
CMU 18-344: Computer
Systems and the

Hardware/Software Interface
Fall 2024, Prof. Brandon Lucia

Recap: Sparse Problems

• What is a sparse problem? Why are they called “sparse”?

• What makes sparse problems hard?

• Roofline performance modeling

• Hardware and software strategies for optimizing sparse problems

3

Src

Dst

Offsets Array (OA)

Neighbors Array (NA)

Compressed Sparse Row (CSR)
Outgoing Neighbors

Compressed Sparse Data Structures for Feasible Memory Size

21 12 1
Vertex Property Array
i.e., srcData / dstData

Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there

Src

Dst
for src in G:
 for dst in out_neighs(src):
 dstData[dst] += srcData[src]

Push (CSR Traversal)

OA

NA

CSR
4

Compressed Representations ⇒ Irregular Memory Accesses

dstData

srcData

e.g., current rank of page I,
e.g., current shortest path
from source vertex

i.e., xi+1

0 1 2 3 4

5 20 10 2 1

Push traversal performs irregular write operations that lack locality

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

5

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Irregular Accesses Lead to Poor Locality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

Even Building the CSR / CSC is an Irregular Access Pattern!
for e in EL:
 neigh_count[e.dst]++; /*e.src*/

2 1 1 2 1 neigh_count

Updates to the neigh_count
array are to random elements
determined by order of edges
in edge list

7

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on
e.dst which are essentially random

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

8

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

0 0 0 0 0

Recall: irregular accesses into
vertex data array based on
e.dst which are essentially random

Bad for the cache: the size of the domain of
vertex data array entries is |V|, but the
cache holds only |C| << |V| entries|Domain| = |V| = 5 vertices

|Cache| = 2 vertices

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= |C| and do multiple sub-spaces of V*s, so that all V*s together = V

9

Propagation Blocking: Performance Analysis

0 0 0 0 0

dstData
Remember: dstData[e.dst] ++
and e.dst is random, from edge list

Traverse the edge list twice instead of once

Bin 1:
dst 0-2

Bin 1:
dst 3-5

0 1

2 0

1 0

0 2 2 3

0 3 0 0 0

0 4

Binning Bin Read

Usually save a little space in cache for
streaming edge list data. Easy to cache.

What about the performance of reading the
edge list during binning?

Streaming

Random Access, but always in cache

Propagation Blocking

PropagationBlocking_EdgeCount(EdgeList E){

 Bins B[];

 for edge in E{

 add_to_bin(find_bin(edge))

 }

 for bin in B{

 for e in bin{

 dstData[e.dst]++

 }

 }

}

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)

11

Src

Dst

for dst in G:
 for src in in_neighs(dst):
 dstData[dst] += srcData[src]

srcData[S1]

srcData[S2]

srcData[S4]

srcData[S2]

srcData[S3]

D0

D0

D0

D1

D1

. .
.

Time

srcData[S1]

srcData[S2]

2-way Set-Associative
Cache

Which line should we evict?:
● srcData[S1] (nextRef @ D4)

● srcData[S2] (nextRef @ D1)

Irregular Data StreamCurrDs
t

Using The Graph’s Transpose For Optimal Replacement
Pull Execution (CSC Traversal)

12

Transpose-based OPT (T-OPT) Provides Large Gains

1.7X

13

Src

Dst

OA

NA

CSR
(Transpose)

Rereference Matrix
(Quantized Transpose)

Divide execution into
coarse-grained epochs

Quantization enables
compression of transpose data

Main Technique: Use Quantization To Compress The Transpose

P-OPT Improves Cache Locality

14

P-OPT results are
only 12% away
from the Ideal

P-OPT’s LLC Miss Reductions Directly Translate To Speedups

15

P-OPT provides up
to 1.56x speedup

over LRU

Today: Parallel Computer Architectures

• Why do we have mainly parallel computers

• How do we make caches work with parallelism

• Memory consistency models & ordering

• Implementing synchronization

Fetch Decode ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

Out of Order Execution

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue
window that issues instructions to
execute as soon as input operands
are available

Execute instructions from the issue
window fully out of order even if
instructions have a WAW or WAR
dependence that would prevent
them from superscalar issuing
together (how!?)

