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Recap: Sparse Problems

* What is a sparse problem? Why are they called “sparse”?

 What makes sparse problems hard?

* Roofline performance modeling

 Hardware and software strategies for optimizing sparse problems



Compressed Sparse Data Structures for Feasible Memory Size
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Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there



Compressed Representations = Irreqular Memory Accesses

Dst — Push (CSR Traversal)
Dp D1 Dy D3z D4 : .
o T 711 R for src 1in G.. .
Ak for dst 1n out_neighs(src):
Src sy[1ha] el E dstData[dst] += srcData[src]
300 1]z | . . . .
l s T T T > ¥ + Push traversal performs irregular write operations that lack locality

i.e., Xi,q
O 1 2 3 4

e.g., current rank of pagel |,
CSR e.g., current shortest path 4
from source vertex



Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
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Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;



Even Building the CSR / CSCis an Irreqular Access Pattern!

for e in EL:
neigh_count[e.dst]++; /*e.srcx/
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(EdgeList) Updates to the neigh count
array are to random elements
determined by order of edges
in edge list




Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V], but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries
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(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random



Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V], but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries
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(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= | C| and do multiple sub-spaces of V*s, so that all V*s together =V



Propagation Blocking: Performance Analysis

Usually save a little space in cache for

Traverse the edge list twice instead of once streaming edge list data. Easy to cache.
Binning Bin Read
0]1
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(EdgeList)
Bin 1: Bin 1:
dst 0-2 dst 3-5 dstData
Remember: dstData[e.dst] ++
What about the performance of reading the and e.dst is random, from edge list

edge list during binning?



Propagation Blocking

PropagationBlocking EdgeCount (EdgeList E) {

Bins B[];
for edge 1n E{

add to bin( find bin (edge) )
}

for bin in Bf{
for e in binf{
dstData[e.dst]++

Reducing Pagerank Communication via Propagation Blocking

Scott Beamer™

Krste Asanovi¢  David Patterson
Computational Research Division Electrical Engineering & Computer Sciences Department
} Lawrence Berkeley National Laboratory University of California
} Berkeley, California Berkeley, California
sbeamer@lbl.gov

{krste, pattrsn}@eecs.berkeley.edu

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)



Src

2-way Set-Associative

Using The Graph’s Transpose For Optimal Replacement

Dst —

Do D1 Dy Dz D4

b )

srcDatal[S,]

- /

Pull Traversal Pattern

Pull Execution (CSC Traversal)

for dst in G:
’ for src in in_neighs(dst):
: dstData[dst] += srcData[src]
: CurrDs Irregular Data Stream
: tDO srcData[S4]
v v
Dy | srcData[S,]

Which line should we evict?:
e srcData[S4] (nextRef @ D,)
4
e srcData[S,] (nextRef @ D,)

Dy

Dy

M srcData[S,]

srcDatalS,]

srcData[Ss]

Time

|
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Transpose-based OPT (1-OPT) Provides Large Gains

LLC MPKI

App - PageRank
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Cache Replacement Policies

T-OPT
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Main Technique: Use Quantization To Compress The Transpose

Dst — Epoch-0 Epoch-1 Epoch-2
Dg D1 D D3 D . _
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(Transpose) (Quantized Transpose)



P-OPT Improves Cache Locality

LLC Miss Reduction
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P-OPT’s LLC Miss Reductions Directly Translate To Speedups

Speedup
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Today: Parallel Computer Architectures

* Why do we have mainly parallel computers

* How do we make caches work with parallelism
 Memory consistency models & ordering

* Implementing synchronization



Moore’s Law: The number of transistors on microchips doubles every two years [eHgWlk

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp



Out of Order Execution

Fetch

_Decode

3|2
H|E

(Rename)
/Dispatch

Dispatch instructions into an issue
window that issues instructions to
execute as soon as input operands

are available

Execute instructions from the issue
window fully out of order even if
instructions have a WAW or WAR
dependence that would prevent
them from superscalar issuing

together (how!?)
ALU (non- ‘
mul)
ALU (non- ‘
mul)

1.

