add VR, VR, 1
Counter
VLEN =4
add VR[0],VR[0],1 add VR[1],VR[1],1 add VR[2].VR[2],1 add VR[3],VR[3],1
Instruction l |
Execution
PE PE PE PE

Vector Processors

= A vector is a one-dimensional array of numbers

= Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)
C[i] = (ALl + B[i]) / 2

= A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

= Basic requirements
o Need to load/store vectors - vector registers (contain vectors)
o Need to operate on vectors of different lengths - vector length
register (VLEN)
o Elements of a vector might be stored apart from each other in
memory > vector stride register (VSTR)

= Stride: distance between two elements of a vector

Vector Processors (1I)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined

o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies - no hardware interlocking
within a vector

o No control flow within a vector
o Known stride allows prefetching of vectors into cache/memory

Vector Processor Advantages

+ No dependencies within a vector
o Pipelining, parallelization work well
o Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
o Reduces instruction fetch bandwidth

+ Highly regular memory access pattern
o Interleaving multiple banks for higher memory bandwidth
a Prefetching

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

10

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 1!

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

12

Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK
Vector Mask Register (VMASK)

o Indicates which elements of vector to operate on

Vector Functional Units

Use deep pipeline (=> fast

clock) to execute element

operations VvV
L 1 2 3

Simplifies control of deep

Set b . . pipeline because elements in |
o Set by vector test instructions vector are independent Va
e.g., VMASK[i] = (V,[i] == 0) {E—
Maximum VLEN can be N \
o Maximum number of elements stored in a vector register
Voo M-bit wide vio _ M-bit wide _ Six stage multiply pipeline ik
Vo,1 Vi1 “ “
V3 <-vl *v2
VO,N-1 V1,N-1
13 Slide credit: Krste Asanovic 14
Vector Machine Organization (CRAY-1) Memory Banking

VECTOR REGISTERS

- CRAY-1
oz g Russell, “The CRAY-1
— | computer system,”
; CACM 1978.
[—‘«——,.nf ﬁ’:;un-a‘rlm

Scalar and vector modes

MEMORY] =) POINT |
i1 i
1 5 —
— {
T

1| 8 64-element vector
registers
- T 64 bits per element
= 16 memory banks
i 8 64-bit scalar registers

8 24-bit address registers

5
FUNCTIONAL UNITS

15

Example: 16 banks; can start one bank access per cycle
Bank latency: 11 cycles

Can sustain 16 parallel accesses if they go to different banks

Bank Bank Bank |sssssssssssssssssssnnnss Bank
0 1 2 15

[vioH] [WH A [WOH A (o A

A a A a

Data bus
A 4 \ 4 \ 4 A 4

a

Address bus

| | cPu

Slide credit: Derek Chiou 16

Vector Memory System

Vector Registers

Address
Generator +

Memory Bank

Slide credit: Krste Asanovic 17

Scalar Code Example

For | = 0 to 49
o C[i] = (A[i] +BJ[i]) /2

Scalar code
MOVI RO = 50 1
MOVARL1 =A 1 304 dynamic instructions
MOVAR2 =B 1
MOVAR3 =C 1
X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
LD R5 = MEM[R2++] 11
ADD R6 = R4 + R5 4
SHFRR7 =R6 >>1 1
ST MEM[R3++] = R7 11
DECBNZ --RO, X 2 ;decrement and branch if NZ

18

Scalar Code Execution Time

Scalar execution time on an in-order processor with 1 bank
o First two loads in the loop cannot be pipelined: 2*11 cycles
o 4 + 50*40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved)

o First two loads in the loop can be pipelined
o 4 + 50*30 = 1504 cycles

Why 16 banks?
a 11 cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

19

Vectorizable Loops

A loop is vectorizable if each iteration is independent of any
other

For 1 =0 to 49

a C[i] = (A[i] + B[i]) / 2
Vectorized loop:
MOVI VLEN = 50

MOVI VSTR =1
VLD VO = A
VLD V1 =8B

VADD V2 = V0 + V1
VSHFR V3 =V2 >>1
VST C=V3

7 dynamic instructions

1

1

11 +VLN-1
11 +VILN-1
4+VLN-1
1+VLN-1
11 +VLN-1

20

Vector Code Performance

No chaining

o i.e., output of a vector functional unit cannot be used as the
input of another (i.e., no vector data forwarding)