Commit in order
to respect
original program
semantics

Fetch Decode ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

Register Renaming Resolves Dependences that
Prevent Instructions from Executing Together

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

In-order commit tracks instruction completion
and ensures architectural state updates in order

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

end

Out of Order Execution

In-order Commit

Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

Reorder Buffer

add1 t1

add2 t2

mul x9

17

???

245

Reorder buffer (ROB) ensures
instructions commit in order. Why do we
care about in-order commit?

add2 is complete, but waits
to update t2 (i.e., x6) until
mul is done

Operand supply and commit scalability issues

How do single-thread vs multi-thread chips
scale?

Performance of single- vs. multi-threaded

•7nm process
•17 metal layers
•~25.9B transistors

•~257 mm² die size
•8 Perf Cores + 16 Efficiency Cores + GPU

Shared memory multi-threading

Parallel hardware + parallelizable software
are a direct application of Amdahl’s Law

Multi-core parallelism was the primary way
to keep performance scaling alive once
single-thread performance hit the wall

How to we architect a programmable
parallel computer system?

What are the main impediments to parallel
programmability?

To parallel optimization?

“Coherence seeks to make the caches of
a shared-memory system as functionally invisible as
the caches in a single-core system. Correct
coherence ensures that a programmer cannot
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011

Cache Coherence

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What is the behavior of this parallel program?
(X initially 0)

CPU 1 CPU 2 CPU 3

X++

$ $ $

X++ Rd X=?

X++
X++ Rd X=2

X++
X++

Rd X=2

X++

X++
Rd X=1

(and the symmetric case)

X++ X++

Rd X=0

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

What assumptions are we making about the system
to produce the results 0, 1, and 2?

X++

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?

We assume the updates see one anothers’ results!
Q: Why wouldn’t they see one anothers’ updates?

X++

CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

What now?

CPU1: X=1
CPU2: X=1
Expected Program Result: X=2 (?!)

CPU 1 CPU 2 CPU 3

X=0 X=0 $

X++ Rd X=?X++

X++
X++ Rd X=?

$[X]=1

$[X]=1
Memory: X=0

Never let this happen. Caches should be coherent.

CPU1: X=1
CPU2: X=1
Reality: X=2 (?!)

“coherence ensures that a programmer cannot determine whether and
where a system has caches by analyzing the results of loads and stores”

Defining Coherence
“Coherence serializes all reads with all updates to the same
location by different CPUs/caches, so that each read sees
the result of the most recent update by any other”
 From the Primer on Cache Coherence & Consistency

Single Writer/Multiple Reader (SWMR) Invariant:
There is one writer or an arbitrary number of readers of a block
of memory that could be cached at any given time.

Data-Value Invariant:
There is a globally defined most recent write and a read always
reads the value written by the most recent write before that read

Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only
Epoch for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay! Corresponds to reality!

Definition: an “epoch” is a period of
time the extents of which are
determined by a property of that
period of time; like a geological era
or the Anthropocene period.

Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only
Epoch for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay! Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant

Epoch Model

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only
Epoch for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2
Yay! Corresponds to reality!

R/W vs. R-O Epochs directly enforce SWMR

Epoch transitions assume data-value invariant

Question: What are the requirements for an implementation of the Epoch Model?

Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state
based on (1)local memory operations; and (2)other CPUs’
memory operations

Add support to get data from (1)local cache; (2)a remote
cache; or (3)main memory, depending on line’s protocol state

High-level sketch of protocol
in action

X++

X++

Rd X=?

$[X]=1

$[X]=2

Read/Write
Epoch for CPU1

Read/Write
Epoch for CPU2

Read-only
Epoch for all

Rd X=?

$[X]=1

$[X]=2 $[X]=2

$[X]=0

$[X]=2 $[X]=2

CPU1 says “I am is writing X”
Others relinquish cached copies of X
and reply “OK go for it” <enter R/W epoch>

(ditto (1) for CPU2)

CPU1 replies “I have X. Use my
copy or get it from memory after I
write it back”

(1)

(2)

(3)
(ditto (3) for CPU 2)

CPU3 says “I want to read only”
Others reply “OK, we all agree
not to write without saying so”

(4)

(5)

<enter R-O epoch>

Cache Coherence Protocol

Per-line coherence states

M S

I

Cache Coherence Protocol

Modified (R/W) Shared (R-O)

Invalid (inaccessible)

Cache Coherence Protocol
Local operations perspective

M S

I

Locally perform a read
[send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Locally perform a read
Locally perform a
read or write

Cache Coherence Protocol
Remote operations perspective

M S

I

Incoming Invalidation
[reply with invalidation acknowledgement]

Incoming request to share
[reply with data or write back]

Incoming Invalidation
[reply with invalidation acknowledgement]

Can we design another state?

