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Some pesky details…

• No mid-term and final exam for this class 

• Grade break-down: 80% labs and 20% written assignments

• Lab 0 is released today, due Sep 4 by 11:59:59 pm ET
• Please read the lab 0 handout in the course webpage carefully

• Lab 0 must be completed individually 

• Labs 1-2 must have the same partner 

• You can choose to switch partners before doing labs 3-5

• Please post common questions in the general channel 
• Ensures faster response 

• Use the DM option to discuss personal situations 



What is the hardware/software boundary?

• An ISA or Computer Architecture?

• A division of labor between Computer Engineers and Programmers?

• A split between what you can change and what you cannot change?

• Python vs. Verilog?



The 213 view of the world

• ISA is the immutable
foundation of the system

• High-level language compiles 
to ISA

• Linux (or other) OS provides 
important low-level services

• Low-level optimization: know 
HW structure to make smart 
code changes



The 240 view of the world

• What’s an ISA? (RISCV-240 
not withstanding)

• SystemVerilog describes your 
hardware

• What’s an OS? What is
*software* even?

• Implement through 
simulation, ASIC fabrication 
or FPGA configuration



Relative Mutability/Non-Recurring Eng. (NRE) Cost?



Relative Observability?



Relative Optimizability?



Today: Thinking Like a 
Computer Architect



Our first hw/sw interface:
The Von Neumann Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

John von Neumann’s Big Idea:

Programs are data.



The Von Neumann / Stored-Program 
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

• Let’s optimize! Where is 
there a bottleneck in the Von 
Neumann abstract machine?



The Von Neumann / Stored-Program 
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

• Data & Program share a bus 
into the CPU. Need to time 
multiplex access to the bus.



The Von Neumann / Stored-Program 
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t



The Von Neumann / Stored-Program 
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

Need to
write 8 bytes output data, 
read 16 bytes input data, 
read 4 bytes instruction
per arithmetic operation



The Von Neumann / Stored-Program 
Computing Model

Program Data

8 byte unified bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle,
2 data read cycles,
1 instruction read cycle
per arithmetic operation

4 cycles per instruction!



Alternative to von Neumann: the Harvard 
Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Data Bus

• Split bus architecture 
provides simultaneous access 
to program and to data



Alternative to von Neumann: the Harvard 
Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Data Bus

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle,
2 data read cycles, simultaneous with 1 
instruction read cycle
per arithmetic operation

3 cycles per instruction!



Optimizing our Harvard Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(1 read port, 1 write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle simultaneous with 2 
data read cycles simultaneous with 1 
instruction read cycle
per arithmetic operation

2 cycles per instruction!



Optimizing our Harvard Architecture

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle simultaneous with 1 
data read cycles simultaneous with 1 
instruction read cycle
per arithmetic operation

1 cycle per instruction!



Thinking about the costs of HW optimization

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and 
Data Manipulation 

(“ALU”)

Is this free?



4-byte Memory Interface: 
Read Latency = 0.289ns 
Write Latency = 0.212ns

16-byte Memory Interface: 
Read Latency = 0.289ns 
Write Latency = 0.212ns

Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and 
Data Manipulation 

(“ALU”)

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

$ ./destiny config/SRAM_128_1_32.cfg $ ./destiny config/SRAM_128_1_128.cfg

Free Lunch!



Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and 
Data Manipulation 

(“ALU”)

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

$ ./destiny config/SRAM_128_1_32.cfg $ ./destiny config/SRAM_128_1_128.cfg

4-byte Memory Interface: 
Read Energy = 0.836pJ 
Write Energy = 0.738pJ

16-byte Memory Interface:
Read Energy = 1.51pJ
Write Energy = 1.30pJ

There is No Free 
Lunch!



How about optimizing instruction supply?

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

These four instructions take four cycles to 
fetch sequentially on our instruction bus



How about optimizing instruction supply?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 
operations



Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations

4B Read Energy = 0.836pJ 
16B Read Energy = 1.51pJ



Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

x = y + z 

a = b * c 

r = s + t 

q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations
4x fewer instruction fetches

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch

E_old = n x EpF

E_new = (n/4) x (EpF x 2) = ½(n x EpF)

2x savings in total instruction fetch energy!



Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations
4x fewer instruction fetches

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch

When might this optimization *not* pay off?



Is this optimization always a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

if (x==0) 

a = b * c 

y = z + w 

q = n + m

128bits

1 instruction read cycle every 4 operations
4x fewer reads, if we execute the operations!
OR: 4x more useless fetching if x!=0
(more on this branching topic in a future lecture)

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch



How about changing the code?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

if (x==0) 

a = b * 2 

y = z + w 

q = n + m

Restructure code, increase likelihood to execute
Avoid needless fetch of non-executing code
Q: What if x is most often non-zero?

I5: //else

I6:  a = b * 4 

I7:  y = z + w 

I8:  q = n + m

Compiler!

I1:

I2:

I3:

I4:

I5:

I6:

I7:

I8:

y = z + w 

q = n + m 

if (x==0) 

a = b * 2

//else

a = b * 4

//other

//stuff



A key Law of the HW/SW Universe



Amdahl’s Law

Let’s revisit the proposition that we should optimize instruction supply

How do we decide if this part of the 
system is really worth optimizing?



Amdahl’s Law

100% of execution time



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

What can we say about optimizing instruction 
supply (fetch) if this is our situation?

Imagine we have a perfectly precise measurement
tool to break down execution time…



Amdahl’s Law

100% of execution time
10 seconds

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

We have 45% + 20% + 17.5% + 5% = 87.5% of the execution 
running at its original speed (ie 87.5% of 10 seconds = 8.75s)

What if we make fetch 4x faster?