One memory port (one address generator)
16 memory banks (word-interleaved)

11 1 49 1 49

49 1 49 1 49

Vo=AD.49] | vi=B.49 |

1
H}\] |
|

285 cycles

21

Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

LV vis 1 2 I3 alls
MULV v3,v1l,v2
ADDV V5N\V3, v4

Chain

Load
Unit

1

Memory

Slide credit: Krste Asanovic 22

Vector Code Performance - Chaining

Vector chaining: Data forwarding from one vector

functional unit to another

11 11 49 11

49

These two VLDs cannot be
pipelined. WHY?

182 cycles pipelined. WHY?

Strict assumption:
Each memory bank

%

49 has a single port
| (memory bandwidth
i | bottleneck)
1 4o
é 11 49

VLD and VST cannot be (/£

23

Vector Code Performance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank
11 1" 49

] |
T |

Y " 49

e

4 49

79 cycles

24

Questions (I)

What if # data elements > # elements in a vector register?

o Need to break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector strip-mining

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Use indirection to combine elements into vector registers
o Called scatter/gather operations

25

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
ALi] = BLil + C[DLi1]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV VA, rA # Store result

26

Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse matrices

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Index Vector Data Vector Equivalent
1 3.14 3.14
3 6.5 0.0
7 71.2 6.5
8 2.71 0.0
0.0
0.0
0.0
71.2
2.7

27

Conditional Operations in a Loop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*bli]

goto loop

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 =B
VMASK = (VO = 0)
VMUL V1 = VO * V1
VST B = V1

o Does this look familiar? This is essentially predicated execution.
28

Another Example with Masking

for (i =0; i < 64; ++i)
if (a[i] >= b[i]) then c[i] = a[i]

else c[i] = b[i] Steps to execute loop
1. Compare A, B to get
A B VMASK VMASK
1 2 0
2 2 1 2. Masked store of Ainto C
3 2 1
4 10 0 3. Complement VMASK
5 4 0
0 -3 1 4. Masked store of B into C
6 5 1
-7 -8 1

29

Masked Vector Instructions

Simple Implementation Density-Time Implementation

— execute all N operations, turn off — scan mask vector and only execute
result writeback according to mask elements with non-zero masks
M[71=1 A[7] BI[7] M[7]=1
M[6]=0 A[6] BI[6] M[6]=0 s A[7] BT
M[5]=1 A[5] BI5] M[5]=1" i
M[4]=1 A[4] BI[4] M[4]=1 =L
M[3]=0 A[3] B[3] M[3]=0 R S
N =t
44 M[2]=0 a4l
M[1]=1 —
M[2]=0 | C[2] | M[0]=0
M[]=1 | C[1] Cr1l

— — Write data port

M[0]=0 — cro]

v
Write Enable Write data port

30

Slide credit: Krste Asanovic

Some Issues

= Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

= Storage of a matrix
o Row major: Consecutive elements in a row are laid out
consecutively in memory
o Column major: Consecutive elements in a column are laid out
consecutively in memory
o You need to change the stride when accessing a row versus
column

31

Mahrix rw el cadton

ALk B, bén m_ roumejer erde

A&. Boyo = Cogyro—(0ot prachts. of rows Jedvers._of- Priuts)

A: Joad Ao e o vedy rglsle— N1
o eath tmeyoi reed Fo- mtromert= e oddese by 1 to-vecesi e resd—

3 Erg-moitt Cusés hoe 6 shrde of 1
B. Licod Ao omte o veckerveasle N2

T2 Lot srme o recd o opnctrmeatk by 10
> Shride of 10

D;f'f;ﬂh}-' Jrtdes con lead Fo beonle confted=
=t Huw do you-mmmize {rerm?