M S

I?

What should we optimize?

Exclusive read-only avoids
invalidation messages

M S

IExclusive Read-only

(Benefit: no invalidation required
to transition from E->M, like from S->M)

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Snoopy Coherence

Shared bus for coherence messages

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Invalidate

X++

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

X++

Ack Ack

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++

(M)
Entering CPU1’s
write epoch

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

RdReq

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(M)

Don’t have itGot it: X=1

CPU 1 CPU 2 CPU 3

X=1 $ X=1

X++ Rd X=?X++

Implementing the Protocol

X++ Rd X=?

(S) (S)
Entering R-O
epoch

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

What sucks about Snoopy?

Implementing the Protocol

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Bus limits scalability due to congestion and
complex message arbitration

Implementing the Protocol

Shared bus

Intel Sandybridge Multiprocessor: bi-directional ring network

Skylake Xeon 2017 2D mesh

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X(Effectively) Point to Point Links

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

Who has X?

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

No one does!
Proceed!

CPU 1 CPU 2 CPU 3

$ X=1 X=1

X++ Rd X=?X++

Implementing the Protocol

Directory-based

Sharers of X

X++

CPUs 2 and 3 do.
Send them Invalidates!

X++
Rd X=?

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Benefit: No broadcast on shared bus

Sharers of X

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Drawbacks?

Sharers of X

X++

CPU 1 CPU 2 CPU 3

X=1 $ $

X++ Rd X=?X++

Implementing the Protocol

Centralized directory won’t scale
(In Practice: Distribute Directory)

Sharers of XSharers of Y

“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved if
the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979

“The memory consistency model of a
shared-memory system specifies the
order in which memory operations will
appear to execute to the programmer.
The memory consistency model affects
the process of writing parallel programs
and forms an integral part of the entire
system, including the architecture, the
compiler, and the programming
language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999

Memory Consistency

Memory Consistency Model

“Defines the value a read operation may read
at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Informal Definitions:

Coherence is Ordering

Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

Wr X

Wr X
OR

Consistency is Ordering

Wr X

Wr Y

Consistency defines the set of legal orders of
accesses to multiple memory locations

Wr X

Wr Y
OR

Sequential Consistency (SC)
The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:
All processors agree
on a total order of
executed instructions

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X

The SC “Switch”

Execute

Wr X

Rd Y

Wr Y

Rd X

Rd X

Execution
Wr X
Rd Y
Wr Y
Rd X
Rd X

Why is SC Important?

Intuitive (SC)
Wr X
Rd Y
Wr Y
Rd X
Rd X

Weird (not SC)

Wr X
Rd Y

Wr Y
Rd X
Rd X

Wr X

Rd Y

Wr Y

Rd X

Rd X

SC prohibits all reordering of instructions (Invariant 1)

SC is the most complex model that we can ask
programmers to think about.

Real hardware does not enforce SC

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

The ARMv8 Memory Model:

Reordering #1: Write Buffers Execution

M M

CPU can read its write
buffer, but not others’

Buffered writes eventually end up in coherent
shared memory

Coherent

CPU CPU

Write BufferWrite Buffer

Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

Reordering #1: Write Buffers Execution

X=1

r1=Y

Y=1

r2=X

M M

Program

Is r1==r2==0
a valid result?

Initially X == Y == 0

r1 == r2 == 0 is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Execution

r1=Y

Y=1

r2=X

M M

Program

Initially X == Y == 0
X=1

Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1

Y=1

Reordering #1: Write Buffers

Execution

r1=Y r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1

Reordering #1: Write Buffers

Execution

r2=X

M M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y

Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y r2=X

Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r1=Y [r1 <- 0]

r2=X

Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1 Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

Reordering #1: Write Buffers

ExecutionM M

Program

Initially X == Y == 0

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

WBs let reads finish
before older writes (Not SC!)

