Computer Architecture:
Out-of-Order Execution

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture

= These slides are partly from 18-447 Spring 2013, Parallel
Computer Architecture, Lecture 14: Out-of-order Execution

= Video of that lecture:
o http://www.youtube.com/watch?v=LU2W-YtyeEo

http://www.youtube.com/watch?v=LU2W-YtyeEo

Reading for Today

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

l.ast Lecture

State maintenance and recovery mechanisms
o Reorder buffer

o History buffer

o Future file

o Checkpointing

Interrupts/exceptions vs. branch mispredictions

Handling register vs. memory state

Today

= Out-of-order execution

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

Integer add

Integer mul

E|E |E |E
F ID FP mul Rﬁ{W

E|E|E|E|E|E |E|E

E | E|E|E|E|E|E|E]|..

Cache miss

Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 € R6, R7 ADD R1 € R6, R7
IMUL R5 <€ RG6, R8 IMUL R5 < R6, R8
ADD R7 € R3,R5 ADD R7 € R3,R5

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
a Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture

Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen THREE:

o 1.

a 2.

a 3.

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are
ready

o Problem: in-order dispatch (scheduling, or execution)
a Solution: out-of-order dispatch (scheduling, or execution)

Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

10

In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

F|D|E |E|E|E|R|W
F|D| STALL |E |R|W
F| STALL |[D|E |R|W
F|D|E |E |E|E W
F|D STALL R

Out-of-order dispatch + precise exceptions:

F |D|E

R

W

F |D

16 vs. 12 cycles

Py

Py
=

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R5 €< RG6, R8
ADD R7 € R3,R5

11

Enabling OoO Execution

1.

2.

3.

Need to link the consumer of a value to the producer

o Register renaming: Associate a “tag” with each data value
Need to buffer instructions until they are ready to execute

o Insert instruction into reservation stations after renaming
Instructions need to keep track of readiness of source values

o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU

12

Tomasulo’s Algorithm

000 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

a Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Variants used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS5, IBM 7196, Oracle UltraSPARC T4, ARM Cortex A15

13

Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

\ 4
S

R
C E Integer add -
H Integer mul O

ElD S E E |[E |E |E JR W
D FP mul D
U >E |[E |E |E |E |E |E | E c
. R
E E | E|E|E | E|E|E|E|.. .S
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

14

General Organization of an OOQO Processor

pre- instr.
decode cache

¥

floating pt.

register

file

TEE!

instr.
buffer

|
=
=
|

decode.
rename,
&dispatch

floating pt.
Instruction
buffers

functional units

- memaory

interface

Ga

integer

register
file

integer/address
1nstruction
buffers

functional units
and
data cache

i

i

re-order and comimit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

15

Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations

|

to memory

Common data bus

16

Register Renaming

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID = Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number

17

Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

RO 1
R1 1
R2 1
R3 1
R4 1
RS 1
1
1
1
1

R6
R7
R8
R9

Tomasulo s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!

19

An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 < R2, R6 FIDIE |W
R10 €< R8, R9

R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

20

Exercise Continued

MUl R1,R2,— R3

ADD R3 ,RYy— RS
Ao R2LRE — RTI-
AOD RE,RY — RAQ
Mul— R3 RI0 - R14
A RS RN 5 RS

MUL- tnces & oydles
ADRD Hes & oyoles

Hun mnny eyoles dobpl wio oldbm
‘e ve e s w’ a”

Proeime Sthudhwre,

F D B W
’ L
ca e,
Cycles
fywrdub?
s 2

21

Exercise Continued

FD123454 W

FD---- - -D1234 W
Po~e-== - - D123 4 W
- . FD123 4 W
FED~- -~ -D)23,S& W
o e Bl 1) 1 D1234 W
y/a
Eveotin Yrime. Wl S cerebcertng
3} oycles
FD123L€ 6 W
FD PER 3Ly W
= D4 23 -\
FD123 L W
F D ¥4 232, W 6W
F D Bt % T R

Z5 ceg

22

Exercise Continued

MUL R3 € R1,R2
ADD R5 <€ R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7,R10
ADD R5 € R5,R11

Tanno."sdo's Glg ot -)—AJ" M

D123 LS 6 W
F D . S L R
FD123¢4 W
F0123 (W
F D 423486 W
FD

20 oyeles

23

How It Works

Registo Aios. Table
Toe, Nalue,
!] ok e
. | . SR Saca. .
: \ tag wlve. V dpg wvele o vebee W vehso
Resovdin 2 ¥ \
Shbun 2| Y
for € l
POOBR. &

24

Cycle 0

:.,\,de 0 -

g velue
JRITEE o T8
i 2
] .
R |~ 11

- IntHal coabnds of e
resles okas jeble

—~ resgovimn shiss ore oll ynvelrdd

25

CYCI@ 2 Cycle 2

MUL R, R2 — R3 _reods 115 Soweces Ao be ©AT

Cnd of ogcle. 2.¢
V 189 vilve
Ry [1 | = r
RZ|T | —~ | 2
RR|IO| X | —~
Rhll |~ | &
Kyfl | ~ 1