Array vs. Vector Processors, Revisited

= Array vs. vector processor distinction is a “purist’s”
distinction

= Most “modern” SIMD processors are a combination of both
o They exploit data parallelism in both time and space

Remember: Array vs. Vector Processors

33

ARRAY PROCESSOR VECTOR PROCESSOR

PEO] | PE1] | PE2] | PE3 LD | JADD| IMUL] | ST

Instruction Stream Same op @ same time

Different ti
LD VR € A[3.0] (po| b1 o2 1pg Lpg PMErEToPe@time
ADD VR € VR, 1
' ADO| AD1 |AD2 AD3
MUL VR € VR, 2 LD1| ADO
ST A[3:0] € VR MUO| MU1 [MU2 MU3 LD2 | AD1 |MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
~——
Different ops @ same space AD3 JMUZ ST1
y MU3 ST2
Time Same op @ space ST3
Space: Space —>
34

Vector Instruction Execution

ADDV C,A,B
/'/ Execution using "~ Execution using N
one pipelined) four pipelined /)
\\\ ;functional unit /// . functlonal units 7
A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
R L JL = JL
| C[2] | \ C[8] | C[9] \C[lo] C[ll]
E— “‘ ! : g ! 0
cni | a1 | \0[5] / \crel | e |
e — . = . = - — - =
v v R RE R
c[o] c[o] C[1] C[2] C[3]

Vector Unit Structure

Functional Unit
s

Slide credit: Krste Asanovic 35

s; \‘\ “““ \x ss: \{ :“e“ “‘\
\ / \ / ;i | i \ / ;i \
Vector [[[[[[v
Registers
~ Elements O, Elements 1, Elements 2, Elements 3,
I~ 4,8, .. 5,9, .. 6, 10, ... 7,11, .
] oy]
x\ “s ‘\“ ss‘
) AN
Lane
v

Memory Subsystem

Slide credit: Krste Asanovic

36

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o example machine has 32 elements per vector register and 8 lanes
o Complete 24 operations/cycle while issuing 1 short instruction/cycle

Load Unit Multiply Unit Add Unit
load feTelele]®
ool Aaaaaa
time ooje/e/eeed|ajaaaa[ldd fmmm[EEE]EE
—\elee[e/e/e/e AlAlalala|a[a]l|mmnnnnnn
0|0|0]|0]0]¢ AAAalaaaalmmmmnnnn
Slolojolod A2 a2+ Nemnnnnnn
ololo]ololo]o]D]alalalala[l2dd faTE|E o E[EEE
ololololololo|olalalalalalalalk]mmmm|mmm|m
AlAlalalalala[aAln/mnn/nnnnn
Instruction SsEEEERE
Issue
Slide credit: Krste Asanovic 37

Automatic Code Vectorization

for (i=0; 1 < N; i++)

CLi]1 = ALi] + B[i];

Scalar Sequential Code

Vectorized Code

o
of

AN
Time

Vector Instruction

m i Vectorization is a compile-time reordering of
\ ! operation sequencing
! = requires extensive loop dependence analysis
store :
e ereerreneenereneanas . Slide credit: Krste Asanovic 38

Vector/SIMD Processing Summary

= Vector/SIMD machines good at exploiting regular data-level
parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

= Performance improvement limited by vectorizability of code
o Scalar operations limit vector machine performance
o Amdahl's Law
o CRAY-1 was the fastest SCALAR machine at its time!

= Many existing ISAs include (vector-like) SIMD operations
o Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

39

SIMD Operations in Modern ISAs

Intel Penttum MMX Operations

= lIdea: One instruction operates on multiple data elements
simultaneously

o Ala array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

E|3 T T T T 11 s[‘?' ﬂ No VLEN register
o Opcode determines data type:
8 8-bit bytes

63 16 15 o .

| | ; [| 4 16-bit words

® 2 32-bit doublewords

o s o T 1 64-bit quadword

|

© Stride always equal to 1.