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

4 word cache line

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Reordering #2: Write Combining

Coalescing Write Buffer

X=1

Program

X,Z in same $ line

Y=1
Z=1

X=1

Y=1

Z=1

Reordering #2: Write Combining

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalescing Write Buffer
X=1

Y=1

Z=1

Coalesce

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1

Reordering #3: Interconnect

Execution

4-threaded program

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]

X=1 Y=1r1=X

r2=Y

r3=Y

r4=X

r2=Y [r2 <- 0]

r4=X [r4 <- 0]

X=1 Y=1

Y=1

X=1
Variable time cost traversing
routed on-chip network

Reordering #4: Compilers

for (1 .. 100)

X = 1 X = 0
print X

X = 0

Compiler for (1 .. 100)
X = 1

X = 0
print X

Hoisted!

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “1 0 0 0 0 0 0...”)

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

Program Order HB Edge

Causal Order HB Edge

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1
Y=1

r2=X [r2 <- 0]
r1=Y [r1 <- 0]

X=1

r1=Y

Y=1

r2=X

Happens-Before Graph

If there is a cycle in the happens-before graph, the
execution is not SC

When a memory operation happens before itself

When is an Execution Not SC?

Execution

X=1 Y=1

Happens-Before Graph

If there is a cycle in the happens-before graph, the
execution is not SC

When a memory operation happens before itself

X=1
Y=1

r3=Y [r3 <- 1]

r1=X [r1 <- 1]
r2=Y [r2 <- 0]

r4=X [r4 <- 0]

r3=Yr1=X

r2=Y r4=X

Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC

x86-TSO (intel x86s)

“The Write Buffer Memory Model”

X=1

r1=Y

r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.

Relaxes W->R
order

Implementing Synchronization for Weak
Memory Models
• What does synchronization have to do to prevent SC violations?

• Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent
compiler reorderings

• What does synchronization have to do to prevent other kinds of
problems?
• Enforce mutually exclusive execution by different threads of critical region,

force threads to wait at barriers, enforce wait/notify discipline

Synchronization and its
Implementation

Synchronization Can Prevent Operation
Reordering

X=1

r1=Y

r1=Y

Memory Fence

Fence implementation depends on reordering implementation

Memory fences are one type of synchronization

Reordering prevented

We will see later in this lecture why reordering matters so much.

Synchronization For Real
Programmers

X=1

r1=Y

r1=Y

Unlock

Memory fences are wrapped up in locks, etc.

Reordering prevented

Direct use of fences can be tricky and you will usually use a library

Lock

Data Races

Y=1
Unlock

Synchronization imposes happens-before on otherwise
unordered operations

Data Race: Unordered operations to the same memory
location, at least one write.

Lock

r1=Y
Unlock

Lock
HB Order: Data race prevented

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

X=1

r1=Y

r1=Y

Fence Y=1

r2=X

r2=X

Fence

Thread 0 Thread 1

r1=Y We will see later that this
program can produce very
strange results if not
sychronized

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

What happens with this
program? Where can we put
the fence?

r2=X
r2++
X=r2

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

How about fences
everywhere? Does this fix our
problem?

r2=X
r2++
X=r2

Fence
Fence
Fence

Some programs also require atomicity

r1=X
r1++
X=r1

Fence

Thread 0 Thread 1

Fences don’t provide atomicity

r2=X
r2++
X=r2

Defining Atomicity:
All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.

Some programs also require atomicity

r1=X
r1++
X=r1

Serialization #1

r2=X
r2++
X=r2

r1=X
r1++
X=r1

Serialization #2

r2=X
r2++
X=r2

Defining Atomicity:
All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.

Mutual exclusion (mutex) locks enforce
atomicity (and ordering)

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock Behavior:
A thread acquires a lock L, does stuff
while holding L, and then releases lock L.

If a thread tries to acquire L while L is
held, the thread keeps trying to acquire L
until L is unheld, when its attempt to
acquire succeeds.

