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Recap: Sparse Problems

• What is a sparse problem?  Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems
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Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR) 
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

21 12 1
Vertex Property Array 
i.e., srcData / dstData

Often we will leave the vertex property array 
implicitly defined when we talk about sparse 
structures, but it is always there



Src

Dst
for src in G: 
 for dst in out_neighs(src):
   dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR 
4

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I, 
e.g., current shortest path 
from source vertex

i.e., xi+1 

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality



Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but 
graph processing still entails a large working set with poor locality



Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
  neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count 
array are to random elements 
determined by order of edges 
in edge list
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices
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Propagation Blocking: Reorganize Input to Make 
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on 
e.dst which are essentially random

Bad for the cache: the size of the domain of 
vertex data array entries is |V|, but the 
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices, 
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together = V
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Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 1: 
dst 0-2

Bin 1: 
dst 3-5

0    1

2    0

1    0

0    2 2    3

0    3 0 0 0

0    4

Binning Bin Read

Usually save a little space in cache for 
streaming edge list data.  Easy to cache.

What about the performance of reading the 
edge list during binning?

Streaming

Random Access, but always in cache



Propagation Blocking

PropagationBlocking_EdgeCount(EdgeList E){

  Bins B[];

  for edge in E{

    add_to_bin( find_bin(edge) )

  }

  for bin in B{

    for e in bin{

      dstData[e.dst]++

    }

  }

}

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)
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Src

Dst

for dst in G: 
 for src in in_neighs(dst):
  dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. . 
. 

Time

srcData[S1]

srcData[S2]

2-way Set-Associative 
Cache

Which line should we evict?: 
● srcData[S1]  (nextRef @ D4) 

● srcData[S2]  (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)
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Transpose-based OPT (T-OPT) Provides Large Gains 

1.7X
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Src

Dst

OA

NA

CSR
(Transpose) 

Rereference Matrix 
(Quantized Transpose)

Divide execution into 
coarse-grained epochs

Quantization enables 
compression of transpose data

Main Technique: Use Quantization To Compress The Transpose



P-OPT Improves Cache Locality

14

P-OPT results are 
only 12% away 
from the Ideal



P-OPT’s LLC Miss Reductions Directly Translate To Speedups

15

P-OPT provides up 
to 1.56x speedup 

over LRU



Today: Parallel Computer Architectures

• Why do we have mainly parallel computers

• How do we make caches work with parallelism

• Memory consistency models & ordering

• Implementing synchronization
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In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue 
window that issues instructions to 
execute as soon as input operands 
are available

Execute instructions from the issue 
window fully out of order even if 
instructions have a WAW or WAR 
dependence that would prevent 
them from superscalar issuing 
together (how!?)

Commit in order 
to respect 
original program 
semantics



Fetch Decode ALU (non-
mul)

Memory
Register
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Register Renaming Resolves Dependences that 
Prevent Instructions from Executing Together 
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In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to 
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table.  Prevent issue only for 
true deps.



ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
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In-order commit tracks instruction completion 
and ensures architectural state updates in order

m
u
l

a
d
d

(Rename) 
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

end

Out of Order Execution

In-order Commit

Replace reg names w/ ref to 
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table.  Prevent issue only for 
true deps.

Reorder Buffer

add1 t1

add2 t2

mul x9

17

???

245

Reorder buffer (ROB) ensures 
instructions commit in order. Why do we 
care about in-order commit?  

add2 is complete, but waits 
to update t2 (i.e., x6) until 
mul is done



Operand supply and commit scalability issues



How do single-thread vs multi-thread chips 
scale?



Performance of single- vs. multi-threaded



•7nm process
•17 metal layers
•~25.9B transistors

•~257 mm² die size
•8 Perf Cores + 16 Efficiency Cores + GPU



Shared memory multi-threading



Parallel hardware + parallelizable software 
are a direct application of Amdahl’s Law

Multi-core parallelism was the primary way 
to keep performance scaling alive once 
single-thread performance hit the wall

How to we architect a programmable 
parallel computer system?

