CMU 18-344: Computer
Systems and the
Hardware/Software Interface

Fall 2024, Prof. Brandon Lucia

Recap: Sparse Problems

* What is a sparse problem? Why are they called “sparse”?

 What makes sparse problems hard?

* Roofline performance modeling

 Hardware and software strategies for optimizing sparse problems

Compressed Sparse Data Structures for Feasible Memory Size

00

“"o

o—e ©

Edge Dt —
Do D1 Dy Dz D4

o[] i1l]
R
s
[T

Offsets Array (OA)

Neighbors Aray (NA) (2{0 (4|0 |1(3[1]4]0]2

Vertex Property Array
i.e., srcData / dstData

l0|1(3]6]8

AN

Compressed Sparse Row (CSR)
Outgoing Neighbors

2 1 (1 (2 1

Often we will leave the vertex property array
implicitly defined when we talk about sparse
structures, but it is always there

Compressed Representations = Irreqular Memory Accesses

Dst — Push (CSR Traversal)
Dp D1 Dy D3z D4 : .
o T 711 R for src 1in G.. .
Ak for dst 1n out_neighs(src):
Src sy[1ha] el E dstData[dst] += srcData[src]
300 1]z |
l s T T T > ¥ + Push traversal performs irregular write operations that lack locality

i.e., Xi,q
O 1 2 3 4

e.g., current rank of pagel |,
CSR e.g., current shortest path 4
from source vertex

Irreqular Accesses Lead to Poor Locality

LLC Miss Rate (%) Cycles stalled on DRAM / Total Cycles
100 1
80 0.8
60 06 -
40 » 04 -
20 0.2 1
0 0 -

PageRank SSSP-BF SSSP-DS BC PageRank Collaborative Breadth-First Betweenness

Filtering Search Centrality

Problem: Sparse representations make processing large graphs feasible, but
graph processing still entails a large working set with poor locality

Right Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1;

Even Building the CSR / CSCis an Irreqular Access Pattern!

for e in EL:
neigh_count[e.dst]++; /*e.srcx/

01
210
1(0
213
0|4
0|3

(EdgeList) Updates to the neigh count
array are to random elements
determined by order of edges
in edge list

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V], but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A
[\
O

OIO|N|O|=NO
(RN S {e] [e]] 20

\ J

|
| Cache| =2 vertices

COO0

(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Propagation Blocking: Reorganize Input to Make
Memory Being Randomly Written Fit in Cache

Bad for the cache: the size of the domain of
vertex data array entries is |V], but the
|Domain| = |V] =5 vertices cache holds only |C| << |V| entries

A
[|
B DR e

O|IO|N|O|rINIO
(BN S [e] (e]] B0

\ J

|
| Cache| =2 vertices

COO0

(EdgeList) Recall: irregular accesses into

vertex data array based on
e.dst which are essentially random

Key idea in propagation blocking: Limit the domain of updates to a sub-space of vertices,
V*, so that |V*| <= | C| and do multiple sub-spaces of V*s, so that all V*s together =V

Propagation Blocking: Performance Analysis

Usually save a little space in cache for

Traverse the edge list twice instead of once streaming edge list data. Easy to cache.
Binning Bin Read
0]1
2|0
1(0
0[2]}
213
04
0]3
CO0
(EdgeList)
Bin 1: Bin 1:
dst 0-2 dst 3-5 dstData
Remember: dstData[e.dst] ++
What about the performance of reading the and e.dst is random, from edge list

edge list during binning?

Propagation Blocking

PropagationBlocking EdgeCount (EdgeList E) {

Bins B[];
for edge 1n E{

add to bin(find bin (edge))
}

for bin in Bf{
for e in binf{
dstData[e.dst]++

Reducing Pagerank Communication via Propagation Blocking

Scott Beamer™

Krste Asanovi¢ David Patterson
Computational Research Division Electrical Engineering & Computer Sciences Department
} Lawrence Berkeley National Laboratory University of California
} Berkeley, California Berkeley, California
sbeamer@lbl.gov

{krste, pattrsn}@eecs.berkeley.edu

Application of Propagation Blocking for Graph Applications (Page Rank only, at first) discovered in 2017
(Prior work on “radix partitioning” applied the idea to other domains, but not graphs)

Src

2-way Set-Associative

Using The Graph’s Transpose For Optimal Replacement

Dst —

Do D1 Dy Dz D4

b)

srcDatal[S,]

- /

Pull Traversal Pattern

Pull Execution (CSC Traversal)

for dst in G:
’ for src in in_neighs(dst):
: dstData[dst] += srcData[src]
: CurrDs Irregular Data Stream
: tDO srcData[S4]
v v
Dy | srcData[S,]

Which line should we evict?:
e srcData[S4] (nextRef @ D,)
4
e srcData[S,] (nextRef @ D,)

Dy

Dy

M srcData[S,]

srcDatalS,]

srcData[Ss]

Time

|

11

Transpose-based OPT (1-OPT) Provides Large Gains

LLC MPKI

App - PageRank

LRU

DRRIP

SHIP-PC SHIP-MEM-INF HAWKEYE
Cache Replacement Policies

T-OPT

12

Main Technique: Use Quantization To Compress The Transpose

Dst — Epoch-0 Epoch-1 Epoch-2
Dg D1 D D3 D . _
0 1 2 5 A c| 4 Divide execution into DO,Dl [)12,[}3,04 el 4
>0 1 5| coarse-grained epochs S0 I R 5
S1]1 1 = | 51 1;__ __E__::l'_ AN
V(SN EE < ‘ Siti1) 1 2
a o — —— LI = |
| ss| o f1ioboi1| oz] W I 0 -
ATYEY ¥ Sefti L] | .o
Eo E1 E)
Quantization enables Col1 [0 |M
orl0]1]3 6] compression of transpose data Cif2(1 o0
l l ‘ C,|0(0 (M
Czl0|1]|0
NA[2]o|4[0f1[31]4]0]2 AR
CSR Rereference Matrix

(Transpose) (Quantized Transpose)

P-OPT Improves Cache Locality

LLC Miss Reduction

1.8
1.6
1.4
1.2

1.0 F——
08—

0.6
0.4
0.2
0.0

PageRank (PR) PR-Delta

P-OPT results are

B LRU B P-OPT [Ideal on[y 12% away

from the Ideal

V

Components adu Max Ind Set

Applications 14

P-OPT’s LLC Miss Reductions Directly Translate To Speedups

Speedup

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

P-OPT provides up
to 1.56x speedup
over LRU

B LRU @ P-OPT [|Ideal

_

~N

J

PageRank (PR) PR-Delta Components Radii Max Ind. Set

Applications 5

Today: Parallel Computer Architectures

* Why do we have mainly parallel computers

* How do we make caches work with parallelism
 Memory consistency models & ordering

* Implementing synchronization

Moore’s Law: The number of transistors on microchips doubles every two years [eHgWlk