Lock L

Unlock L

Lock L

Unlock L

SpinLock is one lock implementation

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

spinlock(L){

 while(__sync_bool_compare_and_swap(&L,0,1) == 0){

 /*do nothing; pause here on some systems*/

 }

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

Lock L

Unlock L

Lock L

Unlock L

spinlock(L){

 while(__sync_bool_compare_and_swap(&L,0,1) == 0){

 /*do nothing; pause here on some systems*/

 }

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

Turtles all the way down?

SpinLock is one lock implementation

spinlock(L){

 while(__sync_bool_compare_and_swap(&L,0,1) == 0){

 /*do nothing; pause here on some systems*/

 }

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

175b: 48 8b 02 mov (%rdx),%rax //load L into %rax

175e: 48 8d 48 01 lea 0x1(%rax),%rcx //add 1 to %rax, into %rcx

1762: f0 48 0f b1 0a lock cmpxchg %rcx,(%rdx) //compare & exchange

1767: 75 f2 jne 175b //loop to mov if cmpxchg fails

SpinLock is one lock implementation

spinlock(L){

 while(__sync_bool_compare_and_swap(&L,0,1) == 0){

 /*do nothing; pause here on some systems*/

 }

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

1762: f0 48 0f b1 0a lock cmpxchg %rcx,(%rdx)

//if (%rdx) == %rax{ (%rdx) = %rcx }

Implemented directly in the machine microarchitecture. Even if multiple
threads executing, hardware guarantees no inter-thread interactions

SpinLock is one lock implementation

spinlock(L){

 while(__sync_bool_compare_and_swap(&L,0,1) == 0){

 /*do nothing; pause here on some systems*/

 }

}

unlock(L){ L = 0; __sync_synchronize(); /*mem fence*/ }

1890: 0f ae f0 mfenceFence

SpinLock is one lock implementation

Lock ordering matters

x++
y++

Thread 0 Thread 1

x++
y++

Lock Ordering:
If you manipulate more than one piece
of data in a critical region, you will need
to acquire the locks in the same order for
all critical regions or face deadlock

Lock LX
Lock LY

Unlock LX
Unlock LY

Unlock LX
Unlock LY

Lock LX
Lock LY

x++
y++

Lock LY

Lock LX

x++
y++

Thread 0
Lock LX

Lock LY

Thread 1

Directly Using Compare and Swap

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

How general is a CAS operation for implementing critical regions that need to
execute atomically? What are the limitations on a CAS operation?

Fetch and Add – Further Specializing Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

_fna(&x,1) _fna(&x,1)

1707: f0 48 83 04 d0 01 lock addq $0x1,(%rax,%rdx,8)

__sync_fetch_and_add(x,1);

How much less general than compare and swap?

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1

Thread 0 Thread 1

r2=X
r2++
X=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = x + 1

_cas(&x,x,r2)

Limited by single location that can be updated using a CAS. What if we want to
update 3 (or n) different locations (without using a lock)?

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0 Thread 1

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)

Transactional Memory – Further Generalizing
Atomics

r1=X
r1++
X=r1
r2=Y
Y++
Y=r2

Thread 0 Thread 1

r3=X
r3++
X=r3
r2=Y
Y++
Y=r2

Lock L

Unlock L

Lock L

Unlock L

Thread 0 Thread 1

r1 = x + 1

_cas(&x,x,r1)

r2 = y + 1

_cas(&y,y,r2)

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.

r3 = x + 1

_cas(&x,x,r3)

r4 = y + 1

_cas(&y,y,r4)

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

Transaction attempts to execute atomically,
as if protected by a lock

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin() starts a transaction
xend() ends the transaction
started by the most recent
xbegin()

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)

y = 17

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)

… = y

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

ABORT?

Transaction aborts if another thread reads a location
written by the transaction or writes a location
accessed by the transaction (“Conflicting” accesses)

… = y

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

Reads don’t conflict and
transactions can read-share data

… = y

What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?

Lock-based Fallback Path

if(xbegin()==OK){

 rlk =

 read_spinlock(L)

 r1 = x + 1

 r2 = y + 1

 x = r1

 xend()

}else{

//fallback

 lock(L)

 r1 = x+1

 r2 = y+1

 x = r1

 y = r2

 unlock(L)

}

Add a fallback path & abort handling code
Fallback should use spinlocks, not TM. Why?
TM case needs to read spinlock lock word. Why?
In fallback, can do arbitrary code.
Can also retry TM version repeatedly before giving up and running
fallback. Up to you the programmer what sequence to follow.