What are the main impediments to parallel 
programmability?

To parallel optimization?















“Coherence seeks to make the caches of
a shared-memory system as functionally invisible as 
the caches in a single-core system. Correct
coherence ensures that a programmer cannot 
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011



Cache Coherence



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What is the behavior of this parallel program? 
(X initially 0)



CPU 1 CPU 2 CPU 3

X++

$ $ $

X++ Rd X=?

X++
X++ Rd X=2

X++
X++

Rd X=2

X++

X++
Rd X=1

(and the symmetric case)

X++ X++

Rd X=0



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What assumptions are we making about the system
to produce the results 0, 1, and 2?

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

We assume the updates see one anothers’ results!
Q: Why wouldn’t they see one anothers’ updates?

X++



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

What now?

CPU1: X=1
CPU2: X=1
Expected Program Result: X=2 (?!)



CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

Never let this happen.  Caches should be coherent.

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)

“coherence ensures that a programmer cannot determine whether and 
where a system has caches by analyzing the results of loads and stores”



Defining Coherence
“Coherence serializes all reads with all updates to the same 
location by different CPUs/caches, so that each read sees 
the result of the most recent update by any other”
           From the Primer on Cache Coherence & Consistency

Single Writer/Multiple Reader (SWMR) Invariant: 
There is one writer or an arbitrary number of readers of a block 
of memory that could be cached at any given time.

Data-Value Invariant:
There is a globally defined most recent write and a read always 
reads the value written by the most recent write before that read



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!

Definition: an “epoch” is a period of 
time the extents of which are 
determined by a property of that 
period of time; like a geological era 
or the Anthropocene period.



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant



Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay!  Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant

Question: What are the requirements for an implementation of the Epoch Model?



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state 
based on (1)local memory operations; and (2)other CPUs’ 
memory operations

Add support to get data from (1)local cache; (2)a remote 
cache; or (3)main memory, depending on line’s protocol state 



High-level sketch of protocol 
in action

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only 
Epoch  for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2

CPU1 says “I am is writing X”
Others relinquish cached copies of X
and reply “OK go for it” <enter R/W epoch>

(ditto (1) for CPU2)

CPU1 replies “I have X. Use my
copy or get it from memory after I
write it back”

(1)

(2)

(3)
(ditto (3) for CPU 2)

CPU3 says “I want to read only”
Others reply “OK, we all agree
not to write without saying so”

(4)

(5)

<enter R-O epoch>



Cache Coherence Protocol

Per-line coherence states

M S

I



Cache Coherence Protocol

Modified (R/W) Shared (R-O)

Invalid (inaccessible)



Cache Coherence Protocol
Local operations perspective

M S

I

Locally perform a read
[send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a read
Locally perform a
read or write



Cache Coherence Protocol
Remote operations perspective

M S

I

Incoming Invalidation
[reply with invalidation acknowledgement]

Incoming request to share
[reply with data or write back]

Incoming Invalidation
[reply with invalidation acknowledgement]





Can we design another state?

M S

I?

What should we optimize?





Exclusive read-only avoids 
invalidation messages

M S

IExclusive Read-only

(Benefit: no invalidation required
to transition from E->M, like from S->M)





CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Snoopy Coherence

Shared bus for coherence messages



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Invalidate

X++



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

X++

Ack Ack



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++

(M)
Entering CPU1’s
write epoch



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

RdReq



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

Don’t have itGot it: X=1



CPU 1 CPU 2 CPU 3

X=1 $ X=1

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(S) (S)
Entering R-O
epoch



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What sucks about Snoopy?

Implementing the Protocol



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Bus limits scalability due to congestion and 
complex message arbitration

Implementing the Protocol

Shared bus



Intel Sandybridge Multiprocessor: bi-directional ring network



Skylake Xeon 2017 2D mesh



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X(Effectively) Point to Point Links



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

Who has X?