—-wries b 4z degmbion pn he AT
(rernwnes ¥ destrrnchor, o
—2 allccoles & resenpbun sloton ey
— allccotes ¢ +ag frrhe deshckmn
regrs o~
= plees s Sewas m e resevoin shign

ey o158 allocotedt.,

al V 4oy velee V4, vive
b X1 ~ 11 I ~ 12
[+
o Y
. [—
+ 2k

- MuL. o ¥ &wrwd,hmewb
{ Wind- i muidvple. mstngimng bmmﬁ.ﬁ-
"hr.-so-e.hnc)

bk of prs SowceS e Volid e
TSV Shebren X . 76

&/

— MuL ot X sheds oneation
~— A0P A3 Rl RS ety renemcel ond plused mivire

L O o

AV PRR. rCscnrvien Shreans

Olc

doy whe V Jey whe
X ~

~Ti~Ta] |
i %l~'i.~

Y

cyole A

end of oyde 3
Rl (1] ~ |
RL []|~ 2.
R3[/0]| X AL
eyl ~ 4
RS|O| a | ~
gLl | =~ &
RitJil~1 1

— ADD o+ 0 cannd—be resdy +2 eweate becase.
e Gf-rfs Swwteg (& nd- e
— T+ 15 wolng for- 41 vale wibh hie Fog X
b be bracdeost by hre muL m X))

A& Dees +re 4ug reed 4z ke ecscowkd widn
e RS eviry of e Pridveer?
Arswer: No: Tag 15 o dog fordre udue ot
s Corvrpvrnnfceled .
+« gs 15 & ploce 4o hold he rcindrs
evebles dolo-flan> Wihive hoy becorme reody .
| ske vdu:wtdﬁ Nrese dwe ore P g, & —27

Cycle 4

cyde 4t

end o fopcle 4
RFT ~ [Tt |
Rl | ~ - 8
L ||| ~ 4
&s J0 ~
5% 1 TR
10l b |~
0| —~ T

ADD R2,R6— RZ gots rencwed ovd ploced mbv RS @

& Sue 05 Oyde 3

\Y TN X[
- ADD o+ b becores recdy, +z &deodc.

(b sowees cre reody!)
— Aropde S, I+ 18 st &k He adde cub-of-pregraa

—a T4 15 owecvkd befove e add M O

E 0 b

28

Cycle 7

x Al & msindars yrereved .

EIE
- | O
&k 7| X
) | \
-y s
3%
N|\o(a~ ¢
-~Y7ﬁ
-|= =D
\...
{02
X e \
lp..
$4q 07T
.WmlL~/+M~/!o~Qa.~
i ZXNIN.J:@
w 5= =< ~j9 =[] ={ |0}
R R E Bk

— Neke whd- hopperad 40 RS

29

Cycle 8

L
Cyole 8: -~ MuL a+ X and APD a4+ b P
brvodcost 1rer fggeond veoles

— RS ovhtesvwosing fo- hese brgs cypbve e vohes
ancd sel Ne \Joud &b occovimalys
— (Ukal—rs eedded n HW F occonclch e)

- CAMM on Fpas tnd-oe brcodcosH fo-all 28
erbes § Scwrces

— PBBT etries wotng fr1hese hes Glso coohre. Fve
Volves ond geb he ol o< accostsly

30

An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 ¢« R1, R2

R5 < R3, R4

R7 €« R2, R6 FIDIEIRI|W
R10 < R8, R9

R11 < R7, R10
R5 €< R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

31

Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the register alias table (essentially a
future file) when it completes execution

An instruction updates the architectural register file when it
IS the oldest in the machine and has completed execution

32

Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

\ 4
S

R
C E Integer add -
H Integer mul O

ElD S E E |[E |E |E JR W
D FP mul D
U >E |[E |E |E |E |E |E | E c
. R
E E | E|E|E | E|E|E|E|.. .S
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

33

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

34

Summary of OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch

35

OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?

36

Dataflow Graph for Our Example

MUL R3 € R1,R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7,R10
ADD R5 € R5,R11

State of RAT and RS in Cycle 7

end of oyole =
‘V-‘h: vehe. a - 3 g -
k2| ~ AZ'&_ e] ~ [1|~ 179 ~ llo o
“310] X djpl o I~ oty [~1 Y© =
j 45 ol e B
rslo] d | ~
e 1| ~ 6
R+lo] L |~ + /
RE || ~ Q
Rolr] ~ 1 9
RE 10 C s
RNO] Y |~

2 Al £ msindris Yereved.
— Neke whd- hopperad 40 RS

38

Dataflow Graph

AOD R3 RYy-> RS (o)
AL R8,RG — R0 ()
mol. R3 RI0 = R [Y)
APD RS, RA1 — RS (d)

Dataflon Qgr)"\

Nodee: Eposhos pPofimed ey 1rc
msirudson
AEs : fuss i Timesole's algot{tn,

Fiaiss®

RS [dY

39

Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

a ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies “who” should receive the result

An instruction can “fire” whenever all operands are received
40

Questions to Ponder

Why is OoO execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?
o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer

41

Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

42

Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known
until a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

43

Memory Dependence Handling (1)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on the/any unknown address store

44