We have 12.5% of the execution running 4x faster. Originally, we had 12.5% of 
10 units of time = 1.25s. If 4x faster, fetch takes 0.31s. Savings of 0.94s



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

(0.875 x 10)/1 + (0.125 x 10)/4 = 9.06

What does 0.906 mean?

What if we make fetch 4x faster?



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

4x improvement in fetch means execution takes 9.0625s instead of 10s 
Saved 0.94s overall. 0.94s / 10s * 100 = 9.4% time savings

What if we make fetch 4x faster?
<10% improvement overall, despite 4x improvement on one part of the system!



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

What if we make memory accesses 4x faster?



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

55% of 10s + (45% of 10s) / 4 = 6.625s

Evidently, we should optimize the memory part before fetch!

What if we make memory accesses 4x faster?



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

Amdahl’s Law:
if fraction p can be optimized:
Optimized Time = [ (1-p) * t / 1 ] + [ (p * t) / speedup ]

12.5% - Fetch

5% - Floating
Point



Amdahl’s Law

100% of execution time

45% - Memory Accesses

Amdahl’s Law:
Overall Speedup = ?

20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point



Amdahl’s Law

100% of execution time

45% - Memory Accesses

Amdahl’s Law:
20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Overall Speedup = T_orig / T_opt

Overall Speedup = 1 / (1 – p + p / s)



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

By how much do we have to improve the memory 
part of the system to get a 2x total speedup?



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow

0.55 x 10s + (0.45 x 10s)/speedup = 10s / 2 = 5s
4.5s / speedup = 5s – 5.5s 
speedup = -9x
Well that’s a strange amount by which to speed up
a program… conclusion?

17.5% - Integer 12.5% - Fetch

5% - Floating
Point

By how much do we have to improve the memory 
part of the system to get a 2x total speedup?



Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

20% - Control Flow 17.5% - Integer 12.5% - Fetch 5% - Floating 
Point

0% - Memory Accesses

What if we completely optimize away the memory part?
5.5s optimized execution time



Limit Cases for Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Let’s try again:
What if we completely optimize away the optimizable part?



Limit Cases for Amdahl’s Law

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating 
Point

What if we completely optimize away the optimizable part? 
(How much is left over here?)

100% of original execution time

IIddeeaallllyy ooppttiimmiizzeedd eexeex ccuuttiioonn ttiimmee



Limit Cases for Amdahl’s Law

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating 
Point

What if we completely optimize away the optimizable part?
8.75s optimized execution time

100% of original execution time

IIddeeaallllyy ooppttiimmiizzeedd eexeex ccuuttiioonn ttiimmee



Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

0% - Fetch 5% - Floating 
Point

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

Amdahl’s Law:
optimized time = [ 1-p x time / 1.0 ] + [ p x time / s ] 
Overall speedup = 1 / (1 - p + p / s)



Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating 
Point

Amdahl’s Law with infinite speedup:
optimized time with infinite speedup of p = [ 1-p x time / 1.0 ] 
Overall speedup with infinite speedup of p = 1 / (1 - p)



optimizable
part (p)

Optimized speedup for optimizable part

Amdahl’s Law Speedup

>100x
optimized part 
speedup?
80%
optimizable? 
max speedup 
5x!



Amdahl’s Law is Extremely Versatile

100% of execution energy

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Works for any optimization problem and goal. Always
focus on the biggest slice & the rest doesn’t matter.



Using Amdahl’s Law to push the bottleneck
around

100% of execution energy

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Bottleneck: memory accesses



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating 
Point

New bottleneck: control flow

Using Amdahl’s Law to push the bottleneck
around



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating
Point

New bottleneck: memory accesses (again!)

Using Amdahl’s Law to push the bottleneck
around



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating
Point

Remember: Amdahl tells us to optimize the biggest slice

Using Amdahl’s Law to push the bottleneck
around



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating 
Point

Idea: find an optimizable part of your system and make it bigger 
If we know that memory is optimizable, why not optimize more 
and do more memory accesses?

Another view of the world: Gustaffson’s Law



Another view of the world: Gustaffson’s Law
Gustafson’s Law: Sequential part does not grow as 
optimizable part grows. Can always add more 
optimizable part and make sequential part matter less

Assume that we can scale up # of parallel memory accesses, N
Assume we can scale input up to use all N parallel accesses

data_size = 10 

data[data_size] = {…} 

if(…){ }

…//18 more of these conditionals 

if(…){ }

for d in 0..data_size{ d++ }

data_size = 100000 

data[data_size] = {…} 

if(…){ }

…//18 more of these conditionals 

if(…){ }

#parallel[N=1000]

for d in 0..data_size{ d++ }

Gustaffson!



85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustaffson’s Law



85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustaffson’s Law

Scale parallel memory accesses, N, up to 1000? 
Scaled Speedup = 1-p + 1000p = 999p + 1 
Scaled Speedup = 999 * 0.85 + 1 = 850x



What did we just learn?

• Two high-level architectural models

• Identify performance bottlenecks

• Develop optimizations to mitigate bottlenecks

• Analyze resulting improvement from mitigating bottlenecks

• Identifying persistent performance limiters (e.g., branches)

• Optimize in software or hardware

• (Almost) never bet against Gene Amdahl in an optimization contest!



What to think about next?

• What is a computer architecture?

• What matters when defining a HW/SW interface?

• What is above the ISA and what is below the ISA?

• What is hidden from the programmer and what is exposed?
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