CMU 18-344: Computer
Systems and the
Hardware/Software Interface

Fall 2021, Prof. Brandon Lucia

Recap — Vector Machines

e SIMD is an execution model that lends itself easily to parallelism
* Vector machines have the abstraction of processing on long vectors

* VVector machines amortize instruction costs over many operations
(one per data element in a vector of input data)

* Not free: need new interface (change programming) and some large
structures (e.g., Vector Register File)

Vector Machines are Easily Parallelizable

m Lane 0

Abstraction: execute an
instruction’s operation over an
entire vector of data

Implementation: Parallel
functional units each process
parts of a vector, producing a
vector output. Why simple?

Vector Machines are Easily Parallelizable

Lane 0
Simple: Vector instruction

operates on vO[i] and v1][i] not
vO[i] and elem *v.

Very simple operand matching
logic, no need to track complex
producer consumer relationships
across inputs of operations.

Primary cost?

Reduction Operations

\0
setvl 5 Afgjé AR o
vld v0, a Q(u} 72
vld vl, b '/ S J
vredsum v0, v0, vl, wvm
‘lf\l,.A'nlo‘\
v alvuL

vO[0] =
vO[0] + 2 _iv1l[i]

Reduction Operations

-

r

setvl 5
vld v0, a

vld v1l, b
vredsum vO0, v0, vl1,

vO[0] =
vO[0] + 2 _iv1l[i]

Vector Masking

vadd v3, v0, v2, vl.t

Behavior of a masked vector operation: For elements up to vl in v3, add elements from
vO and v2 if that element in v1’s LSB is set to 1, set other v3 elems to O

What high-level programming concept does this get used to implement?

vl 1 0 1 0 1

vO a b c d e
’ \t-ll:’-j | \é{-j | \é:-j
v3 a+i 0 c+k 0o e+m

A

vl=5

N,
Ll

Zeros written to masked results

Reduction Operations with a vector mask

vO

v2

==

setvl 5

vld v0, a input

vld vl, b vec

vredsum vO0, v0O, vl1, v2
dst init mask

val
Reduction operations accumulate the result

of an operation on a vector into the first
element of a destination vector
Uses for reduction?

vO[0] =

vO[O] +

/*v1[0] +%*/

vli[1l] + v1[2] + v1][3]
/*+ v1[4]*/

Reduction Operations with a vector mask

vO = Uses for reduction?

Dot product, e.g.,

setvl 5

vld vO, a

vld vl, b

vimul v0, vl

vredsum v0, v0O, vl1, v2

for(i = 0..1len){
v[i] += a[i] * b[i]
}

V2

Indexed Memory Accesses (Scatter/Gather)

index
vO|| S y - dest vector
vliuxei6d v1, (&B), vO0, v2
T =
i1 § =B § 1 | mask

addr

v2 ' H Indexed memory loads “gather” elements from all over

memory into a contiguous vector register.
; Indexed memory stores “scatter” elements from a
contiguous vector register into locations all over memory
vO = - Uses?
..EE. vi[i] = v2[i] ? B[vO[i]] : v1[i]

Indexed Memory Accesses (Scatter/Gather)

index
0 -] dest vector
vliuxei6d v1, (&B), vO0, v2
gl 1111 e
L =8 8 =8 1 | mask

addr

V2 ' H Common Use: indirect array accesses. Common in graph analytics
for(src in 0 .. n){
’ for(dst in O0..ind[src].len()){
data[ind[src] [dst]]++;
I ® § § 1 1 }
ol - -])
BEEEE oo o

Summary of Benefits: Vector Architectures

 Compared to scalar architectures:

Single instruction performs many operations: one instruction is the equivalent of executing
an entire loop of a program!

Control is simpler: no loops, no branches, no misprediction/misspeculation

Vector interface makes data-independence across vector elements explicit: simplifies
implementations and eliminates complex dependence logic

Dependence checking of vectors, not elements: what dependence tracking is required
pertains to entire vector registers, not individual elements, amortizing its cost significantly

Easy to express data parallelism: avoids software complexity of multithreading on a
multiprocessor (i.e., MIMD)

Maximize value of memory bandwidth: contiguous/strided vector fetch operations are a good
match for highly-banked memories

Energy efficiency: instruction & data fetch amortize costs across vector saving energy

Require vector programming style, which means changing all of your code. Code doesn’t
match vector style well? Can’t use the vector architecture without lots of extra work!

