
CMU 18-344: Computer
Systems and the

Hardware/Software Interface
Fall 2023

(Fall 2023 Lecute 2)

LECTURE 2

Some pesky details…

• No mid-term and final exam for this class

• Grade break-down: 80% labs and 20% written assignments

• Lab 0 is released today, due Sep 4 by 11:59:59 pm ET
• Please read the lab 0 handout in the course webpage carefully

• Lab 0 must be completed individually

• Labs 1-2 must have the same partner

• You can choose to switch partners before doing labs 3-5

• Please post common questions in the general channel
• Ensures faster response

• Use the DM option to discuss personal situations

What is the hardware/software boundary?

• An ISA or Computer Architecture?

• A division of labor between Computer Engineers and Programmers?

• A split between what you can change and what you cannot change?

• Python vs. Verilog?

The 213 view of the world

• ISA is the immutable
foundation of the system

• High-level language compiles
to ISA

• Linux (or other) OS provides
important low-level services

• Low-level optimization: know
HW structure to make smart
code changes

The 240 view of the world

• What’s an ISA? (RISCV-240
not withstanding)

• SystemVerilog describes your
hardware

• What’s an OS? What is
software even?

• Implement through
simulation, ASIC fabrication
or FPGA configuration

Relative Mutability/Non-Recurring Eng. (NRE) Cost?

Relative Observability?

Relative Optimizability?

Today: Thinking Like a
Computer Architect

Our first hw/sw interface:
The Von Neumann Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

John von Neumann’s Big Idea:

Programs are data.

The Von Neumann / Stored-Program
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

• Let’s optimize! Where is
there a bottleneck in the Von
Neumann abstract machine?

The Von Neumann / Stored-Program
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

• Data & Program share a bus
into the CPU. Need to time
multiplex access to the bus.

The Von Neumann / Stored-Program
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t

The Von Neumann / Stored-Program
Computing Model

Program Data

Unified Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

Need to
write 8 bytes output data,
read 16 bytes input data,
read 4 bytes instruction
per arithmetic operation

The Von Neumann / Stored-Program
Computing Model

Program Data

8 byte unified bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle,
2 data read cycles,
1 instruction read cycle
per arithmetic operation

4 cycles per instruction!

Alternative to von Neumann: the Harvard
Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Data Bus

• Split bus architecture
provides simultaneous access
to program and to data

Alternative to von Neumann: the Harvard
Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Data Bus

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle,
2 data read cycles, simultaneous with 1
instruction read cycle
per arithmetic operation

3 cycles per instruction!

Optimizing our Harvard Architecture

Program Data

Instruction Bus

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(1 read port, 1 write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle simultaneous with 2
data read cycles simultaneous with 1
instruction read cycle
per arithmetic operation

2 cycles per instruction!

Optimizing our Harvard Architecture

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

32bits
64bits

With a one word (8 byte) bus:
1 data write cycle simultaneous with 1
data read cycles simultaneous with 1
instruction read cycle
per arithmetic operation

1 cycle per instruction!

Thinking about the costs of HW optimization

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and
Data Manipulation

(“ALU”)

Is this free?

4-byte Memory Interface:
Read Latency = 0.289ns
Write Latency = 0.212ns

16-byte Memory Interface:
Read Latency = 0.289ns
Write Latency = 0.212ns

Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and
Data Manipulation

(“ALU”)

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

$./destiny config/SRAM_128_1_32.cfg $./destiny config/SRAM_128_1_128.cfg

Free Lunch!

Program Data

Unified Bus

Memory

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and
Data Manipulation

(“ALU”)

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

$./destiny config/SRAM_128_1_32.cfg $./destiny config/SRAM_128_1_128.cfg

4-byte Memory Interface:
Read Energy = 0.836pJ
Write Energy = 0.738pJ

16-byte Memory Interface:
Read Energy = 1.51pJ
Write Energy = 1.30pJ

There is No Free
Lunch!