L]

mul0 mullmul2

SwW

1w

SW

lw
1w

Memory

Register
Write-Back

3|2
H|E

Commit

Commit in order
to respect
original program
semantics



Register Renaming Resolves Dependences that
Prevent Instructions from Executing Together

Fetch

_Decode

3|2
H|E

(Rename)
/Dispatch

Rename: Replace reg names w/ ref to
entry in table of physical registers

add
mul
add{ x

x11
x13 Rename

add @) 28 x11
mul x"!'hﬂB
add t2 2 x14

Rename table

Eliminate WAW, WAR, and preserve RAW (why?)

1.

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for

L]

mul0 mullmul2

SwW

1w

SW

lw
1w

mul.x6 t1

add2.x6 t2 true deps.
ALU (non- ‘
mul)
ALU (non- ‘
mul)

Memory

Register
Write-Back

In-order Commit

3|2
H|E

Commit




In-order commit tracks instruction completion
and ensures architectural state updates in order

Q.

mul.x6

add2.x6

Rename table

add1.x6

t2

SHEE
o |E]|E

(Rename)
/Dispatch

s w/ ref to
isters

ld 28 x11
1 x9x13
d t2 x12 x14

reserve RAW (why?)

ALU (non-
mul)

ALU (non-
mul)

Reg. Read |

L

mul0 mullmul2

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Preventissue only for
true deps.

In-order Commit

SwW

1w

SW

lw
1w

Memory

Register
Write-Back

3|2
7|2

Commit

Reorder Buffer
ol -

add2 t2 245

add2 is complete, but waits
to update t2 (i.e., x6) until
mul is done

Reorder buffer (ROB) ensures
instructions commit in order. Why do we
care about in-order commit?



Operand supply and commit scalability issues

Instruction
Fetch

Instruction
Fetch &
Decode |

Instruction
Cache

Issue and
Retirement

Reorder
Buffer

and
Instruction

Issue
Queuess

integer
Units

Figure 1. A dynamic superscalar CPU

The Case for a Single-Chip Multiprocessor

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang

Computer Systems Laboratory
Stanford University
Stanford, CA 94305-4070
http://www-hydra.stanford.edu
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Figure 2. Floorplan for the six-issue dynamic superscalar
Microprocessor.

Figure 3. Floorplan for the four-way single-chip
multiprocessor.



How do single-thread vs multi-thread chips
scale?

0.35um R1OK Size Extrapolated % Growth Due to

CPU Component Original Size (mm? | to 0.25um (mm?) New Functionality New Size (mm?) % Area
256K On-Chip L2 Cache * 219 112 0% 112 26%
8-bank D Cache (32 KB) 26 13 25% 17 4%
8-bank I Cache (32 KB) 28 14 25% 18 4%
TLB Mechanism 10 5 200% 15 3%
External Interface Unit 277 14 0% 14 3%
Instruction Fetch Unit and BTB 18 9 200% 28 6%
Instruction Decode Section 21 1 250% 38 9%
Instruction Queues 28 14 250% 50 12%
Reorder Buffer 17 9 300% 34 9%
Integer Functional Units 20 10 200% 31 7%
FP Functional Units 4 12 200% 37 99,
Clocking & Overhead 73 37 0% 37 9%
Total Size — — — 430 100%

Table 2. Size extrapolations for the 6-way superscalar from the MIPS R10000 processor

0.35um R10K Size Extrapolated % Growth Due to 3;::'1?{! / of entire
CPU Component Original Size (mm?) | to 0.25um (mm?) New Functionality New Size (mm?) chip)
D Cache (§ KB) 26 13 -75% 3 6% /3%
1 Cache (8 KB) 28 14 -15% 4 1% 1 3%
TLB Mechanism 10 5 0% 5 9% / 5%
Instruction Fetch Unit and BTB 18 9 -25% 7 13% /7%
Instruction Decode Section 21 1 -50% 5 10% / 5%
Instruction Queues 28 14 -70% 4 8% /4%
Reorder Buffer 17 9 -80% 2 3% 1 2%
Integer Functional Units 20 10 0% 10 20% / 10%
FP Functional Units 24 12 0% 12 23% / 12%
Per-CPU Subtotal - - — 53 100% / 50%
256K On-Chip L2 Cache * 219 112 0% 112 26%
External Interface Unit 2 14 0% 14 3%
Crossbar Between CPUs - = = 50 12%
Clocking & Overhead 7 37 0% 37 9%
Total Size — — — 424 100%

Table 3. Size extrapolations in the 4 x 2-way MP from the MIPS R10000 processor.