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

S0,000,000,000 GC2IRU €@AMD Epyc Rome
72-core Xeon Phi Centriq 2400 © ©AWS Graviton2
R SEARC i @ 32-core AMD Epyc

z torage Contro (I’\ /\pple A12X Bionic
10’0007000’000 18-core Xeon Haswell [5 X“S‘“CO” K‘”'; 990 ;’lc;)
5 pple A13 (iPhone Pro,

5,000,000,000 AboxOne main >0 s, g g QAMD Ryzen 7 3700X
“HiSilicon Kirin 710

10-core Core i7 Broadwell-E
Qualcomm Snapdragon 835
© °Du11 core + GPU Iris Core i7 Broadwell-U

61-core Xeon Phi 0

12-core POWERS »8 0
8-core Xeon Nehalem-EXN

Six-core Xeon 7400 3
Dual-core Itamum 2¢Q L4

Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 Pentium D Presler WERG g © 0 Quad core + GPU Core i7 Haswell
Itanium 2 with L3 /\pp.€ A7 (dual-core ARM64 "mobile SoC")
500,000,000 swamz,b\ OAM[c)oglg Qua
quad-core

Itanium 2 Madison 6M € Core 2 Duo Wolfdale
Pentium D Smithfields, gcorf Duo Conroe
Itanium 2 McKinley €p Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M ~\°Corf 2 Duo Allendale

Pentium 4 Cedar Mill
100’000’000 AMD K8 @ °Pentlum4 Prc?((;{llﬂ ‘ R
S0,000,000 Pentium 4 Northwood,
Pentium 4 Willamette € %CzL:ﬁF$S:] - QAtom
Pentium Il Mobile Di Alas]
S O)/\?V‘DXF?; @ Pentium |Il Coppermine OARM Cortex-A?
AMD Ké-lII
10,000,000 AMD Ké, [)Q]Eer;]txhup) Hl(lﬁdlﬂ(]al
5,000,000 Pentium Prog, pcltrm%]“ﬂ ur eschut
Penﬁumo AMD K5 ’
SA-110
1,000,000 Inte! 80459 Bacoo
SOO’OOO T'LE@‘).QQE%E@Z(I'#SO ARI\?7OO
Intel 8038 Intel o @ ARM 3
Motorola ()80200{v 7o) g
100,000 Q. Maftitan
Mgggg)!a Intel- 80286 9/¥[~%
50,000 " ouneisoss .
Intel 80864y €Y Intel 8088 o QARM 2 A,?M 6
3 °/\RM 1
M Ié 65C8 :
10,000 154000 ziogz89 2%5‘()” vv?c 16N[\('i(3$\6§6
5000 & reagor . ggnes 2
Intel 800G, Intel 8080
o Mogomh ho%Tmhnolo@v
Intel 4004
1,000
SO LA C L - . S L G Ll - U S LS i« S L SR S RN
NEONTNTNT NN N NN ’\, '\ '\r N '\/ '\/ ‘], (1/ v q/ N R A M M

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

42 Years of Microprocessor Trend Data

. |
- "’fv"’vr'v

T .-t'wv

Transistors
(thousands)

| Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power

- 3.. ‘ 1 (Watts)
v .
, - ne he/ 3': v "f ’ Number of
[a0 s & Sy Y * ‘3 oo | Logical Cores
i v | o VY ovy ' owm‘
- ;0 ------------ D S R A A R e R 2 T R RIS -
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Out of Order Execution

Fetch

_Decode

3|2
H|E

(Rename)
/Dispatch

Dispatch instructions into an issue
window that issues instructions to
execute as soon as input operands

are available

Execute instructions from the issue
window fully out of order even if
instructions have a WAW or WAR
dependence that would prevent
them from superscalar issuing

together (how!?)
ALU (non- ‘
mul)
ALU (non- ‘
mul)

1.

L]

mul0 mullmul2

SwW

1w

SW

lw
1w

Memory

Register
Write-Back

3|2
H|E

Commit

Commit in order
to respect
original program
semantics

Register Renaming Resolves Dependences that
Prevent Instructions from Executing Together

Fetch

_Decode

3|2
H|E

(Rename)
/Dispatch

Rename: Replace reg names w/ ref to
entry in table of physical registers

add
mul
add{ x

x11
x13 Rename

add @) 28 x11
mul x"!'hﬂB
add t2 2 x14

Rename table

Eliminate WAW, WAR, and preserve RAW (why?)

1.

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for

L]

mul0 mullmul2

SwW

1w

SW

lw
1w

mul.x6 t1

add2.x6 t2 true deps.
ALU (non- ‘
mul)
ALU (non- ‘
mul)

Memory

Register
Write-Back

In-order Commit

3|2
H|E

Commit

In-order commit tracks instruction completion
and ensures architectural state updates in order

Q.

mul.x6

add2.x6

Rename table

add1.x6

t2

SHEE
o |E]|E

(Rename)
/Dispatch

s w/ ref to
isters

ld 28 x11
1 x9x13
d t2 x12 x14

reserve RAW (why?)

ALU (non-
mul)

ALU (non-
mul)

Reg. Read |

L

mul0 mullmul2

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Preventissue only for
true deps.

In-order Commit

SwW

1w

SW

lw
1w

Memory

Register
Write-Back

3|2
7|2

Commit

Reorder Buffer
ol -

add2 t2 245

add2 is complete, but waits
to update t2 (i.e., x6) until
mul is done

Reorder buffer (ROB) ensures
instructions commit in order. Why do we
care about in-order commit?

Operand supply and commit scalability issues

Instruction
Fetch

Instruction
Fetch &
Decode |

Instruction
Cache

Issue and
Retirement

Reorder
Buffer

and
Instruction

Issue
Queuess

integer
Units

Figure 1. A dynamic superscalar CPU

The Case for a Single-Chip Multiprocessor

Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson, and Kunyung Chang

Computer Systems Laboratory
Stanford University
Stanford, CA 94305-4070
http://www-hydra.stanford.edu

- 21 mm - - 21 mm >
I 3 |-+
Instruction 4 e
" E: |
ot Instruction | S3CH8 et

TLB & Processor | Processor &
% #1 #2 b4
Inst. Decode & Data e} ® - 8
g Rename Cache > ® 2 <
- (32 KB) 2 o 2 2

* 1=
21 mm E, 8 21mm g, %ﬂ %c (C) 8
é Reorder Buffer, 9 & 2 Y
S| Instruction Queues, = a 8 8 f-9
and Out-of-Order Logic | S S5 5 5
5 & Processor | Processor £ &
> (o] #3 #4 £ (o]

-— Q

£ (6]

Floatil?g Point Y

nit
Y] o [T-Cache FAOR]

Figure 2. Floorplan for the six-issue dynamic superscalar
Microprocessor.

Figure 3. Floorplan for the four-way single-chip
multiprocessor.

How do single-thread vs multi-thread chips
scale?