Vector execution model saves energy (and
time) over scalar processing

S
. 0‘11\0" 319296 138480 195560 227579 182933 184248 265255 164238 143236 57075 185760

(o““‘d
k()gk
I wﬂ”‘“‘f
I i
> > > 5>

inergy mMlnergv “'Minergy U’Mlnergy mMmergy ‘-”Mlnergy ‘-”Mlnergy
FFT DWT Viterbi DConv DMM DMV SConv SMM SMV Sort Avg

o
co
<>

o
[=)]
i

=

Min

DF__
DF_I
DF_-
VDF msam

Normalized energy
o o o ¢
o N o
I 1 1
Scalar SR
calar i]
calar IR
calar ___
calar I N
calar PR
alar I
calar IR
calar R

> L
D
>

gy Y'M mergyr mI\/Ilnergy IMinergy

VDF L]
VDF s
VDF I

VDF |

EVDF I

<

Taken from a very recent research project about optimizing for minimum energy by using a new vector processor (V bars in
the plot) and a customized variant (VDF bars in the plot). V/VDF use RISCV vector insns., scalar plain RISCV insns.

Key take-away: vector processing cuts energy by more than half compared to scalar processing.

What did we just learn?

* We learned about how VLIW and Vector processing are two different
takes on the hardware software boundary that admit more
parallelism than SS/000Q’s ILP focus allows

* VLIW did not take over, vector has been a consistent background hum

* Both approaches require the programmer and the compiler to make
big changes to code to work well with these new hardware/software
interfaces.

What to think about next?

* Lab 3 out Today
* Next we look at Virtual Memory as an abstraction

* Also look at the underlying mechanisms and options for implementing
virtual memory in a modern CPU

Today (& Next Time): Virtual Memory

* Basic dimensions of a virtual memory system: paging, protections,
process isolation, address mapping

* Working through operation of a virtual memory system example,
including page fault handling and page table walking

e Start looking at hardware support for virtual memory (TLB)

What is virtualization?

Virtualization - Purpose

* Expose abstraction of abundant resource despite limited resource
* Expose abstraction of uniform resource despite heterogeneity of resource

* Expose abstraction of isolated resource despite sharing of resource

Virtualization — What resources?

e Entire machines (VMMs)

* Storage (Disk controllers / Flash controllers)

* Memory (Virtual Memory)

* Network connectivity / bandwidth (Software-defined Networks)

Memory Virtualization

Virtual Memory — Abstraction of Abundance

OXFFFF

OXFFFF OXFFFF

0x0000 0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Abstraction of Uniformity

OXFFFF

OXFFFF OXFFFF

0x0000 0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Abstraction of Isolation*

OXFFFF OXFFFF OXFFFF

0x0000 0x0000 0x0000

Process 1 Process 2 Process 3

Virtual Memory — Thinking about mechanism

OxFFFF OXFFFF
First obvious problem:
Two processes access same location
sw OxEFFF sw OXEFFF violates isolation abstraction
0x0000 0x0000

Process 1 Process 2

Virtual Memory — Thinking about Mechanism

OxFFFF OXFFFF

First obvious problem:
sw OxXFFFF
Two processes access same location

sw 0x1000 violates isolation abstraction

sw OxXEFFF

sw 0x0000
Second obvious problem:

Two processes access #bytes > total memory size
violates abundance abstraction (and isolation)

0x0000 0x0000

Process 1 Process 2

Fl rSt Attem pt StatIC Pa rtItIOﬂ | ﬂg [Opal, SASOS, bare-metal micros]

OXFFFF

Process 1
stack

Process 1
code

Process 2
heap

0x0000

Process 1

OXFFFF

Process 2
stack

Process 2
code

Process 2
heap
0x0000

Process 2

Statically partitioning the address space
violates abundance and uniformity (but not isolation)

First Attempt: Static Partitioning

OxFFFF OXFFFF
Statically partitioning the address space
Prockess 1 violates abundance and uniformity
stac