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

No one does!
Proceed!



CPU 1 CPU 2 CPU 3

$ X=1 X=1

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

CPUs 2 and 3 do.
Send them Invalidates!

X++
Rd X=?



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Benefit: No broadcast on shared bus

Sharers of X



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Drawbacks?

Sharers of X

X++



CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Centralized directory won’t scale
(In Practice: Distribute Directory)

Sharers of XSharers of Y



“computers execute operations in a 
different order than is specified by the 
program. A correct execution is achieved if 
the results produced are the same as 
would be produced by executing the 
program steps in order.  For a 
multiprocessor computer, such a correct 
execution by each processor does not 
guarantee the correct execution of the 
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979



“The memory consistency model of a 
shared-memory system specifies the 
order in which memory operations will 
appear to execute to the programmer.  
The memory consistency model affects 
the process of writing parallel programs 
and forms an integral part of the entire 
system, including the architecture, the 
compiler, and the programming 
language.”

Excerpt from “Recent Advances in Memory Consistency 
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999



Memory Consistency



Memory Consistency Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Informal Definitions:



Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of 
accesses to a single memory location

Wr X

Wr X
OR



Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of 
accesses to multiple memory locations

Wr X

Wr Y
OR



Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:
All processors agree
on a total order of
executed instructions



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X



The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X



Why is SC Important?

Intuitive (SC)
Wr X
Rd Y
Wr Y
Rd X
Rd X

Weird (not SC)

Wr X
Rd Y

Wr Y
Rd X
Rd X

Wr X

Rd Y

Wr Y

Rd X

Rd X

SC prohibits all reordering of instructions (Invariant 1)

SC is the most complex model that we can ask 
programmers to think about.



Real hardware does not enforce SC

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

The ARMv8 Memory Model:



Reordering #1: Write Buffers Execution

M M

CPU can read its write 
buffer, but not others’

Buffered writes eventually end up in coherent 
shared memory

Coherent

CPU CPU

Write BufferWrite Buffer



Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0



Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

r1 == r2 == 0 is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0
X=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1

Y=1



Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1



Reordering #1: Write Buffers

Execution

r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y r2=X



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y [r1 <- 0]

r2=X



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]



Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

WBs let reads finish 
before older writes (Not SC!)



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

4 word cache line



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1



Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Z=1



Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalesce

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1



Reordering #3: Interconnect

Execution

4-threaded program

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]

X=1 Y=1r1=X

r2=Y

r3=Y

r4=X

r2=Y [r2 <- 0]

r4=X [r4 <- 0]

X=1 Y=1

Y=1

X=1
Variable time cost traversing 
routed on-chip network



Reordering #4: Compilers

for (1 .. 100)

X = 1 X = 0
print X

X = 0

Compiler for (1 .. 100)
X = 1

X = 0
print X

Hoisted!

The compiler hoists the write out of the loop, 
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself



When is an Execution Not SC? 

Execution

X=1 Y=1

Happens-Before Graph

If there is a cycle in the happens-before graph, the 
execution is not SC

When a memory operation happens before itself

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]
r2=Y [r2 <- 0]

r4=X [r4 <- 0]

r3=Yr1=X

r2=Y r4=X



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



x86-TSO (intel x86s)

“The Write Buffer Memory Model”

X=1

r1=Y

r1=Y

Total Store Order - loads may complete before older 
stores to different locations complete.

Relaxes W->R 
order



Implementing Synchronization for Weak 
Memory Models
• What does synchronization have to do to prevent SC violations?

• Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent 
compiler reorderings

• What does synchronization have to do to prevent other kinds of 
problems?
• Enforce mutually exclusive execution by different threads of critical region, 

force threads to wait at barriers, enforce wait/notify discipline



Synchronization and its 
Implementation



Synchronization Can Prevent Operation 
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are one type of synchronization

Reordering prevented

We will see later in this lecture why reordering matters so much.



Synchronization For Real 
Programmers

X=1

r1=Y

r1=Y

Unlock

Memory fences are wrapped up in locks, etc.

