Computer Architecture:
Branch Prediction (II) and
Predicated Execution

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture

= These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 12: Predicated Execution

= Video of that lecture:
o http://www.youtube.com/watch?v=xtAlarYjg-M

http://www.youtube.com/watch?v=xtA1arYjq-M

l.ast Lecture

= Branch prediction

Today’s Agenda

Wrap up control dependence handling

State recovery mechanisms, interrupts, exceptions

Control Dependence Handling

Review: How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Review: Importance of The Branch Problem

Assume a 5-wide superscalar pipeline with 20-cycle branch resolution
latency

How long does it take to fetch 500 instructions?
o Assume no fetch breaks and 1 out of 5 instructions is a branch
o 100% accuracy

100 cycles (all instructions fetched on the correct path)
No wasted work

o 99% accuracy
100 (correct path) + 20 (wrong path) = 120 cycles
20% extra instructions fetched

o 98% accuracy
100 (correct path) + 20 * 2 (wrong path) = 140 cycles
40% extra instructions fetched

o 95% accuracy

100 (correct path) + 20 * 5 (wrong path) = 200 cycles
100% extra instructions fetched

Review: Local and Global Branch Prediction

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation

Review: Hybrid Branch Prediction in Alpha 21264

Program Clobal History

Counter |:|

Global
Predict

ff12

4,096
X

2 bits

[Global
Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

9

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

10

Review: Predicate Combining (nof Predicated Execution)

Complex predicates are converted into multiple branches
o if (@ ==Db) && (c < d) && (a > 5000)) { ... }
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
Instruction

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

11

Predication (Predicated Execution)

Idea: Compiler converts control dependence into data

dependence = branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation

o Only instructions with TRUE predicates are committed (others turned into NOPs)

If (cond) {

¥

b=0;:

else {

}

b=1;

(normal branch code)

A

T/ <N
gio

W4
D

pl = (cond)
branch pl, TARGET

mov b, 1
imp JOIN

TARGET:
mov b, 0

add x, b, 1

(predicated code)

A
B
C
D

pl = (cond)

(Ipl) mov b, 1

(pl) mov b, 0

add x,b, 1

12

Conditional Move Operations

Very limited form of predicated execution

CMOV R1 €« R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

13

Review: CMOV Operation

Suppose we had a Conditional Move instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==5){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOV !Icondition, b < 3;

14

Predicated Execution (1I)

= Predicated execution can be high performance and energy-

efficient
A

C B
D
-
=

Predicated Execution
Fetch Decode Rename Schedule RegisterRead Execute

/700

Branch Prediction
Fetch Decode Rename Schedule RegisterRead Execute

Pipeline flush!!

Predicated Execution (I11)

Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency
+ Can move instructions more freely within predicated code

Disadvantages:

-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch
behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches
-- Loop branches?

16

Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <—cmp
br p2 elsel
“Teol plthenl
o3 joinl
s) Jromn
Tor T p2 else?
then? loin2
» joinl
join2

Conditional Execution in ARM ISA

Almost all ARM instructions can include an optional
condition code.

An instruction with a condition code is only executed if the
condition code flags in the CPSR meet the specified
condition.

18

Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 @ I Opcode Rn Rd OperandZ Data processing / PSR Transfer
Cond 000O0O0TCORA Rd Rn Rs 1001 Rm Multiply
Cond 0000 1ua RAHi RdLo Rs 100 1] Rm Long Multiply (v3M / v4 only)
Cond 00010 B0 Rn Rd 00001001 Em Swap
Cond 0]” 1 H y Bl w Rn Rd offset Load/Store Byte/Word
Cond 1 0 0OBF l.lI S| W Rn Register List Load/Store]‘v[ultiplc
Cond 00 dHUY 1 w Rn Rd Offsetl| 1] 8| H| 1| 0ffset2 | Halfword transfer : Immediate offset (v4 only)
Cond 00 0] H 0] W En Rd 000 01ls]H|IL Rm Halfword transfer: Register offset (w4 only)
Cond 10 1 4 offset Branch
cond 0001|001 111(1111{1110001 Rn Branch Exchange (v4T only)
Cond 110dH Lﬂ NI W Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 op1 CRn CRd CPNum | Op2 | 0| CRm Coprocessor data operation
Cond 1110 opl CRn Rd CPNum | op2 |1| CRm Coprocessor register transfer
Cond | 1111 SWI Number Software interrupt

L

19

Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
élcllllllllllllllllllllllllllllll
on
I_'_l
.
0000 = EQ - Z set (equal) 1001 = LS - C clear or Z (set unsigned
0001 = NE - Z clear (not equal) lower or same)
) 1010 = GE - N set and V set, or N clear
0010 = I];Iifé];’e(ssor—sg 1?:; (unsigned and V clear (>or =)
. 1011 =LT - N setand V clear. or N clear
0011 = {_(;Zi I(;C - C clear (unsigned and V set (>)
0100 = MI -N set (negative) 1100 = GT - Z clear. and either N set and

V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0101 = PL - N clear (positive or

ZETO0)
0110 =VS -V set (overflow)
0111 =VC - V clear (no overflow)
1000 = HI - C set al}d Z clear

The ARM Instruction Set - ARM University Program - V1.0

Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:

— ADD r¥0,rl,xr2 ; rO = rl + r2 (ADDAL)
* To execute this only if the zero flag 1s set:
— ADDEQ r0O,rl,xr2 ; If zero flag set then...
;i «+. r0 = rl + r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

* For example to add two numbers and set the condition flags:

— ADDS r0O,rl,xr2 ; ¥rO = rl + xr2
; ... and set flags

The ARM Instruction Set - ARM University Program - V1.0

21

Conditional Execution in ARM ISA

No

Yes @\- No

rO=r0-r1

ri=r1-r0

The ARM Instruction Set - ARM University Program - V1.0

T3

%

Convert the GCD
algorithm given in this
flowchart into

1) “Normal™ assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

The only instructions you
need are CMP, B and SUB.