Also need to be sure that neither process will go and

Process 2 mess around with the other process’ address ranges
stack
Process 1
code
Process 2
code
Process 2
heap
Process 2
heap

0x0000 0x0000

Process 2
Process 1

“ess 1

First Attempt: Static Partitioning

OXFFFF

0x0000

Process n-1

OXFFFF

0x0000

Process n

Statically partitioning the address space

Need to be sure that neither process will go and mess
around with the other process’ address ranges
(isolation)

Need to use increasingly tiny partitions per process
(abundance)

Need to know where your tiny partition starts so you
can use it (uniformity)

“ess 1

First Attempt: Static Partitioning

OXFFFF

0x0000

Process n-1

OXFFFF

0x0000

Process n

Statically partitioning the address space

Need to be sure that neither process will go and mess
around with the other process’ address ranges
(isolation)

Need to use increasingly tiny partitions per process
(abundance)

Need to know where your tiny partition starts so you
can use it (uniformity).

Machine code can never refer to an address without
knowing mix of other programs running on machine
& where process loaded (uniformity, isolation)

Second Attempt: Segmented Memory (8086, 1BM AS/400]

Ox7FFF

Process 1 Process 1
Segment O Segment 1
Process 1 Process 1
code code
Process 2 Process 2
heap 0/1 heap
Active Segment
0x0000

Process 1 Process 2

Second Attempt: Segmented Memory

Process 1
stack

Segment 1

Process 1
code

Process 2
0/1 heap

e Segment

Process 2

Segment up the memory address space and switch
segments

Benefit: Limited address size can address more
memory (switch segment, another 16b space).
Abstraction of abundance.

Benefit: Processes can choose a segment and use
predictable addresses off of that segment. Abstraction
of uniformity.

Benefit: If processes use independent segments, no
interference.

Caveat: 8086 & others did not check permissions,
segments could overlap. (isolation, abundance...)

Caveat: need to select segment; how to choose
which? (uniformity)

Second Attempt: Segmented Memory

Abstraction of abundance, uniformity in segment relative
addressing, and the ability to address a very large address
space is a key advantage of segmentation in memory

OXFFFF

Process 1

stack

Segment O Segment 1 Segment 2 Segment 3 Segment 4

Process 1
code
Process 2
heap
2/\16 >€55 Each segment only needs 16bit addresses, combined
Active Segment with a single 16bit segment reg, have 4GB addressed.
0x0000

Why did they not just use 32bit addresses instead?

Process 1

Virtual Memory: Software Dynamic Address

Translation (a

Ox7FFF

Process 1
stack

Process 1
code

Process 2
heap

0x0000

Process 1

Permissions Check

Translate

Physical Memory

nd Permission C

<

necki

ng)

Ox7FFF

Process 1
stack

Process 1
code

Process 2
heap

0x0000

Process 2

Virtual Memory: Software Dynamic Address

Trans

Physical Memory

<

Process

ation and Permission Checking

Key ideas behind virtual memory:

1.

2.

Physical memory acts like a cache of data that are
mapped into process address space

Accesses always refer to VAs and VM translates
them to usable physical addresses

Mapping makes a virtual address range accessible
& unmapped regions are inaccessible

Virtual memory happens at granularity of pages
(i.e., 4kB chunks of memory)

Page table entry per page contains: (1) is it in
physical memory? (2) at what address? (3) with
what access permissions?

Virtual Memory: Software Dynamic Address

Trans

Physical Memory

Process

ation and Permission Checking

On every memory access, translate memory address
from virtual address to physical address

Benefit: Arbitrary hierarchy of memories / storage can
back program data Abstraction of abundance.

Benefit: All processes have identical linear virtual
address space that can use predictable addresses

always. Abstraction of uniformity.

Benefit: Per-process address space are private by
default. Abstraction of isolation.

Caveat: need mechanism for mapping data in
Caveat: translation & permissions are dynamic

Caveat: translation granularity (i.e., page size) is a
system-wide parameter

Mapping Data Into Virtual Address Space

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

64-bit Address

Space
OxFFFFFFFFFFFFFFFF

Define a new operation map(data, size, mode)

Data: ID of file on disk to map into address
space (or “anonymous” for blank memory)
Size: How many bytes in the address space to
map

Mode: Readable, writeable, executable

Semantics of map: Mapped addresses in virtual
address space become accessible and if file-

backed, correspond to file’s data

What does it mean to “become accessible”?