0.35um R1OK Size Extrapolated % Growth Due to

CPU Component Original Size (mm? | to 0.25um (mm?) New Functionality New Size (mm?) % Area
256K On-Chip L2 Cache * 219 112 0% 112 26%
8-bank D Cache (32 KB) 26 13 25% 17 4%
8-bank I Cache (32 KB) 28 14 25% 18 4%
TLB Mechanism 10 5 200% 15 3%
External Interface Unit 277 14 0% 14 3%
Instruction Fetch Unit and BTB 18 9 200% 28 6%
Instruction Decode Section 21 1 250% 38 9%
Instruction Queues 28 14 250% 50 12%
Reorder Buffer 17 9 300% 34 9%
Integer Functional Units 20 10 200% 31 7%
FP Functional Units 4 12 200% 37 99,
Clocking & Overhead 73 37 0% 37 9%
Total Size — — — 430 100%

Table 2. Size extrapolations for the 6-way superscalar from the MIPS R10000 processor

0.35um R10K Size Extrapolated % Growth Due to 3;::'1?{! / of entire
CPU Component Original Size (mm?) | to 0.25um (mm?) New Functionality New Size (mm?) chip)
D Cache (§ KB) 26 13 -75% 3 6% /3%
1 Cache (8 KB) 28 14 -15% 4 1% 1 3%
TLB Mechanism 10 5 0% 5 9% / 5%
Instruction Fetch Unit and BTB 18 9 -25% 7 13% /7%
Instruction Decode Section 21 1 -50% 5 10% / 5%
Instruction Queues 28 14 -70% 4 8% /4%
Reorder Buffer 17 9 -80% 2 3% 1 2%
Integer Functional Units 20 10 0% 10 20% / 10%
FP Functional Units 24 12 0% 12 23% / 12%
Per-CPU Subtotal - - — 53 100% / 50%
256K On-Chip L2 Cache * 219 112 0% 112 26%
External Interface Unit 2 14 0% 14 3%
Crossbar Between CPUs - = = 50 12%
Clocking & Overhead 7 37 0% 37 9%
Total Size — — — 424 100%

Table 3. Size extrapolations in the 4 x 2-way MP from the MIPS R10000 processor.

Performance of single- vs. multi-threaded

3 B ss
3.5 m we
3
= 3
§25—_
3,3
s &
3 15-
(s 3
0.5
= § € E 2 g E 2 ¢
§ F § § % : f 3
g 8 % = 5 [

Figure 6. Performance comparison of SS and MP.

et

)
3

Wl I T 3 S T

K~

-

i $idim SR

[

1|
“
8

B o
-

il fgini!
bisipaanan

i 3

A‘c »-v 1 ’
1l

e pianacs

1L

ﬁll..:.f..... s

Vo | ﬁ% &
e _.\ ‘. :

|
Mun
{

LT 1:’.
JAddd

e
'
3

i L

O p |

LA
Audiil

| x
l':‘ P
LR

|

rl:l T Y
e
Auid

08
»

b

- | g

33 fw«
o | A
L

ey] !
{3 e

W
AR AR AR
B ke g &

ab

| Kb

b vl r—

L B

..
Y we
e

o~

%
e

'
ol

A

«/nm process

e SiZe

~257 mm2d

17 metal layers

8 Perf Cores + 16 Efficiency Cores + GPU

*~25.9B transistors

DDR4/DDR5 PHY

Raptor Ra“ptdi"'*
S
b

3 MiB

mont |4 mont mont | mont
Core Core Core Core
~ e
3 MiB "

3 MlB

=
Grace Grace Grace
mont] mont mont |1 mont
Core Core Core Core
Grace Grace Grace Grace
mont mont mont mont
Core Core Core Core

4 MiB L2 4 MiB L2

)

Graphics
e
- Media

Engines

Shared memory multi-threading

20.00 -

H.on

.00

2.0

Amdahl's Law

L
/ Pamllel portion
7 alPa
‘I_.ﬂ' — T3%
1
."I; 5%
/.-'
.-F-"-__d_.__-
/f
__-"‘I
e
2 =l
TCTtTRisaEiigy o

Humberofprocesons

636

Parallel hardware + parallelizable software
are a direct application of Amdahl’s Law

Multi-core parallelism was the primary way
to keep performance scaling alive once

single-thread performance hit the wall

How to we architect a programmable
parallel computer system?

What are the main impediments to parallel
programmability?

To parallel optimization?

(FQ(C A ol
/D%A[U\/Mwﬂ M&m _ _
= L \
Cg@/\c 56 \)< ﬁ}c\v‘%—g

6&9\(6(& Vol

S /"\d\‘('\f@(OCfSSo(

/D%A[U\/Mwﬂ M&m

6&0\(6(& Vol

Mulki-processo

(N Ehveads s, (Ploceszes +

Vm<

ot
Ceacess 17 L (©
| Co é‘ M&t‘}ﬂ M{M 1?/_4\1/\)
)/ > (_° \

— ka(mplesy Wdben be
T (7 {Ot\jshaj&-mm A e

%E =
Q(()C(%
Vfg S)/z\(fé Mo/\ol}é\/\ic_

Lo
il Mai p\emalr IS
e an albsacklion

(oches © other
/(AO\(C(/\ Shcuctures

lead 4o ERiS

| comp \sz}é-/ :

X Z
2 (|6 —
é:' —————

“Coherence seeks to make the caches of

a shared-memory system as functionally invisible as
the caches in a single-core system. Correct

coherence ensures that a programmer cannot
determine whether and where a system has caches by
analyzing the results of loads and stores.”

Excerpt from “Primer on Memory Consistency and Cache Coherence”
Mark Hill, 2011

Cache Coherence

: : CPU 3
)) Rd X=?

What is the behavior of this parallel program?
(X initially 0)

X++

(and the symmetric case)

: CPU 3
Rd X=7

~

What assumptions are we making about the system
to produce the results 0, 1, and 27

We assume the updates see one anothers’ results!
Q: Why wouldn’t they see one anothers’ updates?

X++
$[X)=1 ™~~~ Rd X=?
Memory: X=0
CPU1: X=1
CPU2: X=1
Expected Program Result: X=2 (?!)

What now?

CPU 3
Rd X=7

Memory: X=0
CPU1: X=1
CPU2: X=1

Reality: X=2 (?!)

Never let this happen. Caches should be coherent.

“coherence ensures that a programmer cannot determine whether and
where a system has caches by analyzing the results of loads and stores”

Defining Coherence

“Coherence serializes all reads with all updates to the same
location by different CPUs/caches, so that each read sees
the result of the most recent update by any other”

From the Primer on Cache Coherence & Consistency

Single Writer/Multiple Reader (SWMR) Invariant:

There is one writer or an arbitrary number of readers of a block
of memory that could be cached at any given time.