How about optimizing instruction supply?

Program Data

Instruction Bus
(32-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

These four instructions take four cycles to
fetch sequentially on our instruction bus

How about optimizing instruction supply?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4
operations

Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations

4B Read Energy = 0.836pJ
16B Read Energy = 1.51pJ

Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

x = y + z

a = b * c

r = s + t

q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations
4x fewer instruction fetches

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch

E_old = n x EpF

E_new = (n/4) x (EpF x 2) = ½(n x EpF)

2x savings in total instruction fetch energy!

Is this optimization a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1: x = y + z

I2: a = b * c

I3: r = s + t

I4: q = n + m

128bits

16 byte instruction bus:
1 instruction read cycle every 4 operations
4x fewer instruction fetches

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch

When might this optimization *not* pay off?

Is this optimization always a good tradeoff?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

if (x==0)

a = b * c

y = z + w

q = n + m

128bits

1 instruction read cycle every 4 operations
4x fewer reads, if we execute the operations!
OR: 4x more useless fetching if x!=0
(more on this branching topic in a future lecture)

4B Read Energy = 0.836pJ

16B Read Energy = 1.51pJ

~2x more energy / fetch

How about changing the code?

Program Data

Instruction Bus
(128-bit read)

Memory

CPU

Control & Instruction
Sequencing (“Control”)

Arithmetic, Logic, and Data
Manipulation (“ALU”)

Dual-ported Data Bus
(2x64-bit read, 64-bit write port)

I1:

I2:

I3:

I4:

if (x==0)

a = b * 2

y = z + w

q = n + m

Restructure code, increase likelihood to execute
Avoid needless fetch of non-executing code
Q: What if x is most often non-zero?

I5: //else

I6: a = b * 4

I7: y = z + w

I8: q = n + m

Compiler!

I1:

I2:

I3:

I4:

I5:

I6:

I7:

I8:

y = z + w

q = n + m

if (x==0)

a = b * 2

//else

a = b * 4

//other

//stuff

A key Law of the HW/SW Universe

Amdahl’s Law

Let’s revisit the proposition that we should optimize instruction supply

How do we decide if this part of the
system is really worth optimizing?

Amdahl’s Law

100% of execution time

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

What can we say about optimizing instruction
supply (fetch) if this is our situation?

Imagine we have a perfectly precise measurement
tool to break down execution time…

Amdahl’s Law

100% of execution time
10 seconds

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

We have 45% + 20% + 17.5% + 5% = 87.5% of the execution
running at its original speed (ie 87.5% of 10 seconds = 8.75s)

What if we make fetch 4x faster?

We have 12.5% of the execution running 4x faster. Originally, we had 12.5% of
10 units of time = 1.25s. If 4x faster, fetch takes 0.31s. Savings of 0.94s

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

(0.875 x 10)/1 + (0.125 x 10)/4 = 9.06

What does 0.906 mean?

What if we make fetch 4x faster?

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

4x improvement in fetch means execution takes 9.0625s instead of 10s
Saved 0.94s overall. 0.94s / 10s * 100 = 9.4% time savings

What if we make fetch 4x faster?
<10% improvement overall, despite 4x improvement on one part of the system!

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

What if we make memory accesses 4x faster?

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

55% of 10s + (45% of 10s) / 4 = 6.625s

Evidently, we should optimize the memory part before fetch!

What if we make memory accesses 4x faster?

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

Amdahl’s Law:
if fraction p can be optimized:
Optimized Time = [(1-p) * t / 1] + [(p * t) / speedup]

12.5% - Fetch

5% - Floating
Point

Amdahl’s Law

100% of execution time

45% - Memory Accesses

Amdahl’s Law:
Overall Speedup = ?

20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Amdahl’s Law

100% of execution time

45% - Memory Accesses

Amdahl’s Law:
20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Overall Speedup = T_orig / T_opt

Overall Speedup = 1 / (1 – p + p / s)

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

By how much do we have to improve the memory
part of the system to get a 2x total speedup?