63 T

/ Peleg and Weiser, “MMX Technology

@ Extension to the Intel Architecture,”

Figure 1, MMX technology data types: packed byte {a), IEEE Micro, 1996.

packed word (b), packed doubleword (c), and quadword (d)

41

MMX Example: Image Overlaying (I)
i 2 e

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQS MM1, MM3

MM|| Bue | Bue | Bue | Bue | Bue | Bue BIHEJ_BIUP. J

M3 X7i=bluo | Xet=blue | X5=blue | Xd-biue | Xat-bluo|X2\-bise | X1-blue | X0-biue | "

mm1 | 00000 | 0x0000 | oxFFFF | oxFFFF | 0x0000 | 0x0000 [ourree [awrrre

Bitmask

Figure 9. Generating the selection bit mask.

42

MMX Example: Image Overlaying (II)

PAND MM, MM PANDN MM, MM
mMe[¥r [Yo | Yo | Yal Yo [Yo | ¥y | Yo | mmi1[0x0000]00000[0FFFF |0xFFFF 00000100000 0 FFFF D4FFF]
M1 [0:40000] 00000 0xFFFF [OxFFFF [0<0000] 00000 [UxFFRF [DxFFre] MM3]_ X, | Xo | Xo | %o | Xa | Xa | X4 | %o |
M4 [0:0000[0-0000] ¥y | Y |0-0000[0-0000] ¥y | Yo |mMmi[X, | X, [0-00000-0000] X, | X; [~00000x000d

POR M4, M1

el % TN [TV TV T % TV] Y]

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movg mma3, mem1 1 Load eight pixels from
waoman's image

Movg mrmd, mem2 " Load sight pixels from the
blossem image

Pempagb mmi, mm3

Pand mimd, mmi

Pardn i, mimd

Por mmd, mm1

Figure 11. MMX code sequence for performing a condi-

tional select.

43

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT) ‘

High-Level View of a GPU

(PC, Mask) ‘

Concept of “Thread Warps” and SIMT

= Warp: A set of threads that execute the same instruction
(on different data elements) - SIMT (Nvidia-speak)

= All threads run the same kernel
= Warp: The threads that run lengthwise in a woven fabric ...

I-Cache
Shader| |Shader| |Shader| ,,, |Shader &
Core | | Core || Core Core l Decade J _.-~| | _Thread Warp 3
t 3 t 3 H r T 2 Ea i [F1C - }L_Thread Warp 8
~ Interconnection Network ‘ \ ! E’_i’ g’ fg_” é’ ! Thread Warp /./' :
t t Vol el e le e Scalar| Scalar| Scalar Scalar] A ThreadIWarp 7 |
- ' ' ThreaqThreaqThread+ « « | Threac :
Memory | | Memory Memory : -ge -%:! -§! -8; ! W X »; 7 il vy
|Controller| |Controller Controller| SEREIRE AN : ‘ SIMD Pipeline |
‘t t s oo NEARCERCARL :
SIMD Executi
[GDDR3 | [GDDRS | " GDDRS | e
45 46
Loop Iterations as Threads SIMT Memory Access

for (i=0; 1 < N; i++)
CLi1 = AL[i] + BLi];
Scalar Sequential Code

....................
04 e,

Vectorized Code

A
»
Time

......................

Vector Instruction

......................

Slide credit: Krste Asanovic 47

= Same instruction in different threads uses thread id to
index and access different data elements

Let’s assume N=16, blockDim=4 - 4 blocks

10 11 12 13 14 15

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

CPU code

for (i = 0; ii < 100; +++ii) {
CIii] = Al[ii] + BIiil;
}

\ 4

// there are 100 threads
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockldx.x + threadldx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;
}

—

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global__ add_matrix

(float *a, float *b, float *c, int N) {
inti = blockldx.x * blockDim.x + threadldx.x;
Int j = blockldx.y * blockDim.y + threadldx.y;
intindex =i+ j*N;
if i<N&&j<N)

c[index] = a[index]+b[index];

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock=>>(a, b, c, N);
}

Slide credit: Hyesoon Kim 50

Latency Hiding with “Thread Warps "

= Warp: A set of threads that
execute the same instruction ———= W 1o
. arps avaitlable
(on different data elements) || [TheadWan3}| P8 L g

[Thread Warp 7 | Dl
Thread Warp 7 SIMD Pipeline

= Fine-grained multithreading :

o One instruction per thread in
pipeline at a time (No branch
prediction)

o Interleave warp execution to
hide latencies

Warps accessing
memory hierarchy
Miss?