Data-Value Invariant:

There is a globally defined most recent write and a read always
reads the value written by the most recent write before that read

Epoch Model

Definition: an “epoch” is a period of

time the extents of which are

determined by a property of that
S[X]=0 period of time; like a geological era

Read/Write| X++ or the Anthropocene period.
Epoch for CPU1 SX1=1

O $[X]=1
Read/WriteK ++
Epoch for CPU2p[X]=2

— S[X]=2 $[X]=2
Read-only Rd X=?
Epoch for allf $XI=2 $[X]=2

Yay! Corresponds to reality!

Epoch Model

R/W vs. R-O Epochs directly enforce SWMR

I“‘
1"‘
‘‘‘‘‘
‘‘‘‘‘
[3 ¢
P ‘e
.* *
.
.* .
.* .
. .0
.
. ‘.

p0 -
Read/Write| X ++ P .
Epoch for cpu1|>XI=1 P T
7 s}t e
. Read/Write(X++
¢ Epoch for CPU2| $[X]=2 o
‘‘‘‘‘ Proe —; S[X]=2 S[X]=2
S e Read-only Rd X=?
S e Epoch for all| SXI=2 S[X]=2
S e Yay! Corresponds to reality!

Epoch tran5|t|ons assume data-value invariant

Epoch Model

§[X]=0 e P
Read/Write| X ++ P T
Epoch for CPU1[*XI=1 P e
T st
"""""" Read/Write| X ++
""""" Epoch for CPU2| $[X]=2 e
................ — — S[X]=2 S[X]=2
--- Read-only Rd X="7?
ittt Epoch for all| *[XI=2 S[X]=2
Epoch transitions assume data-value invariant Yay! Corresponds to reality!

Question: What are the requirements for an implementation of the Epoch Model?

Cache Coherence Protocol

Add state to each cache line saying whether it is R-O or R/W

Add protocol actions to move lines from state to state
based on (1)local memory operations; and (2)other CPUs’
memory operations

Add support to get data from (1)local cache; (2)a remote
cache; or (3)main memory, depending on line’s protocol state

High-level sketch of protocol
In action

(1) CPU1 says “l am is writing X”
Others relinquish cached copies of X

and reply “OK go for it” <enter R/W epoch>

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
*
.

$[X]=0 . (ditto (1) for CPU2) (2)
Read/Write| X ++
Epoch for CPU1 51X]=1

- — 11 o CPU3 says “I want to read only”
“““““ Read/Writ [-I]-_-I- (4) Others reply “OK, we all agree
"""" €d e ~ not to write without saying so”
““““ Epoch for CPU2pIX]=2 <enter R-O epoch>
““““ | aa — X2 $[X]=2
CPU1 replies “l have X. Use my < Read-only Rd X=?
copy or get it from memory after | Epoch for allf $XI=2 S[X]=2

write it back”
(3)

(ditto (3) for éPU 2) (5)

Cache Coherence Protocol

) O,

Per-line coherence states

o

Cache Coherence Protocol

@1 (inaccessible)

Cache Coherence Protocol

Local operations perspective

Locally perform a

read or write (" /l_ocally perform a read

b |
Locally perform a write Locally perform a read
[send invalidations to other CPUs] [send requests to share to other CPUs]

Locally perform a write
[send invalidations to other CPUs]

Cache Coherence Protocol

Remote operations perspective

Incoming request to share
[reply with data or write back]

>

Incoming Invalidation Incoming Invalidation
[reply with invalidation acknowledgement] [reply with invalidation acknowledgement]

Can we design another state?

What should we optimize?

-xclusive read-only avoids
invalidation messages

@ -_ ’ Q
b - ‘ -, .
Exclupive Read-only I
- »

(Benefit: no invalidation required
to transition from E->M, like from S->M)

Imp\ementmg the Protocol

: CPU 3
) Rd X="?
S

Shared bus for coherence messages

% Snoopy Coherence

Imp\ementmg the Protocol
CPU 3

) Rd X=1

$

Invalidate

X++

Imp\ementmg the Protocol

> CPU 3
) Rd X="
S
Ack Ack

X++

Imp\ementmg the Protocol
CPU 3

) Rd X=1

$

Entering CPU1’s
write epoch

X++

Implementing the Protocol
: CPU 3

) Rd X=1

$

RdReq
X++ Rd X=7

Implementmg the Protocol

nave-it

CPU 3
Rd X=7

S

Rd X=?

Implementing the Protocol

= CPU 3
) Rd X="7
(S)|x=1

Entering R-O
epoch

X++ Rd X=?

Implementing the Protocol
CPU 3

H H bd x=3
g S

&l LN

What sucks about Snoopy?

Implementing the Protocol
: CPU 3

) Rd X=1

S

Shared bus

Bus limits scalability due to congestion and
complex message arbitration

Figure 1-1. Uncore Sub-system Block Diagram of Intel Xeon Processor E5-2600 Family Figure 1-2. Intel® Xeon® Processor ES v3-1600/2600/4600 Family -12C Block Diagram

2 Intel® (=) Pbox | qpj PCU Ubox PClex8 | Phox % 545

; (Physical : (Power | (System Config | 1O (Integrated 10) | PCle x16 | (Physical
QP links <) Layer) | (Packetizen Controller) | Controlier) PCiex16 | Layer) I
intel QP (F izer)

110 (integrated 10) .(5"""“ Ubcax contains
RIQP1 (Ring 1o QF1 R2PCle (RingioPCle | Config | Global Convol

O ineface) O O inerface) Controller)

LLC
(Slice of 20M Last
Level Cache)

Core 0

LLC
(Slice of 20M Last
Level Cache)

Core 1

LLC
(Slice of 20M Last

Level Cache)

Core 2

LLC
(Slice of 20M Last

Level Cache)

Core 3

HA iMC || Pbox Four Intel® SMI

Mei ical
e h i Whimrg Channels

Intel Sandybridge Multiprocessor: bi-directional ring network

Figure 1-1. Intel® Xeon® Processor Scalable Memory Family - Block diagram for a 28C

part
10.4GT10.4GT 8GT x16 PCle 100Gb MCP 10.4GT
x? RO 8GT x16 PCle O\ |_|xk x‘ﬂ 8GT xfl‘(ii PCle
— — —
SKx . M2 2PCle M2PCle
ZBC IRP IRP IRP
UPITUPI | ||9 pci® e Ruink || | YP!
PMON - b
[Blocks LLC/C LLC/C | Lc/c LLC/CH LLC/C
a Gbl Ctrl — — —
B shadow Core Core Core Core Core
M FRCtrs O

3x DDR4] ucic ucc H ucio =
2677 M Core Core Core Core

> 3x DDR4
[2677

JuoenB}? {ucre uoenf}? T uool uce
Core Core I Core Core Core
CI LLC/CHH" i LLCJCHH"' |L|.C/cm. N LLC/CHP' u.c/cEH'
Core Core Core Core Core
C LLC/CHH- 1 ue/c |L|.C/c?’ n LLCICHH LLC/C
Core Core Core Core Core | Core

Skylake Xeon 2017 2D mesh

Implementing the Protocol

¥, X
., Q
. *
. o
- g
‘e o
£ 0
. *
. o
. Q
- *
L3 g
» Q
b4 *
. o
S Q
» -
. g
. o

Rd X=1
(Effectively) P(;i nt to Point Links Sharers of X

S

Directory-based

Implementing the Protocol
: : CPU 3

Directory-based

Implementing the Protocol
CPU 3

Directory-based

Implementing the Protocol

Directory-based

Implementing the Protocol
CPU 3

MR

CPU and 3 do. Sharers of X
Send them Invalidates!