Reordering prevented

Direct use of fences can be tricky and you will usually use a library

Lock



Data Races

Y=1
Unlock

Synchronization imposes happens-before on otherwise 
unordered operations

Data Race: Unordered operations to the same memory 
location, at least one write.  

Lock

r1=Y
Unlock

Lock
HB Order: Data race prevented



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct Executions

X=1

r1=Y

r1=Y

Fence Y=1

r2=X

r2=X

Fence

Thread 0 Thread 1

r1=Y We will see later that this 
program can produce very 
strange results if not 
sychronized



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct Executions

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

What happens with this 
program?  Where can we put 
the fence?

r2=X
r2++
X=r2



Fences are for (Preventing Re-)Ordering to 
Avoid Data Races & Ensure Correct Executions

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

How about fences 
everywhere?  Does this fix our 
problem?

r2=X
r2++
X=r2

Fence
Fence
Fence



Some programs also require atomicity

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

Fences don’t provide atomicity

r2=X
r2++
X=r2

Defining Atomicity:
All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.



Some programs also require atomicity

r1=X
r1++
X=r1

Serialization #1

r2=X
r2++
X=r2

r1=X
r1++
X=r1

Serialization #2

r2=X
r2++
X=r2

Defining Atomicity:
All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.



Mutual exclusion (mutex) locks enforce 
atomicity (and ordering)

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock Behavior:
A thread acquires a lock L, does stuff 
while holding L, and then releases lock L.

If a thread tries to acquire L while L is 
held, the thread keeps trying to acquire L 
until L is unheld, when its attempt to 
acquire succeeds.

Lock L

Unlock L

Lock L

Unlock L



SpinLock is one lock implementation

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

spinlock(L){

  while(__sync_bool_compare_and_swap(&L,0,1) == 0 ){

    /*do nothing; pause here on some systems*/

  } 

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

Lock L

Unlock L

Lock L

Unlock L



spinlock(L){

  while(__sync_bool_compare_and_swap(&L,0,1) == 0 ){

    /*do nothing; pause here on some systems*/

  } 

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

Turtles all the way down?

SpinLock is one lock implementation



spinlock(L){

  while(__sync_bool_compare_and_swap(&L,0,1) == 0 ){

    /*do nothing; pause here on some systems*/

  } 

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

175b: 48 8b 02        mov    (%rdx),%rax //load L into %rax

175e: 48 8d 48 01     lea    0x1(%rax),%rcx //add 1 to %rax, into %rcx

1762: f0 48 0f b1 0a  lock cmpxchg %rcx,(%rdx) //compare & exchange

1767: 75 f2           jne    175b //loop to mov if cmpxchg fails

SpinLock is one lock implementation



spinlock(L){

  while(__sync_bool_compare_and_swap(&L,0,1) == 0 ){

    /*do nothing; pause here on some systems*/

  } 

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

1762: f0 48 0f b1 0a  lock cmpxchg %rcx,(%rdx) 

//if (%rdx) == %rax{  (%rdx) = %rcx  }

Implemented directly in the machine microarchitecture. Even if multiple 
threads executing, hardware guarantees no inter-thread interactions  

SpinLock is one lock implementation



spinlock(L){

  while(__sync_bool_compare_and_swap(&L,0,1) == 0 ){

    /*do nothing; pause here on some systems*/

  } 

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

1890:  0f ae f0   mfenceFence

SpinLock is one lock implementation



Lock ordering matters

x++
y++

Thread 0 Thread 1

x++
y++

Lock Ordering:
If you manipulate more than one piece 
of data in a critical region, you will need 
to acquire the locks in the same order for 
all critical regions or face deadlock

Lock LX
Lock LY

Unlock LX
Unlock LY

Unlock LX
Unlock LY

Lock LX
Lock LY

x++
y++

Lock LY

Lock LX

x++
y++

Thread 0
Lock LX

Lock LY

Thread 1



Directly Using Compare and Swap

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

How general is a CAS operation for implementing critical regions that need to 
execute atomically?  What are the limitations on a CAS operation?