Performance of single- vs. multi-threaded
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Figure 6. Performance comparison of SS and MP.
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Shared memory multi-threading
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Parallel hardware + parallelizable software
are a direct application of Amdahl’s Law

Multi-core parallelism was the primary way
to keep performance scaling alive once

single-thread performance hit the wall

How to we architect a programmable
parallel computer system?

What are the main impediments to parallel
programmability?

To parallel optimization?
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“Coherence seeks to make the caches of

a shared-memory system as functionally invisible as
the caches in a single-core system. Correct

coherence ensures that a programmer cannot
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011



Cache Coherence



: : CPU 3
) ) Rd X=?

What is the behavior of this parallel program?
(X initially 0)



X++

(and the symmetric case)



: CPU 3
Rd X=7

~

What assumptions are we making about the system
to produce the results 0, 1, and 27



We assume the updates see one anothers’ results!
Q: Why wouldn’t they see one anothers’ updates?



X++
$[X)=1 ™~~~ Rd X=?
Memory: X=0
CPU1: X=1
CPU2: X=1
Expected Program Result: X=2 (?!)

What now?



CPU 3
Rd X=7

Memory: X=0
CPU1: X=1
CPU2: X=1

Reality: X=2 (?!)

Never let this happen. Caches should be coherent.

“coherence ensures that a programmer cannot determine whether and
where a system has caches by analyzing the results of loads and stores”



Defining Coherence

“Coherence serializes all reads with all updates to the same
location by different CPUs/caches, so that each read sees
the result of the most recent update by any other”

From the Primer on Cache Coherence & Consistency

Single Writer/Multiple Reader (SWMR) Invariant:

There is one writer or an arbitrary number of readers of a block
of memory that could be cached at any given time.

Data-Value Invariant:

There is a globally defined most recent write and a read always
reads the value written by the most recent write before that read



Epoch Model

Definition: an “epoch” is a period of

time the extents of which are

determined by a property of that
S[X]=0 period of time; like a geological era

Read/Write| X++ or the Anthropocene period.
Epoch for CPU1 SX1=1

O $[X]=1
Read/WriteK ++
Epoch for CPU2p[X]=2

— S[X]=2 $[X]=2
Read-only Rd X=?
Epoch for allf $XI=2 $[X]=2

Yay! Corresponds to reality!



Epoch Model

R/W vs. R-O Epochs directly enforce SWMR

I“‘
1"‘
‘‘‘‘‘
‘‘‘‘‘
[ 3 ¢
P ‘e
.* *
.
.* .
.* .
. .0
.
. ‘.

p0 -
Read/Write| X ++ P .
Epoch for cpu1|>XI=1 P T
7 s}t e
. Read/Write(X++
¢ Epoch for CPU2| $[X]=2 o
‘‘‘‘‘ Proe —; S[X]=2 S[X]=2
S e Read-only Rd X=?
S e Epoch for all| SXI=2 S[X]=2
S e Yay! Corresponds to reality!

Epoch tran5|t|ons assume data-value invariant



Epoch Model

§[X]=0 e P
Read/Write| X ++ P T
Epoch for CPU1[*XI=1 P e
T st
"""""" Read/Write| X ++
""""" Epoch for CPU2| $[X]=2 e
................ — — S[X]=2 S[X]=2
----------------------------------------------- Read-only Rd X="7?
ittt Epoch for all| *[XI=2 S[X]=2
Epoch transitions assume data-value invariant Yay! Corresponds to reality!

Question: What are the requirements for an implementation of the Epoch Model?



Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state
based on (1)local memory operations; and (2)other CPUs’
memory operations

Add support to get data from (1)local cache; (2)a remote
cache; or (3)main memory, depending on line’s protocol state



High-level sketch of protocol
In action

(1) CPU1 says “l am is writing X”
Others relinquish cached copies of X

and reply “OK go for it” <enter R/W epoch>

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
*
.