X++
Rd X="?

Directory-based

X++

Implementing the Protocol
: : CPU 3

Rd X=1

Benefit: No broadcast on shared bus

Implementing the Protocol
CPU 3

Rd X=1

Drawbacks?

Implementing the Protocol

Sharers of Y

CPU 3

=
\

Sharers of X

Centralized directory won’t scale
(In Practice: Distribute Directory)

“computers execute operations in a
different order than is specified by the
program. A correct execution is achieved if
the results produced are the same as
would be produced by executing the
program steps in order. For a
multiprocessor computer, such a correct
execution by each processor does not
guarantee the correct execution of the
entire program.”

Excerpt from “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Program”
LESLIE LAMPORT, 1979

“The memory consistency model of a
shared-memory system specifies the
order in which memory operations will
appear to execute to the programmer.
The memory consistency model affects
the process of writing parallel programs
and forms an integral part of the entire
system, including the architecture, the
compiler, and the programming
language.”

Excerpt from “Recent Advances in Memory Consistency
Models for Hardware Shared-Memory Systems”
Sarita Adve, et al, 1999

Memory Consistency

Memory Consistency Model

Informal Definitions:
“Defines the value a read operation may read

at each point during the execution”

“Defines the set of legal observable orders of memory
operations during an execution”

“Defines which reorderings of memory operations
are permitted”

Coherence is Ordering

Wr X Wr X
\ OR /
Wr X

Wr X

Coherence defines the set of legal orders of
accesses to a single memory location

Consistency is Ordering

Wr X WrY
\ OR /
Wr X

WrY

Consistency defines the set of legal orders of
accesses to multiple memory locations

Sequential Consistency (SC)

The simplest, most intuitive memory consistency model

Two Invariants to SC:

Invariant #1:
Instructions are
executed in program
order

Invariant #2:

All processors agree
on a total order of
executed instructions

The SC “Switch”

Wr X Wr Y Rd X

RdY Rd X

Execution

The SC “Switch”
Wr X Wr'Y Rd X
Rd'Y Rd X
Execution

Wr X

The SC “Switch”
Wr X Wr Y Rd X
Rd'Y Rd X
Execution

Wr X
RdY

The SC ”Switch”

“
WrX
RdY
Wr'Y

The SC “Switch”
Wr X Wr Y Rd X
Rd'Y Rd X
Execution

Wr X

RdY

Wr'Y
Rd X

The SC “Switch”

Wr X Wr Y Rd X
RAY Rd X
Execution
Wr X
Rd Y
Wr Y
Rd X

Rd X

Why is SC Important?

SC is the most complex model that we can ask
programmers to think about.

Intuitive (SC)Weird (not SC)
Wr X Rd Y
WrX IwrY | Rd X Rd Y Wr X
Wr Y Rd X
RAY | Rd x Rd X Rd X
Rd X Wr Y

SC prohibits all reordering of instructions (Invariant 1)

Real hardware does not enforce SC

The ARMv8 Memory Model:

The ARMv8 architecture employs a weakly-ordered model of memory. In general terms, this means that the order of memory accesses is not required to be the

same as the program order for load and store operations. The processor is able to re-order memory read operations with respect to each other. Writes may also

be re-ordered (for example, write combining) .As a result, hardware optimizations, such as the use of cache and write buffer, function in a way that improves the

performance of the processor, which means that the required bandwidth between the processor and external memory can be reduced and the long latencies
associated with such external memory accesses are hidden.

https://developer.arm.com/documentation/den0024/a/Memory-Ordering

Reordering #1: Write Buffers

- CPU can read its write
U CPU buffer, but not others’

Write Buffer Write Buffer
El‘c'dﬁé'réh't -

Buffered writes eventually end up in coherent
shared memory

Reordering #1: Write Buffers

Program

Initially X ==Y ==
X=1 Y=1

ri=yY r2=X

Is rl==r2==0
El‘ » a valid result?

Reordering #1: Write Buffers

Program
Initially X ==Y ==

X=1 Y=1

ri=yY r2=X

Is rl==r2==0
EF ’ a valid result?

rl ==r2==0is not SC, but it can happen with write buffers

Reordering #1: Write Buffers

Program
Initially X ==Y ==
X=1 v=1
ri=y r2=X
El. - .

Reordering #1: Write Buffers

Program
Initially X ==Y ==
Y=1

ri=yY r2=X

e Yl vecut

Reordering #1: Write Buffers

Program

l Initially X == Y ==

ri=yY r2=X

et M : '

Reordering #1: Write Buffers

Program

l Initially X == Y ==

’ Execution

r2=X

Reordering #1: Write Buffers

Program
Initially X ==Y ==

Reordering #1: Write Buffers

Program
Initially X ==Y ==

r1=Y [rl <- O]

Reordering #1: Write Buffers

Program
l Initially X == Y ==
e . : .
r1=Y [rl <- O]

r2=X[r2 <- 0]

Reordering #1: Write Buffers
Program
D D Initially X == Y ==
M Jeo] et
r1=Y [rl <- 0]
WBs let reads finish r2=X[r2 <- 0}
X=1

before older writes

Reordering

Coalescing Write Buffer

2: Write Combining

Program

X,Zin same S line

X=1
Y=1

/=1

4 word cache line

Reordering

2: Write Combining

. . Program
Coalescing Write Buffer . .
=1 X,Z in same S line
X=1
Y=1

/=1

Reordering

X=1

Coalescing Write Buffer

Y=1

2: Write Combining

Program

X,Zin same S line

X=1
Y=1
/=1

Reordering #2: Write Combining

. . Program
Coalescing Write Buffer_ . .
=1 X,Zin same S line
=1 X=1

Y=1
z=1 =1

Reordering #2: Write Combining

Coalescing Write Buffer Coalescing Write Buffer

X=1 X=1 | z=1
y=1 . y=1

/=1

Combining the write to X & Z saves bandwidth,
but reorders Z=1 and Y=1

Reordering #3: Interconnect

4-threaded program

X=1C

V=10
Variable time cost traversing r1=X|rl <-1]
routed on-chip network r2=Y rz <- O
r3=Y [r3<-1]
r4=X [r4 <- O]

1]

Reordering #4: Compilers

X=0
for (1 .. 100) X=1
=1 X =0 . for (1..100) y g
print X print X

The compiler hoists the write out of the loop,
permitting new (non-SC) results (e.g., “2000000...”)