Precise Intel TSX syntax is available in the lab handout and tm.h in
the lab release files.

What do we do if we have repeated aborts?

Thread 0 Thread 1

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

ABORT

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

y = r2

xend()

xbegin()

r1 = x + 1

r2 = y + 1

x = r1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?

Random delay for
contention
avoidance

A Note About Lock-based Fallback Paths

for(i = 0..MAX_TRIES){

 if(xbegin()){

 …; xend(); goto done;

 }//abort code here

}

//Fallback code here

lock(Lx); lock(Ly);

 r1 = x+1

 r2 = y+1

 x = r1

 y = r2

 unlock(Lx); unlock(Ly);

}

done:

 //continue

Run your transaction some number of times (MAX_TRIES)
If you commit once, skip past your fallback. Often use ‘goto’…

Locks are tricky in code like this: which locks do you need to
acquire? Often need to acquire them all before you make accesses
associated with locks.

Implementation sketch of TM

L3$L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

Valid TagDirty 32 bytes data

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

TM

CPU 1 CPU 2 CPU 3

$ $ $

X++ Rd X=?X++

Tracking TM conflicts using coherence msgs

Invalidate

X++
An incoming access request for a
block with its TM bit set leads to a
conflict and a transactional abort

Reasons a transaction might abort

• Too many blocks with their TM bits set leaves no room for more TM
blocks
• Too many defined as “more blocks w/ TM bits set than blocks in a way”

• Conflict with another transaction or non-transactional access
• identified through incoming coherence traffic

• Explicit xabort() instruction when transactional code concludes
transaction is not useful

• Other, unspecified, but arbitrary conditions left up to the
microarchitects
• I speculate that these are related to internal buffers of fixed capacity

What did we just learn?