$[X]=0 . (ditto (1) for CPU2) (2)
Read/Write| X ++
Epoch for CPU1 51X]=1

- — 11 o CPU3 says “I want to read only”
“““““ Read/Writ [-I]-_-I- (4) Others reply “OK, we all agree
"""" €d e ~ not to write without saying so”
““““ Epoch for CPU2pIX]=2 <enter R-O epoch>
““““ | aa — X2 $[X]=2
CPU1 replies “l have X. Use my < Read-only Rd X=?
copy or get it from memory after | Epoch for allf $XI=2 S[X]=2

write it back”
(3)

(ditto (3) for éPU 2) (5)



Cache Coherence Protocol

) O,

Per-line coherence states

o



Cache Coherence Protocol

@1 (inaccessible)



Cache Coherence Protocol

Local operations perspective

Locally perform a

read or write (" /l_ocally perform a read

b |
Locally perform a write Locally perform a read
[send invalidations to other CPUs] [send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]




Cache Coherence Protocol

Remote operations perspective

Incoming request to share
[reply with data or write back]

>

Incoming Invalidation Incoming Invalidation
[reply with invalidation acknowledgement] [reply with invalidation acknowledgement]







Can we design another state?

What should we optimize?






-xclusive read-only avoids
invalidation messages

@ -_ ’ Q
b - ‘ -, .
Exclupive Read-only I
- »

(Benefit: no invalidation required
to transition from E->M, like from S->M)







Imp\ementmg the Protocol

: CPU 3
) Rd X="?
S

Shared bus for coherence messages

% Snoopy Coherence



Imp\ementmg the Protocol
CPU 3

) Rd X=1

$

Invalidate

X++



Imp\ementmg the Protocol

> CPU 3
) Rd X="
S
Ack Ack

X++



Imp\ementmg the Protocol
CPU 3

) Rd X=1

$

Entering CPU1’s
write epoch

X++



Implementing the Protocol
: CPU 3

) Rd X=1

$

RdReq
X++ Rd X=7




Implementmg the Protocol

nave-it

CPU 3
Rd X=7

S

Rd X=?



Implementing the Protocol

= CPU 3
) Rd X="7
(S)|x=1

Entering R-O
epoch

X++ Rd X=?



Implementing the Protocol
CPU 3

H H bd x=3
g S

&l LN

What sucks about Snoopy?



Implementing the Protocol
: CPU 3

) Rd X=1

S

Shared bus

Bus limits scalability due to congestion and
complex message arbitration



Figure 1-1. Uncore Sub-system Block Diagram of Intel Xeon Processor E5-2600 Family Figure 1-2. Intel® Xeon® Processor ES v3-1600/2600/4600 Family -12C Block Diagram
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Figure 1-1. Intel® Xeon® Processor Scalable Memory Family - Block diagram for a 28C
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Implementing the Protocol
CPU 3

MR

CPU and 3 do. Sharers of X
Send them Invalidates!

X++
Rd X="?

Directory-based

X++
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Benefit: No broadcast on shared bus
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Implementing the Protocol

Sharers of Y

CPU 3

=
\

Sharers of X

Centralized directory won’t scale
(In Practice: Distribute Directory)



“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved if
the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979



“The memory consistency model of a
shared-memory system specifies the
order in which memory operations will
appear to execute to the programmer.
The memory consistency model affects
the process of writing parallel programs
and forms an integral part of the entire
system, including the architecture, the
compiler, and the programming
language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999



Memory Consistency



Memory Consistency Model

Informal Definitions:
“Defines the value a read operation may read

at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”



Coherence is Ordering

Wr X Wr X
\ OR /
Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location



Consistency is Ordering

Wr X WrY
\ OR /
Wr X

WrY

Consistency defines the set of legal orders of
accesses to multiple memory locations



Sequential Consistency (SC)

The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:

All processors agree
on a total order of
executed instructions



The SC “Switch”

Wr X Wr Y Rd X

RdY Rd X

Execution




The SC “Switch”
Wr X Wr'Y Rd X
Rd'Y Rd X
Execution
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The SC “Switch”
Wr X Wr Y Rd X
Rd'Y Rd X
Execution

Wr X

RdY

Wr'Y
Rd X




The SC “Switch”

Wr X Wr Y Rd X
RAY Rd X
Execution
Wr X
Rd Y
Wr Y
Rd X

Rd X



Why is SC Important?