= Register values of all threads stay Thread Warp 1
in register file
= No OS context switching

= Memory latency hiding
o Graphics has millions of pixels

Slide credit: Tor Aamodt 51

Warp-based SIMD vs. Traditional SIMD

= Traditional SIMD contains a single thread
o Lock step

o Programming model is SIMD (no threads) - SW needs to know vector
length

o ISA contains vector/SIMD instructions

= Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)
o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different
warp) - programming model not SIMD

= SW does not need to know vector length
= Enables memory and branch latency tolerance
o ISAis scalar - vector instructions formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD
hardware

52

SPMD

Single procedure/program, multiple data
o This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements
o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

o Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD computer

53

Branch Divergence Problem in Warp-based SIMD

SPMD Execution on SIMD Hardware

o NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT")
execution

Thread Warp Common PC |
Thread|Thread | Thread | Thread
1 2 3 4

54

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD

GPU uses SIMD
pipeline to save area
on control logic.

o Group scalar threads into
warps

ERRREEY!
PP
P
b
RRRRREY!

Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

55

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

Stack
Reconv. PC Next PC Active Mask
TOS— - 1111
TOS—| E D 0110
B/1111 TOS— E 1001

Thread Warp [Common PC |

Thread|Thread | Thread | Thread

1 2 3 4
B @ D E |
e S S S
o o 00 : : :: :: : : :
I—>: —P:I —V:I—PI—VI—V:
| — i} =i > =8 = —
Lt Lol | e e (e
- > Time

Slide credit: Tor Aamodt 56

Dynamic Warp Formation

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warp at divergence

o Enough threads branching to each path to create full new
warps

AR ' AR R R
->

58

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

INNEERRY
NN REE
IR N
NRERERN
| IRERR !
I& [! }

Fung et al., “Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow,” MICRO 2007.
59

x/1111

Ay/1111
Legend
1> Execution of Warp x 1> Execution of Warp y
|_>| at Basic Block A |_>| at Basic Block A
121 121
D
A new warp created from scalar
E X/1110 % | threads of both Warp x and y
y/0011 — | executing at Basic Block D
x/1111
C':'ylllll
A A B BIC CUD DIE EVF F|IG G A A
1SS] N (s (e N e R
Baseline <IN B3 W00 NS00
IZHZH 2 W2 222 zzzl
- —— -~ > Time

Dynamic

IA IAI |
> 1= > > —->
Form ...I+II+I+++I
. et diEdl Bl Bd Bl B
Formation EIES B2 —> ||| > > ||

Slide credit: Tor Aamodt 60

Vi3 4o
¥y 4o
vy ¥
vy ¥

What About Memory Divergence?

Modern GPUs have caches

Ideally: Want all threads in the warp to hit (without
conflicting with each other)

Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

Need techniques to
o Tolerate memory divergence
o Integrate solutions to branch and memory divergence

61

NVIDIA GeForce GTX 285

= NVIDIA-speak:
o 240 stream processors
a “SIMT execution”

= Generic speak:
o 30 cores
o 8 SIMD functional units per core

NVIDIA GeForce GTX 285 “core”

Slide credit: Kayvon Fatahalian 02

U8 UE||\ueE | (OE
LB UE||\ueE| | OE

64 KB of storage
for fragment
contexts (registers)

V'S

= instruction stream decode

COm = SIMD functional unit, control

shared across 8 units

[J = multiply-add
B = multiply

= execution context storage

Slide credit: Kayvon Fatahalian 03

NVIDIA GeForce GTX 285 “core”

NVIDIA GeForce GTX 285

U8 | UuE||\geE | (OE
U8 | 4B | |\uBE | | OE

64 KB of storage
for thread contexts
(reqisters)

F S

= Groups of 32 threads share instruction stream (each group is
a Warp)

= Up to 32 warps are simultaneously interleaved
= Up to 1024 thread contexts can be stored

| I | — | — | —

I | | — | — | | —

| | | | — | — | —

| — I | | | — | —

[W W s I | s I]
There are 30 of these things on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian o4

Slide credit: Kayvon Fatahalian

65