Fetch and Add – Further Specializing Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

_fna(&x,1) _fna(&x,1)

1707: f0 48 83 04 d0 01   lock addq $0x1,(%rax,%rdx,8)

__sync_fetch_and_add(x,1);

How much less general than compare and swap?



Transactional Memory – Further Generalizing 
Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

Limited by single location that can be updated using a CAS.  What if we want to 
update 3 (or n) different locations (without using a lock)?



Transactional Memory – Further Generalizing 
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0 Thread 1

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)



Transactional Memory – Further Generalizing 
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0 Thread 1

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

Transaction attempts to execute atomically, 
as if protected by a lock

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin() starts a transaction
xend() ends the transaction 
started by the most recent 
xbegin()



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT

Transaction aborts if another thread 
accesses a location accessed in transaction 
(or if explicitly aborted)

y = 17



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread 
accesses a location accessed in transaction 
(or if explicitly aborted)

… = y



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread reads a location 
written by the transaction or writes a location 
accessed by the transaction (“Conflicting” accesses)

… = y



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

Reads don’t conflict and 
transactions can read-share data

… = y



What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

These threads are contending for memory 
locations causing repeated aborts. 

How to deal with contention in a 
transactional memory system?



Lock-based Fallback Path

if(xbegin()==OK){

 rlk = 

 read_spinlock(L)

 r1 = x + 1

 r2 = y + 1

 x = r1

 xend()

}else{

//fallback

 lock(L)

 r1 = x+1

 r2 = y+1

 x = r1

 y = r2

 unlock(L)

}

Add a fallback path & abort handling code
Fallback should use spinlocks, not TM.  Why?
TM case needs to read spinlock lock word. Why?
In fallback, can do arbitrary code.
Can also retry TM version repeatedly before giving up and running 
fallback.  Up to you the programmer what sequence to follow.

Precise Intel TSX syntax is available in the lab handout and tm.h in 
the lab release files.



What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

These threads are contending for memory 
locations causing repeated aborts. 

How to deal with contention in a 
transactional memory system?

Random delay for 
contention 
avoidance



A Note About Lock-based Fallback Paths

for(i = 0..MAX_TRIES){

 if(xbegin()){

  …; xend(); goto done;

 }//abort code here

}

//Fallback code here

lock(Lx); lock(Ly);

 r1 = x+1

 r2 = y+1

 x = r1

 y = r2

 unlock(Lx); unlock(Ly);

}

done:

 //continue

Run your transaction some number of times (MAX_TRIES)
If you commit once, skip past your fallback.  Often use ‘goto’…

Locks are tricky in code like this: which locks do you need to 
acquire?  Often need to acquire them all before you make accesses 
associated with locks.



Implementation sketch of TM

L3$L3$

Se
t 

0
Se

t 
1

Se
t 

2
Se

t 
3

Way 0 Way 1 Way 2 Way 3

Line

Valid TagDirty 32 bytes data

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

TM



CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Tracking TM conflicts using coherence msgs

Invalidate

X++
An incoming access request for a 
block with its TM bit set leads to a 
conflict and a transactional abort



Reasons a transaction might abort

• Too many blocks with their TM bits set leaves no room for more TM 
blocks 
• Too many defined as “more blocks w/ TM bits set than blocks in a way”

• Conflict with another transaction or non-transactional access
• identified through incoming coherence traffic

• Explicit xabort() instruction when transactional code concludes 
transaction is not useful

• Other, unspecified, but arbitrary conditions left up to the 
microarchitects
• I speculate that these are related to internal buffers of fixed capacity



What did we just learn?

• Concurrency and parallelism, from the bottom to the top

• Coherence and consistency are both memory ordering principles

• Synchronization exists to spare you data-races and non-SC executions

• Transactional memory is a powerful sync primitive in many x86 CPUs
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