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC)Weird (not SC)
Wr X Rd Y
WrX IwrY | Rd X Rd Y Wr X
Wr Y Rd X
RAY | Rd x Rd X Rd X
Rd X Wr Y

SC prohibits all reordering of instructions (Invariant 1)



Real hardware does not enforce SC

The ARMv8 Memory Model:

The ARMv8 architecture employs a weakly-ordered model of memory. In general terms, this means that the order of memory accesses is not required to be the

same as the program order for load and store operations. The processor is able to re-order memory read operations with respect to each other. Writes may also

be re-ordered (for example, write combining) .As a result, hardware optimizations, such as the use of cache and write buffer, function in a way that improves the

performance of the processor, which means that the required bandwidth between the processor and external memory can be reduced and the long latencies
associated with such external memory accesses are hidden.

https://developer.arm.com/documentation/den0024/a/Memory-Ordering



Reordering #1: Write Buffers

- CPU can read its write
U CPU buffer, but not others’

Write Buffer Write Buffer
El‘c'dﬁé'réh't -

Buffered writes eventually end up in coherent
shared memory




Reordering #1: Write Buffers

Program

Initially X ==Y ==
X=1 Y=1

ri=yY r2=X

Is rl==r2==0
El‘ ........ » a valid result?




Reordering #1: Write Buffers

Program
Initially X ==Y ==

X=1 Y=1

ri=yY r2=X

Is rl==r2==0
EF ........ ’ a valid result?

rl ==r2==0is not SC, but it can happen with write buffers



Reordering #1: Write Buffers

Program
Initially X ==Y ==
X=1 v=1
ri=y r2=X
El. ........ . - .



Reordering #1: Write Buffers

Program
Initially X ==Y ==
Y=1

ri=yY r2=X

e Yl vecut




Reordering #1: Write Buffers

Program

l Initially X == Y ==

ri=yY r2=X

et M : '



Reordering #1: Write Buffers

Program

l Initially X == Y ==

’ Execution

r2=X




Reordering #1: Write Buffers

Program
Initially X ==Y ==




Reordering #1: Write Buffers

Program
Initially X ==Y ==

r1=Y [rl <- O]



Reordering #1: Write Buffers

Program
l Initially X == Y ==
e . : .
r1=Y [rl <- O]

r2=X[r2 <- 0]



Reordering #1: Write Buffers
Program
D D Initially X == Y ==
M Jeo ] et
r1=Y [rl <- 0]
WBs let reads finish r2=X[r2 <- 0}
X=1

before older writes



Reordering

Coalescing Write Buffer

2: Write Combining

Program

X,Zin same S line

X=1
Y=1

/=1

4 word cache line



Reordering

2: Write Combining

. . Program
Coalescing Write Buffer . .
=1 X,Z in same S line
X=1
Y=1

/=1




Reordering

X=1

Coalescing Write Buffer

Y=1

2: Write Combining

Program

X,Zin same S line

X=1
Y=1
/=1



Reordering #2: Write Combining

. . Program
Coalescing Write Buffer_ . .
=1 X,Zin same S line
=1 X=1

Y=1
z=1 =1




Reordering #2: Write Combining

Coalescing Write Buffer Coalescing Write Buffer

X=1 X=1 | z=1
y=1 . y=1

/=1

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1



Reordering #3: Interconnect

4-threaded program

X=1C

V=10
Variable time cost traversing r1=X|rl <-1]
routed on-chip network r2=Y rz <- O
r3=Y [r3<-1]
r4=X [r4 <- O]

1]




Reordering #4: Compilers

X=0
for (1 .. 100) X=1
=1 X =0 . for (1..100)  y g
print X print X

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “2000000...”)




When is an Execution Not SC?

When a memory operation happens before itself

Lxecution Happens-Before Graph
r1=Y [rl <- O]
r2=X [r2 <- 0] X=1 ¥=1

X=1

v=1 ri=yY r2=X



When is an Execution Not SC?

