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A Note on This Lecture

= These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 12: Predicated Execution

= Video of that lecture:
o http://www.youtube.com/watch?v=xtAlarYjg-M



http://www.youtube.com/watch?v=xtA1arYjq-M

l.ast Lecture

= Branch prediction




Today’s Agenda

Wrap up control dependence handling

State recovery mechanisms, interrupts, exceptions



Control Dependence Handling




Review: How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)




Review: Importance of The Branch Problem

Assume a 5-wide superscalar pipeline with 20-cycle branch resolution
latency

How long does it take to fetch 500 instructions?
o Assume no fetch breaks and 1 out of 5 instructions is a branch
o 100% accuracy

100 cycles (all instructions fetched on the correct path)
No wasted work

o 99% accuracy
100 (correct path) + 20 (wrong path) = 120 cycles
20% extra instructions fetched

o 98% accuracy
100 (correct path) + 20 * 2 (wrong path) = 140 cycles
40% extra instructions fetched

o 95% accuracy

100 (correct path) + 20 * 5 (wrong path) = 200 cycles
100% extra instructions fetched



Review: Local and Global Branch Prediction

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation



Review: Hybrid Branch Prediction in Alpha 21264

Program Clobal History

Counter |:|

Global
Predict

ff12

4,096
X

2 bits

[Global
Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.
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How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)
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Review: Predicate Combining (nof Predicated Execution)

Complex predicates are converted into multiple branches
o if (@ ==Db) && (c < d) && (a > 5000)) { ... }
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
Instruction

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture
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Predication (Predicated Execution)

Idea: Compiler converts control dependence into data

dependence = branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation

o Only instructions with TRUE predicates are committed (others turned into NOPs)

If (cond) {

¥

b=0;:

else {

}

b=1;

(normal branch code)

A

T/ <N
gio

W4
D

pl = (cond)
branch pl, TARGET

mov b, 1
imp JOIN

TARGET:
mov b, 0

add x, b, 1

(predicated code)

A
B
C
D

pl = (cond)

(Ipl) mov b, 1

(pl) mov b, 0

add x,b, 1
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Conditional Move Operations

Very limited form of predicated execution

CMOV R1 €« R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)
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Review: CMOV Operation

Suppose we had a Conditional Move instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==5){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOV !Icondition, b < 3;
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Predicated Execution (1I)

= Predicated execution can be high performance and energy-

efficient
A

C B
D
-
=

Predicated Execution
Fetch Decode Rename Schedule RegisterRead Execute

/700

Branch Prediction
Fetch Decode Rename Schedule RegisterRead Execute

Pipeline flush!!




Predicated Execution (I11)

Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency
+ Can move instructions more freely within predicated code

Disadvantages:

-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch
behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches
-- Loop branches?
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Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <—cmp
br p2 elsel
“Teol plthenl
o3 joinl
s ) Jromn
Tor T p2 else?
then? loin2
» joinl
join2




Conditional Execution in ARM ISA

Almost all ARM instructions can include an optional
condition code.

An instruction with a condition code is only executed if the
condition code flags in the CPSR meet the specified
condition.
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Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 @ I Opcode Rn Rd OperandZ Data processing / PSR Transfer
Cond 000O0O0TCORA Rd Rn Rs 1001 Rm Multiply
Cond 0000 1ua RAHi RdLo Rs 100 1] Rm Long Multiply  (v3M / v4 only)
Cond 00010 B0 Rn Rd 00001001 Em Swap
Cond 0 ]” 1 H y Bl w Rn Rd offset Load/Store Byte/Word
Cond 1 0 0OBF l.lI S| W Rn Register List Load/Store ]‘v[ultiplc
Cond 00 dHUY 1 w Rn Rd Offsetl| 1] 8| H| 1| 0ffset2 | Halfword transfer : Immediate offset (v4 only)
Cond 00 0] H 0] W En Rd 000 01ls]H|IL Rm Halfword transfer: Register offset (w4 only)
Cond 10 1 4 offset Branch
cond 0001|001 111(1111{1110001 Rn Branch Exchange (v4T only)
Cond 110dH Lﬂ NI W Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 op1 CRn CRd CPNum | Op2 | 0| CRm Coprocessor data operation
Cond 1110 opl CRn Rd CPNum | op2 |1| CRm Coprocessor register transfer
Cond | 1111 SWI Number Software interrupt

L
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Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
élcllllllllllllllllllllllllllllll
on
I_'_l
.
0000 = EQ - Z set (equal) 1001 = LS - C clear or Z (set unsigned
0001 = NE - Z clear (not equal) lower or same)
) 1010 = GE - N set and V set, or N clear
0010 = I];Iifé];’e(ssor—sg 1?:; (unsigned and V clear (>or =)
. 1011 =LT - N setand V clear. or N clear
0011 = {_(;Zi I(;C - C clear (unsigned and V set (>)
0100 = MI -N set (negative) 1100 = GT - Z clear. and either N set and

V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0101 = PL - N clear (positive or

ZETO0)
0110 =VS -V set (overflow)
0111 =VC - V clear (no overflow)
1000 = HI - C set al}d Z clear

The ARM Instruction Set - ARM University Program - V1.0




Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:

— ADD r¥0,rl,xr2 ; rO = rl + r2 (ADDAL)
* To execute this only if the zero flag 1s set:
— ADDEQ r0O,rl,xr2 ; If zero flag set then...
;i «+. r0 = rl + r2

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set
by postfixing the instruction (and any condition code) with an “S”.