B 0x0000000000000000
Process

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

64-bit Address

Space
OxFFFFFFFFFFFFFFFF

0x0000000000000000
Process

Define a new operation
map(addr, data, size, mode)

Data: file descriptor to map into address space
(or “anonymous” for just memory)

Size: How many bytes to map

Mode: Readable, writeable, executable

Semantics of map: Mapped addresses in virtual
address space become accessible and if file-
backed, correspond to file’s data

What does it mean to “become accessible”?
executing memory access to address in range is
no longer illegal; corresponds to data, either file
or anonymous buffer

Virtual Memory: Mapping Data into Virtual
Address Space

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check ()

Translate

64-bit Address
Space
OXFFFFFFFFFFFFFFFF

0x1000

0x3000

0x0000000000000000
Process

int fd; open(/foo/bar/baz/a.out);
Map(0x1000, fd, 7500 Bytes, RWX)

Update translation function
Update permissions entry
Reserve virtual address range
DO NOT move data anywhere

P wnN e

Virtual Memory: Accessing Data Mapped into
the Virtual Address Space

OXFFFFFFFFFFFFFFFF

Access to unmapped region:
1. Attempt to translate address
2. Find unmapped: Segmentation Fault.

OXFFFFFFFF

Access to mapped region:

1. Attempt to translate address, find mapped
2. Check permissions

3. Locate data

a.out

0x3000

Permissions Check (]

Translate

sw 0x2500
Hard Drive /

Backing Storage

0x00000000
4GB of
Physical Memory - 0x0000000000000000
Process

sw 0x3500

Virtual Memory: Shared Mapping of File-backed
Data into Address Space by Multiple Processes

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check ()

Translate

OXFFFFFFFFFFFFFFFF

0x1000 int fd; open(/foo/bar/baz/a.out);

Map (0x1000, f£d, 7500 Bytes, RX)

0Ox2

int fd; open(/foo/bar/baz/a.
Map (0x2500, £d, 7500 Bytes,

0x3000

0x4

STILL DO NOT move data!
(shared read mapping)

0x0000000000000000
Process 1

OXFFFFFFFFFFFFFFFF

500

out)
RX)

mapped
(a.out)

500

0x0000000000000000
Process 2

Virtual Memory: Shared Mapping of Anonymous
Data into Address Space by Multiple Processes

OXFFFFFFFF

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check Q

Translate

OXFFFFFFFFFFFFFFFF OXFFFFFFFFFFFFFFFF

0x1000

int fd = memfd create(/usr/mem, ..)
Map (0x1000, f£d, 7500 Bytes, RX)

0x2500

int fd = memfd create(/usr/mem) ;
Map (0x2500, £d, 7500 Bytes, RX)

0x3000
mapped

(anon)

0x4500

Can share non-file-backed
memory w/ memfd_create;
all refs close? mem disappears

0x0000000000000000 0x0000000000000000
Process 1 Process 2

Page Granularity for Translation (&
Permissions)

Virtual Memory: Translation & Permissions at
Page Granularity

OXFFFFFFFFFFFFFFFF
Still not talking about getting actual data yet;

OXxFFFFFFFF first need to translate (we will talk about how
- 1o data moves in a few slides)
a.out ~ . .
Translation happens at page granularity
4
é Pages are usually 2712 = 4096 bytes
O
_é 0 Memory access:
a © 1. Look up translation for page virtual address
% é 2. Find & fetch data after translation
a =
Hard Drive /
Backing Storage
0x00000000
4GB of

0x0000000000000000
Process

Physical Memory

Virtual Me

mory: Translation and

Outcome

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

1: Page Not in Physica

Permissions Check

Translate

Virtual Memory

-inding Data

“Translate Virtual
Page Number
0x2000, please!” 0x1000

Memory

OXFFFFFFFFFFFFFFFF

0x2000

0x3000

lw 0x2500

0x0000000000000000
Process

Virtual Me

mory: Translation and

Outcome

1: Page Not in Physica

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

.t
st
.
a®
-“‘
.
.
.
.
a®

Permissions Check

Translate

Virtual Memory

-inding Data

0x2000, please!” 0x1000

VM: “Translate Virtual
“Mapped, but Page Number
not in physical

memory!” et [¢

Memory

OXFFFFFFFFFFFFFFFF

0x2000

0x3000

lw 0x2500

0x0000000000000000
Process

Page Fault: Basic Definition
Address exists in translation function but is not in physical memory

OXFFFFFFFF

Pag

Move page from

disk into memory
on access:
“demand paging”

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

VM:
“Translation updated.

e in memory for

future accesses. ,.+*"

o*
.
.
.