When a memory operation happens before itself

Lxecution Happens-Before Graph
rl=Y [r1<-0] »
r2=X[r2<-0] - X=1 =1
. = Ceeeceese . \4
e ﬁj 2y r2=X

; Program Order HB Edge



When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
rl=Y [r1<-0] »

r2=X[r2<-0] \" X=1 ¥=1
/ X=1 E B

——Y=1

. Program Order HB Edge
J Causal Order HB Edge



When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
rl=Y [r1<-0] »

r2=X[r2<-0] \" X=1 ¥=1
/ X=1 E B

—;.":"}‘Yzl ri=Y r2=x

If there is a cycle in the happens-before graph, the
execution is not SC



When is an Execution Not SC?

When a memory operation happens before itself

% Happens-Before Graph
N ' T >
V=1 \( x=1 y=1 r1=M3=y
\rl—X rl <-1] \ : :
r2=Y [r2 <- 0] / \ r2=Y r4=X
r3=Y [r3 <-1 —
rd=X (r4 <- 0

If there is a cycle in the happens-before graph, the
execution is not SC



Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC



X8 6‘TSO (intel x86s)

“The Write Buffer Memory Model”

= Relaxes W->R
X ->
/le elaxes
\ order
r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.



mplementing Synchronization for Weak
Memory Models

* What does synchronization have to do to prevent SC violations?

* Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent
compiler reorderings

* What does synchronization have to do to prevent other kinds of
problems?

* Enforce mutually exclusive execution by different threads of critical region,
force threads to wait at barriers, enforce wait/notify discipline



Synchronization and its
Implementation



Synchron

Reorderir

ization Can Prevent Operation

2

Memory fences are one type of synchronization

rl=
Reordering prevented f/g

Fence

Y

ﬂory Fence

~rl=Y

implementation depends on reordering implementation

We will see later in this lecture why reordering matters so much.



Synchronization For Real
Programmers

Memory fences are wrapped up in locks, etc.

ri=Y

Reordering prevented : X=1

I C
N,
~rl=yY

Direct use of fences can be tricky and you will usually use a library



Data Races

Synchronization imposes happens-before on otherwise
unordered operations

Lock I
Y=1
Unlock ﬂ Order: Data race prevented
S
rl=Y
| ) C <

Data Race: Unordered operations to the same memory
location, at least one write.



Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0

H"‘\

~ri=y

X=1 Eiliii yd Y=1 Eimii

Thread 1

Pl

~r2=X

We will see later that this
program can produce very
strange results if not
sychronized



Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread O Thread 1
r1=X r2=X What happens with this
rl++ r2++ program? Where can we put
X=rl X=r2 the fence?

&



Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0 Thread 1
M M How about fences
rl++ Eﬁnig M everywhere? Does this fix our

X=rl X=r2 problem?



Some programs also require atomicity

Thread 0 Thread 1
Defining Atomicity:
r1=X r2=X 8 . Y : . :
All-or-nothing behavior of critical regions.
ri++ r2++
X=rl X=r2 Execution = serialization of crit. regs.

Fences don’t provide atomicity ﬂ



Some programs also require atomicity

Serialization #1 Serialization #2

r1=X r2=X

rl++ r2++ Defining Atomicity:

X=r1 X=r2 All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.

r2=X ri=Xx

r2++ rl++

X=r2 X=rl




Mutual exclusion (mutex) locks enforce
atomicity (and ordering)

Lock Behavior:

Thread 0 Thread 1 A thread acquires a lock L, does stuff
Lock L Lock L while holding L, and then releases lock L.
r1=X r2=X
rl++ r2++ If a thread tries to acquire L while L is
X=r1 X=r2 held, the thread keeps trying to acquire L
Unlock L Unlock L until L is unheld, when its attempt to

acquire succeeds.



SpinLock is one lock implementation

Thread O Thread 1
Lock L Lock L
r1=X r2=X
rl++ r2++
X=rl X=r2
Unlock L Unlock L

spinlock (L) {
while( sync bool compare and swap(&L,0,1) == 0 ) {
/*do nothing; pause here on some systems¥*/
}
}

unlock(L){ L = 0; __ sync_synchronize(); /*mem fence*/ }



SpinLock is one lock implementation

spinlock (L) {

while( sync bool compare and swap(&L,0,1) == 0 ) {
/*do nothing; pau%e here on some systems*/
}

}
unlock(L){ L = 0; __ifnc_synchronize(); /*mem fence*/ }

Turtles all the way down?