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow

0.55 x 10s + (0.45 x 10s)/speedup = 10s / 2 = 5s
4.5s / speedup = 5s – 5.5s
speedup = -9x
Well that’s a strange amount by which to speed up
a program… conclusion?

17.5% - Integer 12.5% - Fetch

5% - Floating
Point

By how much do we have to improve the memory
part of the system to get a 2x total speedup?

Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

20% - Control Flow 17.5% - Integer 12.5% - Fetch 5% - Floating
Point

0% - Memory Accesses

What if we completely optimize away the memory part?
5.5s optimized execution time

Limit Cases for Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Let’s try again:
What if we completely optimize away the optimizable part?

Limit Cases for Amdahl’s Law

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating
Point

What if we completely optimize away the optimizable part?
(How much is left over here?)

100% of original execution time

IIddeeaallllyy ooppttiimmiizzeedd eexeex ccuuttiioonn ttiimmee

Limit Cases for Amdahl’s Law

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating
Point

What if we completely optimize away the optimizable part?
8.75s optimized execution time

100% of original execution time

IIddeeaallllyy ooppttiimmiizzeedd eexeex ccuuttiioonn ttiimmee

Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

0% - Fetch 5% - Floating
Point

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

Amdahl’s Law:
optimized time = [1-p x time / 1.0] + [p x time / s]
Overall speedup = 1 / (1 - p + p / s)

Limit Cases for Amdahl’s Law

100% of original execution time

Ideally optimized execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating
Point

Amdahl’s Law with infinite speedup:
optimized time with infinite speedup of p = [1-p x time / 1.0]
Overall speedup with infinite speedup of p = 1 / (1 - p)

optimizable
part (p)

Optimized speedup for optimizable part

Amdahl’s Law Speedup

>100x
optimized part
speedup?
80%
optimizable?
max speedup
5x!

Amdahl’s Law is Extremely Versatile

100% of execution energy

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Works for any optimization problem and goal. Always
focus on the biggest slice & the rest doesn’t matter.

Using Amdahl’s Law to push the bottleneck
around

100% of execution energy

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Bottleneck: memory accesses

100% of execution energy

Memory
Accesses

Control Flow Integer Fetch Floating
Point

New bottleneck: control flow

Using Amdahl’s Law to push the bottleneck
around

100% of execution energy

Memory
Accesses

Control Flow Integer Fetch Floating
Point

New bottleneck: memory accesses (again!)

Using Amdahl’s Law to push the bottleneck
around

100% of execution energy

Memory
Accesses

Control Flow Integer Fetch Floating
Point

Remember: Amdahl tells us to optimize the biggest slice

Using Amdahl’s Law to push the bottleneck
around

100% of execution energy

Memory
Accesses

Control Flow Integer Fetch Floating
Point

Idea: find an optimizable part of your system and make it bigger
If we know that memory is optimizable, why not optimize more
and do more memory accesses?

Another view of the world: Gustaffson’s Law

Another view of the world: Gustaffson’s Law
Gustafson’s Law: Sequential part does not grow as
optimizable part grows. Can always add more
optimizable part and make sequential part matter less

Assume that we can scale up # of parallel memory accesses, N
Assume we can scale input up to use all N parallel accesses

data_size = 10

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

for d in 0..data_size{ d++ }

data_size = 100000

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

#parallel[N=1000]

for d in 0..data_size{ d++ }

Gustaffson!

85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustaffson’s Law

85% - Memory Accesses

Gustafson’s Law for overall speedup with speedup factor of N:
(assume) Optimized time = T = 1
Unoptimized time = T’ = (1-p)T + pT*N = (1-p) + pN
Scaled Speedup = T’ / T = (1-p) + pN

Another view of the world: Gustaffson’s Law

Scale parallel memory accesses, N, up to 1000?
Scaled Speedup = 1-p + 1000p = 999p + 1
Scaled Speedup = 999 * 0.85 + 1 = 850x

What did we just learn?