When is an Execution Not SC?

When a memory operation happens before itself

Lxecution Happens-Before Graph
r1=Y [rl <- O]
r2=X [r2 <- 0] X=1 ¥=1

X=1

v=1 ri=yY r2=X

When is an Execution Not SC?

When a memory operation happens before itself

Lxecution Happens-Before Graph
rl=Y [r1<-0] »
r2=X[r2<-0] - X=1 =1
. = Ceeeceese . \4
e ﬁj 2y r2=X

; Program Order HB Edge

When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
rl=Y [r1<-0] »

r2=X[r2<-0] \" X=1 ¥=1
/ X=1 E B

——Y=1

. Program Order HB Edge
J Causal Order HB Edge

When is an Execution Not SC?

When a memory operation happens before itself

Execution Happens-Before Graph
rl=Y [r1<-0] »

r2=X[r2<-0] \" X=1 ¥=1
/ X=1 E B

—;.":"}‘Yzl ri=Y r2=x

If there is a cycle in the happens-before graph, the
execution is not SC

When is an Execution Not SC?

When a memory operation happens before itself

% Happens-Before Graph
N ' T >
V=1 \(x=1 y=1 r1=M3=y
\rl—X rl <-1] \ : :
r2=Y [r2 <- 0] / \ r2=Y r4=X
r3=Y [r3 <-1 —
rd=X (r4 <- 0

If there is a cycle in the happens-before graph, the
execution is not SC

Relaxed Memory Consistency

Relaxed Memory Models permit reorderings, unlike SC

X8 6‘TSO (intel x86s)

“The Write Buffer Memory Model”

= Relaxes W->R
X ->
/le elaxes
\ order
r1=Y

Total Store Order - loads may complete before older
stores to different locations complete.

mplementing Synchronization for Weak
Memory Models

* What does synchronization have to do to prevent SC violations?

* Flush WB, prevent coalescing/bypassing, impose ordering in network, prevent
compiler reorderings

* What does synchronization have to do to prevent other kinds of
problems?

* Enforce mutually exclusive execution by different threads of critical region,
force threads to wait at barriers, enforce wait/notify discipline

Synchronization and its
Implementation

Synchron

Reorderir

ization Can Prevent Operation

2

Memory fences are one type of synchronization

rl=
Reordering prevented f/g

Fence

Y

ﬂory Fence

~rl=Y

implementation depends on reordering implementation

We will see later in this lecture why reordering matters so much.

Synchronization For Real
Programmers

Memory fences are wrapped up in locks, etc.

ri=Y

Reordering prevented : X=1

I C
N,
~rl=yY

Direct use of fences can be tricky and you will usually use a library

Data Races

Synchronization imposes happens-before on otherwise
unordered operations

Lock I
Y=1
Unlock ﬂ Order: Data race prevented
S
rl=Y
|) C <

Data Race: Unordered operations to the same memory
location, at least one write.

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0

H"‘\

~ri=y

X=1 Eiliii yd Y=1 Eimii

Thread 1

Pl

~r2=X

We will see later that this
program can produce very
strange results if not
sychronized

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread O Thread 1
r1=X r2=X What happens with this
rl++ r2++ program? Where can we put
X=rl X=r2 the fence?

&

Fences are for (Preventing Re-)Ordering to
Avoid Data Races & Ensure Correct Executions

Thread 0 Thread 1
M M How about fences
rl++ Eﬁnig M everywhere? Does this fix our

X=rl X=r2 problem?

Some programs also require atomicity

Thread 0 Thread 1
Defining Atomicity:
r1=X r2=X 8 . Y : . :
All-or-nothing behavior of critical regions.
ri++ r2++
X=rl X=r2 Execution = serialization of crit. regs.

Fences don’t provide atomicity ﬂ

Some programs also require atomicity

Serialization #1 Serialization #2

r1=X r2=X

rl++ r2++ Defining Atomicity:

X=r1 X=r2 All-or-nothing behavior of critical regions.

Execution = serialization of crit. regs.

r2=X ri=Xx

r2++ rl++

X=r2 X=rl

Mutual exclusion (mutex) locks enforce
atomicity (and ordering)

Lock Behavior:

Thread 0 Thread 1 A thread acquires a lock L, does stuff
Lock L Lock L while holding L, and then releases lock L.
r1=X r2=X
rl++ r2++ If a thread tries to acquire L while L is
X=r1 X=r2 held, the thread keeps trying to acquire L
Unlock L Unlock L until L is unheld, when its attempt to

acquire succeeds.

SpinLock is one lock implementation

Thread O Thread 1
Lock L Lock L
r1=X r2=X
rl++ r2++
X=rl X=r2
Unlock L Unlock L

spinlock (L) {
while(sync bool compare and swap(&L,0,1) == 0) {
/*do nothing; pause here on some systems¥*/
}
}

unlock(L){ L = 0; __ sync_synchronize(); /*mem fence*/ }

SpinLock is one lock implementation

spinlock (L) {

while(sync bool compare and swap(&L,0,1) == 0) {
/*do nothing; pau%e here on some systems*/
}

}
unlock(L){ L = 0; __ifnc_synchronize(); /*mem fence*/ }

Turtles all the way down?

SpinLock is one lock implementation

spinlock (L) {
while(___sync bool compare and swap(&L,0,1) == 0) {

/*do nothing; pauﬂe here on some systems*/

}
}
unlock (L) { L = 0; __s#nc_synchronize(); /*mem fence*/ }
1
175b: 48 8b 02 mov $rdx) ,%rax //load L into $%rax
175e: 48 8d 48 01 lea Ox1 (%$rax) ,%rcx //add 1 to %rax, into %rcx

1762: £0 48 0f bl 0a 1lock cmpxchg %$rcx, ($rdx) //compare & exchange
1767: 75 f£2 jne 175b //loop to mov if cmpxchg fails

SpinLock is one lock implementation

spinlock (L) {
while(___sync bool compare and swap(&L,0,1) == 0) {

/*do nothing; pauﬂe here on some systems*/

}
}

unlock(L){ L = 0; __s#nc_synchronize(); /*mem fence*/ }

|

1762: £0 48 0f bl 0a 1lock cmpxchg %$rcx, (%rdx)
//if (%rdx) == S%rax({ $rdx) = %rcx }

Implemented directly in the machine microarchitecture. Even if multiple
threads executing, hardware guarantees no inter-thread interactions

SpinLock is one lock implementation

spinlock (L) {
while(sync bool compare and swap(&L,0,1) == 0) {
/*do nothing; pause here on some systems*/
}
}

unlock(L){ L = 0; sync_synchronize(); /*mem fence*/ }

1890: Of ae fO mfence Eﬁnsﬁ

Lock ordering matters

Thread O
Lock LX

Lock LY

X++
y++

Unlock LX
Unlock LY

Thread 1

Lock LX
Lock LY

X++
y++

Unlock LX
Unlock LY

Lock Ordering:

If you manipulate more than one piece
of data in a critical region, you will need
to acquire the locks in the same order for
all critical regions or face deadlock

Thread O Thread 1
Lock LX
Lock LY
Lock LY
Lock LX

Directly Using Compare and Swap

Thread O Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r2=X
1++ 2++ rl = x + 1 r2 = x + 1
r r _cas(&x,x,rl) _cas(&x,x,r2)
X=r1 X=r2
Unlock L Unlock L

How general is a CAS operation for implementing critical regions that need to
execute atomically? What are the limitations on a CAS operation?