SpinLock is one lock implementation

spinlock (L) {
while(___sync bool compare and swap(&L,0,1) == 0 ) {

/*do nothing; pauﬂe here on some systems*/

}
}
unlock (L) { L = 0; __s#nc_synchronize(); /*mem fence*/ }
1
175b: 48 8b 02 mov $rdx) ,%rax //load L into $%rax
175e: 48 8d 48 01 lea Ox1 (%$rax) ,%rcx //add 1 to %rax, into %rcx

1762: £0 48 0f bl 0a 1lock cmpxchg %$rcx, ($rdx) //compare & exchange
1767: 75 f£2 jne 175b //loop to mov if cmpxchg fails



SpinLock is one lock implementation

spinlock (L) {
while(___sync bool compare and swap(&L,0,1) == 0 ) {

/*do nothing; pauﬂe here on some systems*/

}
}

unlock(L){ L = 0; __s#nc_synchronize(); /*mem fence*/ }

|

1762: £0 48 0f bl 0a 1lock cmpxchg %$rcx, (%rdx)
//if (%rdx) == S%rax({ $rdx) = %rcx }

Implemented directly in the machine microarchitecture. Even if multiple
threads executing, hardware guarantees no inter-thread interactions



SpinLock is one lock implementation

spinlock (L) {
while( sync bool compare and swap(&L,0,1) == 0 ) {
/*do nothing; pause here on some systems*/
}
}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1890: Of ae fO mfence Eﬁnsﬁ



Lock ordering matters

Thread O
Lock LX

Lock LY

X++
y++

Unlock LX
Unlock LY

Thread 1

Lock LX
Lock LY

X++
y++

Unlock LX
Unlock LY

Lock Ordering:

If you manipulate more than one piece
of data in a critical region, you will need
to acquire the locks in the same order for
all critical regions or face deadlock

Thread O Thread 1
Lock LX
Lock LY
Lock LY
Lock LX




Directly Using Compare and Swap

Thread O Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r2=X
1++ 2++ rl = x + 1 r2 = x + 1
r r _cas(&x,x,rl) _cas(&x,x,r2)
X=r1 X=r2
Unlock L Unlock L

How general is a CAS operation for implementing critical regions that need to
execute atomically? What are the limitations on a CAS operation?



Fetch and Add — Further Specializing Atomics

__sync_fetch and add(x,1);

Thread O Thread 1 Thread 0 Thread 1
Lock L Lock L
ri=X r2=X
r1++ r2++ _fna(&x,1) _fna(&x,1)
X=r1 X=r2
Unlock L Unlock L

1707: £0 48 83 04 d0 01 lock addg $0x1, (%rax,%rdx, 8)

How much Jess general than compare and swap?



Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r2=X
rl = x + 1 r2 =x+1
ri++ r2++ _cas(&x,x,rl) _cas(&x,x,r2)
X=r1 X=r2
Unlock L Unlock L

Limited by single location that can be updated using a CAS. What if we want to
update 3 (or n) different locations (without using a lock)?



Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=Xx r3=X
r1++ r3++ rl =x + 1 r3=x+1
X=r1 X=r3 ;Z.az (f;x;xirl) ;Zaz (;x;xirB)
r2=Y r2=Y _cas(&y,y,xr2) _cas(&y,y,r4)
Y++ Y++
Y=r2 Y=r2
Unlock L Unlock L

How about using multiple CAS operations?



Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r3=X
r1++ r3++ rl =x+ 1 r3=x+1
_ _ _cas(&x,x,rl) _cas(&x,x,r3)
X=rl X=r3 r2 =y + 1 = bl
r2=Y r2=Y _cas(&y,y,xr2) _cas(&y,y,r4)
Y++ Y++
Y=r2 Y=r2
Unlock L Unlock L

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1
xbegin () xbegin() starts a transaction xbegin ()
rl = x +1 xend() ends the transaction rl =x +1
r2 =y+1 started by the most recent r2 =y +1
x =rl xbegin() x =rl
y = r2 y = r2
xend () xend ()

Transaction attempts to execute atomically,
as if protected by a lock



Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 y = 17
x =rl
ABORT

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)



Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 =y
Xx =rl
ABORT?