*

Permissions Check O,

Translate

Virtual Memory

“Demand Paging” — bring into physical memory on first access

VM:

“Page Fault.

Try again.”

OXFFFFFFFFFFFFFFFF

0x1000

0x2000

0x3000

lw 0x2500

0x0000000000000000
Process

Virtual Memory: Translation and Finding Data

Outcome

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check

Translate

Virtual Memory

“Translate Virtual
Page Number
0x2000, please!” 0x1000

2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

0x2000

0x3000

0x0000000000000000
Process

lw 0x2500

Virtual Memory: Translation and Finding Data
Outcome #2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

OXFFFFFFFF VM: Y?”: ted.
“Virtual 0x2000 oo
corresponds to . OXFOOO”—> 0x1000
ZHEIE Physical Page P o) . X
Number OXFOOO’: “““ 0x2000
""" S
““ (&}
""" S
""" » 0x3000
% cC
= o
a1 |=
£ c
o ©
o =

Hard Drive /
Backing Storage

lw 0x2500

0x00000000
4GB of
Physical Memory

— 0x0000000000000000
Virtual Memory Process

Virtual Memory: Translation and Finding Data

Outcome

OXFFFFFFFF

a.out

O0xFO00

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Xz
(®)
Q
<
(@)
(V)]
c
ie))
a ©
£ e
) -
o -

2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

0x1000

0x2000

0x3000

CPU Memory Unit: lw 0x2500
“Data at physical page MEM:
number 0xFO0O, Iw OxF500

physical page offset
0x500, please”

0x0000000000000000
Virtual Memory Process

Virtual Memory: Translation and Finding Data

Outcome

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of

Memory Hierarchy:
“Data at OxF500:
<data>"

Physical Memory

Xz
(®)
Q
<
(@)
(V)]
c
ie))
a ©
£ e
) -
o -

2: Page in Physical Memory

OXFFFFFFFFFFFFFFFF

0x1000

0x2000

0x3000

lw 0x2500
MEM:
lw OxF500

Virtual Memory

0x0000000000000000
Process

The Translation Function & Its Use

Virtual Memory: The Translation Function
Page Table Stores Translation for Paged-In Data

OxFFFFFFFFFFFFFFFF
Page Table = 1
OxFFFFFFFF
a.out Page
=G 0x2000 | OxFOOO (@)
Entry "
O
()
S
= 0x3000
C
i))
-g = sw 0x2500
A
Hard Drive / “™
Backing Storage
0x00000000
4GB of
Physical Memory S | 0x0000000000000000
Virtual Memory Process

PPN: Physical Page Number VPN: Virtual Page Number

Virtual Memory: The Translation Function
Page Table Holds Disk Location for Paged-Out Data

OXFFFFFFFFFFFFFFFF

Page Table
OxFFFFFFFF
PPN
a.out Page —
aglEE | 0x2000 | T @)
Entry o
O
()
G
" 0x3000
C
i))
wv +-
212 sw 0x2500
£ c
A
Hard Drive /
Backing Storage
0x00000000
4GB of
Physical Memory B) S—— 0x0000000000000000

Virtual Memory Process

Virtual Memory: The Translation Function
Page Table Holds No Entry for Unmapped Data

OXFFFFFFFFFFFFFFFF

a.out

Hard Drive /
Backing Storage

OXFFFFFFFF

0x00000000
4GB of
Physical Memory

Page Table
PPN

Page |
Table0)@Ae[0[o]
Entry

Paged Out:
/swap/a.out

No

Virtual Memory

@)

a4

O

(D)

e

@)

(7))

c

i))