• Concurrency and parallelism, from the bottom to the top

• Coherence and consistency are both memory ordering principles

• Synchronization exists to spare you data-races and non-SC executions

• Transactional memory is a powerful sync primitive in many x86 CPUs

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Recap: Sparse Problems
	Slide 3: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 4: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 5: Irregular Accesses Lead to Poor Locality
	Slide 6: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 7: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 8: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 9: Propagation Blocking: Performance Analysis
	Slide 10: Propagation Blocking
	Slide 11: Using The Graph’s Transpose For Optimal Replacement
	Slide 12: Transpose-based OPT (T-OPT) Provides Large Gains
	Slide 13: Main Technique: Use Quantization To Compress The Transpose
	Slide 14: P-OPT Improves Cache Locality
	Slide 15: P-OPT’s LLC Miss Reductions Directly Translate To Speedups
	Slide 16: Today: Parallel Computer Architectures
	Slide 17
	Slide 18
	Slide 19: Out of Order Execution
	Slide 20: Register Renaming Resolves Dependences that Prevent Instructions from Executing Together
	Slide 21: In-order commit tracks instruction completion and ensures architectural state updates in order
	Slide 22: Operand supply and commit scalability issues
	Slide 23: How do single-thread vs multi-thread chips scale?
	Slide 24: Performance of single- vs. multi-threaded
	Slide 25
	Slide 26: Shared memory multi-threading
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Cache Coherence
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Defining Coherence
	Slide 44: Epoch Model
	Slide 45: Epoch Model
	Slide 46: Epoch Model
	Slide 48: Cache Coherence Protocol
	Slide 49: High-level sketch of protocol in action
	Slide 50: Cache Coherence Protocol
	Slide 51: Cache Coherence Protocol
	Slide 52: Cache Coherence Protocol Local operations perspective
	Slide 53: Cache Coherence Protocol Remote operations perspective
	Slide 54
	Slide 55: Can we design another state?
	Slide 56
	Slide 57: Exclusive read-only avoids invalidation messages
	Slide 58
	Slide 59: Implementing the Protocol
	Slide 60: Implementing the Protocol
	Slide 61: Implementing the Protocol
	Slide 62: Implementing the Protocol
	Slide 63: Implementing the Protocol
	Slide 64: Implementing the Protocol
	Slide 65: Implementing the Protocol
	Slide 66: Implementing the Protocol
	Slide 67: Implementing the Protocol
	Slide 68
	Slide 69
	Slide 70: Implementing the Protocol
	Slide 71: Implementing the Protocol
	Slide 72: Implementing the Protocol
	Slide 73: Implementing the Protocol
	Slide 74: Implementing the Protocol
	Slide 75: Implementing the Protocol
	Slide 76: Implementing the Protocol
	Slide 77: Implementing the Protocol
	Slide 81
	Slide 82
	Slide 83: Memory Consistency
	Slide 84: Memory Consistency Model
	Slide 85: Coherence is Ordering
	Slide 86: Consistency is Ordering
	Slide 87: Sequential Consistency (SC)
	Slide 88: The SC “Switch”
	Slide 89: The SC “Switch”
	Slide 90: The SC “Switch”
	Slide 91: The SC “Switch”
	Slide 92: The SC “Switch”
	Slide 93: The SC “Switch”
	Slide 94: Why is SC Important?
	Slide 95: Real hardware does not enforce SC
	Slide 96: Reordering #1: Write Buffers
	Slide 97: Reordering #1: Write Buffers
	Slide 98: Reordering #1: Write Buffers
	Slide 99: Reordering #1: Write Buffers
	Slide 100: Reordering #1: Write Buffers
	Slide 101: Reordering #1: Write Buffers
	Slide 102: Reordering #1: Write Buffers
	Slide 103: Reordering #1: Write Buffers
	Slide 104: Reordering #1: Write Buffers
	Slide 105: Reordering #1: Write Buffers
	Slide 106: Reordering #1: Write Buffers
	Slide 107: Reordering #2: Write Combining
	Slide 108: Reordering #2: Write Combining
	Slide 109: Reordering #2: Write Combining
	Slide 110: Reordering #2: Write Combining
	Slide 111: Reordering #2: Write Combining
	Slide 112: Reordering #3: Interconnect
	Slide 113: Reordering #4: Compilers
	Slide 114: When is an Execution Not SC?
	Slide 115: When is an Execution Not SC?
	Slide 116: When is an Execution Not SC?
	Slide 117: When is an Execution Not SC?
	Slide 118: When is an Execution Not SC?
	Slide 120: Relaxed Memory Consistency
	Slide 121: x86-TSO (intel x86s)
	Slide 124: Implementing Synchronization for Weak Memory Models
	Slide 127: Synchronization and its Implementation
	Slide 129: Synchronization Can Prevent Operation Reordering
	Slide 130: Synchronization For Real Programmers
	Slide 131: Data Races
	Slide 132: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 133: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 134: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 135: Some programs also require atomicity
	Slide 136: Some programs also require atomicity
	Slide 137: Mutual exclusion (mutex) locks enforce atomicity (and ordering)
	Slide 138: SpinLock is one lock implementation
	Slide 139
	Slide 140: SpinLock is one lock implementation
	Slide 141: SpinLock is one lock implementation
	Slide 142: SpinLock is one lock implementation
	Slide 143: Lock ordering matters
	Slide 144: Directly Using Compare and Swap
	Slide 145: Fetch and Add – Further Specializing Atomics
	Slide 146: Transactional Memory – Further Generalizing Atomics
	Slide 147: Transactional Memory – Further Generalizing Atomics
	Slide 148: Transactional Memory – Further Generalizing Atomics
	Slide 149: Transactional Memory: Atomicity for “n-CAS”
	Slide 150: Transactional Memory: Atomicity for “n-CAS”
	Slide 151: Transactional Memory: Atomicity for “n-CAS”
	Slide 152: Transactional Memory: Atomicity for “n-CAS”
	Slide 153: Transactional Memory: Atomicity for “n-CAS”
	Slide 154: What do we do if we have repeated aborts?
	Slide 155: Lock-based Fallback Path
	Slide 156: What do we do if we have repeated aborts?
	Slide 157: A Note About Lock-based Fallback Paths
	Slide 158: Implementation sketch of TM
	Slide 159: Tracking TM conflicts using coherence msgs
	Slide 160: Reasons a transaction might abort
	Slide 162: What did we just learn?