Conditional Execution in ARM ISA

“Normal’® Assembler

gcd cmp r0, rl
beq stop

blt
sub
bal
sub

bal

less
r0, r0, rl
gcd
less rl, rl, ro0
gcd

stop

;:reached the end?

:if r0 > ri

:;subtract rl1l from r0O

:subtract r0 from rl

ARM Conditional Assembler

gcd cmp r0, ril

subgt r0, roO,
sublt

bne

rl, rl,

ged

The ARM Instruction Set - ARM University Program - V1.0

:if r0 > ri
:subtract rl from rO
:else subtract r0 from ril

;sreached the end?

23

Idealism

Wouldn’ t it be nice

a If the branch is eliminated (predicated) when it will actually be
mispredicted

a If the branch were predicted when it will actually be correctly
predicted

Wouldn’ t it be nice
o If predication did not require ISA support

24

Improving Predicated Execution

Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

Wish Branches [Kim+, MICRO 2005]
o Solve 1 and partially 2 (for loops)

Dynamic Predicated Execution

o Diverge-Merge Processor [Kim+, MICRO 2006]
Solves 1, 2 (partially), 3

25

Wish Branches

The compiler generates code (with wish branches) that
can be executed either as predicated code or non-
predicated code (normal branch code)

The hardware decides to execute predicated code or
normal branch code at run-time based on the confidence of

branch prediction
Easy to predict: normal branch code
Hard to predict: predicated code

Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

26

Wish Jump/Join

Hoyihn Conflidiemee

O 0|UU >

pl = (cond)

(Ip1) mov b,1

A
V N\l
C B
pl = (cond)
branch pl, TARGET
mov b, 1
[mp JOIN
TARGET:
mov b,0

(p1) mov b,0

normal branch code

predicated code

C

D

A \wish jump

R\
Wish join

\ 4

C

G

D

pl=(cond)
wish.jump pl TARGET

(I1f1) mov b,1 i\QQ

wighsjoijoitp (1JOIGIN

TARGET:
(1) mov b,0

JOIN:

wish jump/join code

27

Wish Branches vs. Predicated Execution

Advantages compared to predicated execution

a

a

Reduces the overhead of predication

Increases the benefits of predicated code by allowing the compiler to
generate more aggressively-predicated code

Makes predicated code less dependent on machine configuration (e.g.
branch predictor)

Disadvantages compared to predicated execution

a

a

Extra branch instructions use machine resources

Extra branch instructions increase the contention for branch predictor table
entries

Constrains the compiler’s scope for code optimizations

28

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own registers, PC, GHR

-- Wasted work (and reduced performance) if paths merge
30

Dual-Path Execution versus Predication

Dual-path Predicated Execution
C B C B C B
D D D CFM CEM
\/
A 4 A 4 A 4 D
E E E
A 4 A 4 A 4 E
F F F
F

31

Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

32

Call and Return Prediction

.] Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
Return
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack = > 95% accuracy

33

Indirect Branch Prediction (I)

Register-incirect branches have multiple targets

br.cond TARGET A R1 = MEM[R2]
/ \ ? branch R1
,’// 'III \\\‘ \\\\§
TAR A+l y
° o8] 5]p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls

34

Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

35

[ssues in Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4

36

Issues in Branch Prediction (II)

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size ——»
BTB target Next Fetch

Return Address Stack target > > Address
Indirect Branch Predictor target —
Resolved target from Backend —

?7?77?

37

Complications 1n Superscalar Processors

“Superscalar” processors
0 attempt to execute more than 1 instruction-per-cycle
o must fetch multiple instructions per cycle

Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst
NnPC=PC+8
(case 2) One of the insts is a taken control flow inst

nPC = predicted target addr

NOTE both instructions could be control-flow; prediction based on
the first one predicted taken

If the 15t instruction is the predicted taken branch
-2 nullify 24 instruction fetched

38

Multiple Instruction Fetch: Concepts

e Fefd, 14 hﬂ”cyd(.

- Downside -
Fiynn's bettioncck.
If you fetoh | instloycle.
Yov canmnd- fm&ih > mst

D [E]W
FlD /oyole.
F|D w
D (E
L) —— e Lnd o
Twe maje gaovteches
1) VvLTw

Complle decides wined- nets.

—3 Sl hovhapre

2) Supo-scalor

|Aodome deteehs dopoedexies
Lohwoen mstwowns frot—

AT Jeboheo o e Sove. —

- ayole- . 39

Review of Last Few Lectures

Control dependence handling in pipelined machines
o Delayed branching
o Fine-grained multithreading

a Branch prediction
Compile time (static)
o Always NT, Always T, Backward T Forward NT, Profile based
Run time (dynamic)
0 Last time predictor
0 Hysteresis: 2BC predictor
0 Global branch correlation - Two-level global predictor
0 Local branch correlation = Two-level local predictor

o Predicated execution
o Multipath execution

40