= = SegFault sw 0x7522
5 E delivered to
a =

program

0x0000000000000000
Process

Physical Memory as a Cache of Data on Disk:
Physical Memory Cache Miss == Page Fault (1/2)

OxFFFFFFFFFFFFFFFF
Page Table B
OxFFFFFFFF
PPN
a.out Page Ol
= ELE | 0x2000 /’;ZZZ /C?_ " (@)
Entry o
O
()
S
= 0x3000
C
i))
-g = sw 0x2522
C
Ox1f o|]C
Hard Drive / 0oo “™
Backing Storage
0x00000000
4GB of
Physical Memory S) - 0x0000000000000000
Virtual Memory Process

“Demand Paging” — bring into physical memory on first access

PNYSICa
PNYSICa

a.out

Hard Drive /
Backing Storage

Memory as a Cac

ne of Data on Disk:

Memory Cache Miss == Page Fault (2/2)

OXFFFFFFFFFFFFFFFF

Page Table
OXFFFFFFFF

0x00000000
4GB of

Physical Memory

aal ELIE - 0x2000 Ox1EO000

sw 0x2522

Permissiofis Check Q

Translat

| Nnter ruPt'
lnstruction
Re-execytes

S E— 0x0000000000000000
Virtual Memory Process

Virtual Memory Translation Algorithmically

vmTranslate (vaddr) {
//Compute Virtual Page Number & Virtual Page Offset

//from vaddr assuming 2712 page size
(VPN,VPO) = (vaddr[63:12],vaddr[11:0])
PPN = PT.lookup (VPN)

if PPN == UNMAPPED:
kill (SIGSEGV)
else if PPN == PAGEDOUT(@<diskloc>:
MMU .pageIn (VPN, PPN,<diskloc>) // move diskloc data to
// phys @ PPN, update PTE for VPN

MMU.raiselInterrupt (PAGE_FAULT, ..)
//Semantics of interrupt: replay instruction that caused interrupt

//In Lab 3 emulation: page data in, record page fault

else
return PPN //PTE contained usable VPN; hooray! MMU tells CPU the PPN

Permissions Checking

Permissions Checking Happens with Page

Translation (Compare access type to

Dermissions)

OXFFFFFFFFFFFFFFFF

OXFFFFFFFF

a.out

0x1E000

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

VPN

0x2000

Page Table

PPN

Ox1E000

Perms

or

\

~

O

)

<

(©)

(%]

S

- %

é - sw 0x2522
S c

3 Slp .

a || = | Permissiong

Violatiop,
tried to Write
Read.cnly dats

0x0000000000000000

Virtual Memory

Process

Page Cache Placement / Replacement

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

OxFFFFFFFF
Placement Policy? Where to put a new page?

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

a.out

Hard Drive /
Backing Storage

OXFFFFFFFF

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Placement Policy:

Fully associative — need flexibility to put any
page anywhere in physical memory via
arbitrary mapping function. Next available
location works fine.

Replacement Policy?

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

a.out

Hard Drive /
Backing Storage

OXFFFFFFFF

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Placement Policy:

Fully associative — need flexibility to put any
page anywhere in physical memory via
arbitrary mapping function. Next available
location works fine.

Replacement Policy?

Physical Memory as a Cache of Data on Disk:
Cache Placement / Replacement Policy

OXFFFFFFFF

Placement Policy:
Fully associative — need flexibility to put any
' page anywhere in physical memory via
arbitrary mapping function. Next available
location works fine.

Replacement Policy:

Can be complicated...

e Variants of LRU & approximations
* Not Recently Used (like Bit-PLRU)

Hard Drive / * Not Frequently Used
Backing Storage * Re-reference-Distance-Based Policies
0x00000000
4GB of In Lab 3 we handle placement & replacement
Physical Memory so you can focus on translation & mapping

Acts as cache for disk

Q_)l

Yage
-unctio

nles: Another Look at the Translation

A

Page Translation and Its Implementation

48-bit Virtual Address (like AMD)

36 bit 12 bit
i i Page Table

Perms/Flags

Translate 0x2000 a0

E—r Table stores 2736
0x3000 ap/aout entries in it for virtual
I pages 0x000000000000
up to OxFFFFFFFFFOOO
™ which span the entire
| 48-bit address space.