Fetch and Add — Further Specializing Atomics

__sync_fetch and add(x,1);

Thread O Thread 1 Thread 0 Thread 1
Lock L Lock L
ri=X r2=X
r1++ r2++ _fna(&x,1) _fna(&x,1)
X=r1 X=r2
Unlock L Unlock L

1707: £0 48 83 04 d0 01 lock addg $0x1, (%rax,%rdx, 8)

How much Jess general than compare and swap?

Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r2=X
rl = x + 1 r2 =x+1
ri++ r2++ _cas(&x,x,rl) _cas(&x,x,r2)
X=r1 X=r2
Unlock L Unlock L

Limited by single location that can be updated using a CAS. What if we want to
update 3 (or n) different locations (without using a lock)?

Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=Xx r3=X
r1++ r3++ rl =x + 1 r3=x+1
X=r1 X=r3 ;Z.az (f;x;xirl) ;Zaz (;x;xirB)
r2=Y r2=Y _cas(&y,y,xr2) _cas(&y,y,r4)
Y++ Y++
Y=r2 Y=r2
Unlock L Unlock L

How about using multiple CAS operations?

Transactional Memory — Further Generalizing
Atomics

Thread 0 Thread 1 Thread 0 Thread 1
Lock L Lock L
r1=X r3=X
r1++ r3++ rl =x+ 1 r3=x+1
_ _ _cas(&x,x,rl) _cas(&x,x,r3)
X=rl X=r3 r2 =y + 1 = bl
r2=Y r2=Y _cas(&y,y,xr2) _cas(&y,y,r4)
Y++ Y++
Y=r2 Y=r2
Unlock L Unlock L

How about using multiple CAS operations?
Problem: Need atomicity across CAS ops.

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1
xbegin () xbegin() starts a transaction xbegin ()
rl = x +1 xend() ends the transaction rl =x +1
r2 =y+1 started by the most recent r2 =y +1
x =rl xbegin() x =rl
y = r2 y = r2
xend () xend ()

Transaction attempts to execute atomically,
as if protected by a lock

Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 y = 17
x =rl
ABORT

Transaction aborts if another thread
accesses a location accessed in transaction
(or if explicitly aborted)

Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 =y
Xx =rl
ABORT?

Transaction aborts if another thread
accesses a location accessed in transaction

(or if explicitly aborted)

Transactional Memory: Atomicity for “n-CAS”

Thread O Thread 1
xbegin ()
rl = x + 1
r2 =y +1 =y
Xx =rl
ABORT?

Transaction aborts if another thread reads a location
written by the transaction or writes a location
accessed by the transaction (“Conflicting” accesses)

Transactional Memory: Atomicity for “n-CAS”

Thread 0 Thread 1

xbegin ()
rl = x + 1
r2 =y +1

oo Y
x =rl
AB@R_T/

Reads don’t conflict and
transactions can read-share data

What do we do if we have repeated aborts?

Thread 0 Thread 1
’dl’egm(’ . xbegin ()
ri = x4 rl = x + 1
rz=y+1 r2 =y + 1
x =rl _
x =rl
ABORT ABORT These threads are contending for memory
: locations causing repeated aborts.
xbegin () xbegin ()
rl =x+1 _ : .
_ rl =x+1 How to deal with contention in a
r2 =y +1 5 — 1 -
_ re =y + transactional memory system?
x =rl _
x =rl
ABORT ABORT
xbegin () xbegin ()
rl =x+1
5 = + 1 rl =x+1
€Ty r2 =y + 1
x =rl w = 1

Lock-based Fallback Path

if (xbegin () ==O0K) {
rlk =
read spinlock (L)
rl =x + 1
r2 =y +1 Add a fallback path & abort handling code
x =rl Fallback should use spinlocks, not TM. Why?
xend () TM case needs to read spinlock lock word. Why?
}else{ In fallback, can do arbitrary code.
//fallback Can also retry TM version repeatedly before giving up and running
]];:CE (>L:-)l-1 fallback. Up to you the programmer what sequence to follow.
r2 = y+l Precise Intel TSX syntax is available in the lab handout and tm.h in
x =rl the lab release files.
y = r2
unlock (L)
}

What do we do if we have repeated aborts?

Thread 1

xbegin ()
rl = x + 1
r2 =y +1
x =rl
ABORT

xbegin ()
rl =x + 1
r2 y + 1

Thread O

xbegin ()

rl =x+ 1

r2 =y + 1

Xx =rl

ABORT
E B EEEEEEEEEEEERN
| | | |
= Random delay for =
® contention L
| | | |
m avoidance m
.IIIIIIIIIIIIIII.

xbegin ()

rl =x+1

r2 =y +1

These threads are contending for memory
locations causing repeated aborts.

How to deal with contention in a
transactional memory system?

A Note About Lock-based Fallback Paths

For(i = 0. .MAX TRIES) {

}

}

if (xbegin()) {
... xend () ; goto done;
}//abort code here

//Fallback code here
lock (Lx) ; lock (Ly) ;

rl = x+1
r2 = y+l
x =rl
y = r2

unlock (Lx) ; unlock (Ly) ;

done:

//continue

Run your transaction some number of times (MAX_TRIES)
If you commiit once, skip past your fallback. Often use ‘goto’...

Locks are tricky in code like this: which locks do you need to
acquire? Often need to acquire them all before you make accesses
associated with locks.

Implementation sketch of TM

Way 0 Way 1 Way 2 Way 3

L3S

Add TM bit to each cache block
Blocks accessed in transaction mark bit

All transactional state must fit in cache.