• Two high-level architectural models

• Identify performance bottlenecks

• Develop optimizations to mitigate bottlenecks

• Analyze resulting improvement from mitigating bottlenecks

• Identifying persistent performance limiters (e.g., branches)

• Optimize in software or hardware

• (Almost) never bet against Gene Amdahl in an optimization contest!

What to think about next?

• What is a computer architecture?

• What matters when defining a HW/SW interface?

• What is above the ISA and what is below the ISA?

• What is hidden from the programmer and what is exposed?

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Some pesky details…
	Slide 3: What is the hardware/software boundary?
	Slide 4: The 213 view of the world
	Slide 5: The 240 view of the world
	Slide 6: Relative Mutability/Non-Recurring Eng. (NRE) Cost?
	Slide 7: Relative Observability?
	Slide 8: Relative Optimizability?
	Slide 9: Today: Thinking Like a Computer Architect
	Slide 10: Our first hw/sw interface: The Von Neumann Computing Model
	Slide 11: The Von Neumann / Stored-Program Computing Model
	Slide 12: The Von Neumann / Stored-Program Computing Model
	Slide 13: The Von Neumann / Stored-Program Computing Model
	Slide 14: The Von Neumann / Stored-Program Computing Model
	Slide 15: The Von Neumann / Stored-Program Computing Model
	Slide 16: Alternative to von Neumann: the Harvard Architecture
	Slide 17: Alternative to von Neumann: the Harvard Architecture
	Slide 18: Optimizing our Harvard Architecture
	Slide 19: Optimizing our Harvard Architecture
	Slide 20: Thinking about the costs of HW optimization
	Slide 21
	Slide 22
	Slide 23: How about optimizing instruction supply?
	Slide 24: How about optimizing instruction supply?
	Slide 25: Is this optimization a good tradeoff?
	Slide 26: Is this optimization a good tradeoff?
	Slide 27: Is this optimization a good tradeoff?
	Slide 28: Is this optimization always a good tradeoff?
	Slide 29: How about changing the code?
	Slide 30: A key Law of the HW/SW Universe
	Slide 31: Amdahl’s Law
	Slide 32: Amdahl’s Law
	Slide 33: Amdahl’s Law
	Slide 34: Amdahl’s Law
	Slide 35: Amdahl’s Law
	Slide 36: Amdahl’s Law
	Slide 37: Amdahl’s Law
	Slide 38: Amdahl’s Law
	Slide 39: Amdahl’s Law
	Slide 40: Amdahl’s Law
	Slide 41: Amdahl’s Law
	Slide 42: Amdahl’s Law
	Slide 43: Amdahl’s Law
	Slide 44: Limit Cases for Amdahl’s Law
	Slide 45: Limit Cases for Amdahl’s Law
	Slide 46: Limit Cases for Amdahl’s Law
	Slide 47: Limit Cases for Amdahl’s Law
	Slide 48: Limit Cases for Amdahl’s Law
	Slide 49: Limit Cases for Amdahl’s Law
	Slide 50: Amdahl’s Law Speedup
	Slide 51: Amdahl’s Law is Extremely Versatile
	Slide 52: Using Amdahl’s Law to push the bottleneck around
	Slide 53: Using Amdahl’s Law to push the bottleneck around
	Slide 54: Using Amdahl’s Law to push the bottleneck around
	Slide 55: Using Amdahl’s Law to push the bottleneck around
	Slide 56: Another view of the world: Gustaffson’s Law
	Slide 57: Another view of the world: Gustaffson’s Law
	Slide 58: Another view of the world: Gustaffson’s Law
	Slide 59: Another view of the world: Gustaffson’s Law
	Slide 60: What did we just learn?
	Slide 61: What to think about next?