* For example to add two numbers and set the condition flags:

— ADDS r0O,rl,xr2 ; ¥rO = rl + xr2
; ... and set flags

The ARM Instruction Set - ARM University Program - V1.0
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Conditional Execution in ARM ISA

No

Yes @\- No

rO=r0-r1

ri=r1-r0

The ARM Instruction Set - ARM University Program - V1.0

T3

%

Convert the GCD
algorithm given in this
flowchart into

1) “Normal™ assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

The only instructions you
need are CMP, B and SUB.




Conditional Execution in ARM ISA

“Normal’® Assembler

gcd cmp r0, rl
beq stop

blt
sub
bal
sub

bal

less
r0, r0, rl
gcd
less rl, rl, ro0
gcd

stop

;:reached the end?

:if r0 > ri

:;subtract rl1l from r0O

:subtract r0 from rl

ARM Conditional Assembler

gcd cmp r0, ril

subgt r0, roO,
sublt

bne

rl, rl,

ged

The ARM Instruction Set - ARM University Program - V1.0

:if r0 > ri
:subtract rl from rO
:else subtract r0 from ril

;sreached the end?
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Idealism

Wouldn’ t it be nice

a If the branch is eliminated (predicated) when it will actually be
mispredicted

a If the branch were predicted when it will actually be correctly
predicted

Wouldn’ t it be nice
o If predication did not require ISA support
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Improving Predicated Execution

Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

Wish Branches [Kim+, MICRO 2005]
o Solve 1 and partially 2 (for loops)

Dynamic Predicated Execution

o Diverge-Merge Processor [Kim+, MICRO 2006]
Solves 1, 2 (partially), 3
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Wish Branches

The compiler generates code (with wish branches) that
can be executed either as predicated code or non-
predicated code (normal branch code)

The hardware decides to execute predicated code or
normal branch code at run-time based on the confidence of

branch prediction
Easy to predict: normal branch code
Hard to predict: predicated code

Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.
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Wish Jump/Join

Hoyihn Conflidiemee

O 0|UU >

pl = (cond)

(Ip1) mov b,1

A
V N\l
C B
pl = (cond)
branch pl, TARGET
mov b, 1
[mp JOIN
TARGET:
mov b,0

(p1) mov b,0

normal branch code

predicated code

C

D

A \wish jump

R\
Wish join

\ 4

C

G

D

pl=(cond)
wish.jump pl TARGET

(I1f1) mov b,1 i\QQ

wighsjoijoitp (1JOIGIN

TARGET:
(1) mov b,0

JOIN:

wish jump/join code
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Wish Branches vs. Predicated Execution

Advantages compared to predicated execution

a

a

Reduces the overhead of predication

Increases the benefits of predicated code by allowing the compiler to
generate more aggressively-predicated code

Makes predicated code less dependent on machine configuration (e.g.
branch predictor)

Disadvantages compared to predicated execution

a

a

Extra branch instructions use machine resources

Extra branch instructions increase the contention for branch predictor table
entries

Constrains the compiler’s scope for code optimizations
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How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)




Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own registers, PC, GHR

-- Wasted work (and reduced performance) if paths merge
30



Dual-Path Execution versus Predication

Dual-path Predicated Execution
C B C B C B
D D D CFM CEM
\/
A 4 A 4 A 4 D
E E E
A 4 A 4 A 4 E
F F F
F
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Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently
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Call and Return Prediction

. ] Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
Return
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack = > 95% accuracy
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Indirect Branch Prediction (I)

Register-incirect branches have multiple targets

br.cond TARGET A R1 = MEM[R2]
/ \ ? branch R1
,’// 'III \\\‘ \\\\§
TAR A+l y
° o8] 5]p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls
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Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses
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[ssues in Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4
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Issues in Branch Prediction (II)

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size ——»
BTB target Next Fetch

Return Address Stack target > > Address
Indirect Branch Predictor target —
Resolved target from Backend —

?7?77?
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Complications 1n Superscalar Processors

“Superscalar” processors
0 attempt to execute more than 1 instruction-per-cycle
o must fetch multiple instructions per cycle

Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst
NnPC=PC+8
(case 2) One of the insts is a taken control flow inst

nPC = predicted target addr

*NOTE* both instructions could be control-flow; prediction based on
the first one predicted taken

If the 15t instruction is the predicted taken branch
-2 nullify 24 instruction fetched
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Multiple Instruction Fetch: Concepts

e Fefd, 14 hﬂ”cyd(.

- Downside -
Fiynn's bettioncck.
If you fetoh | instloycle.
Yov canmnd- fm&ih > mst

D [E]W
FlD /oyole.
F|D w
D (E
L) —— e Lnd o
Twe maje gaovteches
1) VvLTw

Complle decides wined- nets.

—3 Sl hovhapre
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|Aodome deteehs dopoedexies
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Review of Last Few Lectures

Control dependence handling in pipelined machines
o Delayed branching
o Fine-grained multithreading

a Branch prediction
Compile time (static)
o Always NT, Always T, Backward T Forward NT, Profile based
Run time (dynamic)
0 Last time predictor
0 Hysteresis: 2BC predictor
0 Global branch correlation - Two-level global predictor
0 Local branch correlation = Two-level local predictor

o Predicated execution
o Multipath execution
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