Valid | Dirty Tag 32 bytes data

Tracking TM conflicts using coherence msgs

Invalidate

CPU 3
Rd X=7

S

X++

An incoming access request for a
block with its TM bit set leads to a
conflict and a transactional abort

Reasons a transaction might abort

* Too many blocks with their TM bits set leaves no room for more TM
blocks

* Too many defined as “more blocks w/ TM bits set than blocks in a way”

* Conflict with another transaction or non-transactional access
* identified through incoming coherence traffic

 Explicit xabort() instruction when transactional code concludes
transaction is not useful

e Other, unspecified, but arbitrary conditions left up to the
microarchitects

* | speculate that these are related to internal buffers of fixed capacity

What did we just learn?

e Concurrency and parallelism, from the bottom to the top

* Coherence and consistency are both memory ordering principles

* Synchronization exists to spare you data-races and non-SC executions
* Transactional memory is a powerful sync primitive in many x86 CPUs

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Recap: Sparse Problems
	Slide 3: Compressed Sparse Data Structures for Feasible Memory Size
	Slide 4: Compressed Representations ⇒ Irregular Memory Accesses
	Slide 5: Irregular Accesses Lead to Poor Locality
	Slide 6: Even Building the CSR / CSC is an Irregular Access Pattern!
	Slide 7: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 8: Propagation Blocking: Reorganize Input to Make Memory Being Randomly Written Fit in Cache
	Slide 9: Propagation Blocking: Performance Analysis
	Slide 10: Propagation Blocking
	Slide 11: Using The Graph’s Transpose For Optimal Replacement
	Slide 12: Transpose-based OPT (T-OPT) Provides Large Gains
	Slide 13: Main Technique: Use Quantization To Compress The Transpose
	Slide 14: P-OPT Improves Cache Locality
	Slide 15: P-OPT’s LLC Miss Reductions Directly Translate To Speedups
	Slide 16: Today: Parallel Computer Architectures
	Slide 17
	Slide 18
	Slide 19: Out of Order Execution
	Slide 20: Register Renaming Resolves Dependences that Prevent Instructions from Executing Together
	Slide 21: In-order commit tracks instruction completion and ensures architectural state updates in order
	Slide 22: Operand supply and commit scalability issues
	Slide 23: How do single-thread vs multi-thread chips scale?
	Slide 24: Performance of single- vs. multi-threaded
	Slide 25
	Slide 26: Shared memory multi-threading
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Cache Coherence
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Defining Coherence
	Slide 44: Epoch Model
	Slide 45: Epoch Model
	Slide 46: Epoch Model
	Slide 48: Cache Coherence Protocol
	Slide 49: High-level sketch of protocol in action
	Slide 50: Cache Coherence Protocol
	Slide 51: Cache Coherence Protocol
	Slide 52: Cache Coherence Protocol Local operations perspective
	Slide 53: Cache Coherence Protocol Remote operations perspective
	Slide 54
	Slide 55: Can we design another state?
	Slide 56
	Slide 57: Exclusive read-only avoids invalidation messages
	Slide 58
	Slide 59: Implementing the Protocol
	Slide 60: Implementing the Protocol
	Slide 61: Implementing the Protocol
	Slide 62: Implementing the Protocol
	Slide 63: Implementing the Protocol
	Slide 64: Implementing the Protocol
	Slide 65: Implementing the Protocol
	Slide 66: Implementing the Protocol
	Slide 67: Implementing the Protocol
	Slide 68
	Slide 69
	Slide 70: Implementing the Protocol
	Slide 71: Implementing the Protocol
	Slide 72: Implementing the Protocol
	Slide 73: Implementing the Protocol
	Slide 74: Implementing the Protocol
	Slide 75: Implementing the Protocol
	Slide 76: Implementing the Protocol
	Slide 77: Implementing the Protocol
	Slide 81
	Slide 82
	Slide 83: Memory Consistency
	Slide 84: Memory Consistency Model
	Slide 85: Coherence is Ordering
	Slide 86: Consistency is Ordering
	Slide 87: Sequential Consistency (SC)
	Slide 88: The SC “Switch”
	Slide 89: The SC “Switch”
	Slide 90: The SC “Switch”
	Slide 91: The SC “Switch”
	Slide 92: The SC “Switch”
	Slide 93: The SC “Switch”
	Slide 94: Why is SC Important?
	Slide 95: Real hardware does not enforce SC
	Slide 96: Reordering #1: Write Buffers
	Slide 97: Reordering #1: Write Buffers
	Slide 98: Reordering #1: Write Buffers
	Slide 99: Reordering #1: Write Buffers
	Slide 100: Reordering #1: Write Buffers
	Slide 101: Reordering #1: Write Buffers
	Slide 102: Reordering #1: Write Buffers
	Slide 103: Reordering #1: Write Buffers
	Slide 104: Reordering #1: Write Buffers
	Slide 105: Reordering #1: Write Buffers
	Slide 106: Reordering #1: Write Buffers
	Slide 107: Reordering #2: Write Combining
	Slide 108: Reordering #2: Write Combining
	Slide 109: Reordering #2: Write Combining
	Slide 110: Reordering #2: Write Combining
	Slide 111: Reordering #2: Write Combining
	Slide 112: Reordering #3: Interconnect
	Slide 113: Reordering #4: Compilers
	Slide 114: When is an Execution Not SC?
	Slide 115: When is an Execution Not SC?
	Slide 116: When is an Execution Not SC?
	Slide 117: When is an Execution Not SC?
	Slide 118: When is an Execution Not SC?
	Slide 120: Relaxed Memory Consistency
	Slide 121: x86-TSO (intel x86s)
	Slide 124: Implementing Synchronization for Weak Memory Models
	Slide 127: Synchronization and its Implementation
	Slide 129: Synchronization Can Prevent Operation Reordering
	Slide 130: Synchronization For Real Programmers
	Slide 131: Data Races
	Slide 132: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 133: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 134: Fences are for (Preventing Re-)Ordering to Avoid Data Races & Ensure Correct Executions
	Slide 135: Some programs also require atomicity
	Slide 136: Some programs also require atomicity
	Slide 137: Mutual exclusion (mutex) locks enforce atomicity (and ordering)
	Slide 138: SpinLock is one lock implementation
	Slide 139
	Slide 140: SpinLock is one lock implementation
	Slide 141: SpinLock is one lock implementation
	Slide 142: SpinLock is one lock implementation
	Slide 143: Lock ordering matters
	Slide 144: Directly Using Compare and Swap
	Slide 145: Fetch and Add – Further Specializing Atomics
	Slide 146: Transactional Memory – Further Generalizing Atomics
	Slide 147: Transactional Memory – Further Generalizing Atomics
	Slide 148: Transactional Memory – Further Generalizing Atomics
	Slide 149: Transactional Memory: Atomicity for “n-CAS”
	Slide 150: Transactional Memory: Atomicity for “n-CAS”
	Slide 151: Transactional Memory: Atomicity for “n-CAS”
	Slide 152: Transactional Memory: Atomicity for “n-CAS”
	Slide 153: Transactional Memory: Atomicity for “n-CAS”
	Slide 154: What do we do if we have repeated aborts?
	Slide 155: Lock-based Fallback Path
	Slide 156: What do we do if we have repeated aborts?
	Slide 157: A Note About Lock-based Fallback Paths
	Slide 158: Implementation sketch of TM
	Slide 159: Tracking TM conflicts using coherence msgs
	Slide 160: Reasons a transaction might abort
	Slide 162: What did we just learn?