Transaction aborts if another thread
accesses a location accessed in transaction

(or if explicitly aborted)



Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 =y
Xx =rl
ABORT?

Transaction aborts if another thread reads a location
written by the transaction or writes a location
accessed by the transaction (“Conflicting” accesses)



Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin ()
rl = x + 1
r2 =y +1

oo Y
x =rl
AB@R_T/

Reads don’t conflict and
transactions can read-share data




What do we do if we have repeated aborts?

Thread 0 Thread 1
’dl’egm(’ . xbegin ()
ri = x4 rl = x + 1
rz=y+1 r2 =y + 1
x =rl _
x =rl
ABORT ABORT These threads are contending for memory
: locations causing repeated aborts.
xbegin () xbegin ()
rl =x+1 _ : .
_ rl =x+1 How to deal with contention in a
r2 =y +1 5 — 1 -
_ re =y + transactional memory system?
x =rl _
x =rl
ABORT ABORT
xbegin () xbegin ()
rl =x+1
5 = + 1 rl =x+1
€Ty r2 =y + 1
x =rl w = 1




Lock-based Fallback Path

if (xbegin () ==O0K) {
rlk =
read spinlock (L)
rl =x + 1
r2 =y +1 Add a fallback path & abort handling code
x =rl Fallback should use spinlocks, not TM. Why?
xend () TM case needs to read spinlock lock word. Why?
}else{ In fallback, can do arbitrary code.
//fallback Can also retry TM version repeatedly before giving up and running
]];:CE (>L:-)l-1 fallback. Up to you the programmer what sequence to follow.
r2 = y+l Precise Intel TSX syntax is available in the lab handout and tm.h in
x =rl the lab release files.
y = r2
unlock (L)
}




What do we do if we have repeated aborts?

Thread 1

xbegin ()
rl = x + 1
r2 =y +1
x =rl
ABORT

xbegin ()
rl =x + 1
r2 y + 1

Thread O

xbegin ()

rl =x+ 1

r2 =y + 1

Xx =rl

ABORT
E B EEEEEEEEEEEERN
| | | |
= Random delay for =
®  contention L
| | | |
m avoidance m
| | | |
| | | |
| | | |
| | | |
.IIIIIIIIIIIIIII.

xbegin ()

rl =x+1

r2 =y +1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?



A Note About Lock-based Fallback Paths

For(i = 0. .MAX TRIES) {

}

}

if (xbegin()) {
... xend () ; goto done;
}//abort code here

//Fallback code here
lock (Lx) ; lock (Ly) ;

rl = x+1
r2 = y+l
x =rl
y = r2

unlock (Lx) ; unlock (Ly) ;

done:

//continue

Run your transaction some number of times (MAX_TRIES)
If you commiit once, skip past your fallback. Often use ‘goto’...

Locks are tricky in code like this: which locks do you need to
acquire? Often need to acquire them all before you make accesses
associated with locks.



Implementation sketch of TM

Way 0 Way 1 Way 2 Way 3

L3S

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

Valid | Dirty Tag 32 bytes data




Tracking TM conflicts using coherence msgs

Invalidate

CPU 3
Rd X=7

S

X++

An incoming access request for a
block with its TM bit set leads to a
conflict and a transactional abort



Reasons a transaction might abort

* Too many blocks with their TM bits set leaves no room for more TM
blocks

* Too many defined as “more blocks w/ TM bits set than blocks in a way”

* Conflict with another transaction or non-transactional access
* identified through incoming coherence traffic

 Explicit xabort() instruction when transactional code concludes
transaction is not useful

e Other, unspecified, but arbitrary conditions left up to the
microarchitects

* | speculate that these are related to internal buffers of fixed capacity



What did we just learn?

e Concurrency and parallelism, from the bottom to the top

* Coherence and consistency are both memory ordering principles

* Synchronization exists to spare you data-races and non-SC executions
* Transactional memory is a powerful sync primitive in many x86 CPUs
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