36 bits 12 bits
OxFO00 OXFFFOF000

Page Table Entry — 6 Bytes
PPN Perms/Flags Ox126F000 0x21212000 Implementation

.] Issues?
36 bits 12 bits I

OxFFFFFFFFFOOO0 0x45454000
Q: Why can store flags in

lower 12 bits of PTE?

Page Translation and Its Implementation

48-bit Virtual Address (like AMD)
36 bits 12 bits

Page Table

Perms/Flags

Translate 0x2000 L
E—— Table stores 2736
0x3000 /swap/a.out entries in it for virtual
I pages 0x000000000000
36 bits 12 bits up to OxFFFFFFFFFO00
OxFOOO oxFFroFoo0 ™ which span the entire
| 48-bit address space.
Page Table Entry — 6 Bytes
1IN Perms/Flags Ox126FO00 o0x11212000 Dense, linear table
- - stores 236 * 6B PTEs:
36 bits 12 bits I 550.8GB of Page Tables

OxFFFFFFFFFO00 0x45454000
= Most PTEs Empty!!!

Hierarchical Page Tables

PTAddr

PTAddr

L 279 PTEs = 279 PTEs PTAddr

Page Table Entry —
6 Bytes of data stored in 8 byte block

Page Table Addr or PPN Perms/Flags F 219 PTEs L 5ng pTES .
36 bits 12 bits
- PTAddr

Multi-level / hierarchical page tables are enormously more space efficient. If an entire
sub-tree of addresses in hierarchy of tables contain no mapped VAs, then entire tables
not stored anywhere in memory!

Translation Using Hierarchical Page Tables

48-bit Virtual Address
L1 PT Offset L2 PT Offset L3 PT Offset L4 PT Offset VPO

9 bits 9 bits 12 bits

9 bilts 9 bits

PTAddr

PTAddr

L1 PTab L2 PTab L3 PTab L4 PTab

Register CR3
Page Table Base

Mapping Using Hierarchical Page Tables

48-bit Virtual Address
L1 PT Offset L2 PT Offset L3 PT Offset L4 PT Offset

9 bilts 9 bits 9 bits 9 bits 12 bits

/.

Paged Out

PTAddr

PTAddr

L1 PTab L2 PTab L3 PTab L4 PTab

Register CR3 \ W
Page Table Base

L1 Table Always Exists Table not allocated? Create & fill entry

Initialize PPN to show
paged out.

(New) Intel 57-bit Virtual, 52-bit Physical, 5-level
ranslation Using Hierarchical Page Tables (2019)

57-bit Virtual Address
Reserved LO PT Offset L1 PT Offset L2 PT Offset L3 PT Offset L4 PT Offset VPO

7 bits 9 bits 9 bits 9 bits 9 pits 9 bits 12 bits

/.

PTAddr PTAddr

/.

PTAddr

LO PTab L1 PTab L2 PTab L3 PTab L4 PTab

Why not do something with those top 7 bits?
Page Table Base

(New) Intel 57-bit Virtual, 52-bit Physical, 5-level
ranslation Using Hierarchical Page Tables (2019)

57-bit Virtual Address
Reserved LO PT Offset L1 PT Offset L2 PT Offset L3 PT Offset L4 PT Offset VPO

7 bits 9 bits 9 bits 9 bits 9 pits 9 bits 12 bits

/.

PTAddr PTAddr

/.

PTAddr

LO PTab L1 PTab L2 PTab L3 PTab L4 PTab

Why not do something with those top 7 bits?
Page Table Base Intel checks that addresses are “canonical”, meaning sign extended to 64 bits & if not, then

SEGFAULT. Allows future architectures to use 64b addrs if they want to!

What part of the pipeline manipulates the page tables?

Instruction PC+4 Mem/Exec Forward
WB/Mem Forward

Branch Target
L. PC Source Select (1 if branch taken)

Exec/Exec Forward

Branch

Output/Read Output/Read

B h‘
ranc Reg C Data RengeIect

Target

Target
Offset

Branch Instruction
PC+4 - =
Reg A PC E 3 5
PC Source 60, I source x i Register
Select Reg B) Outcome Select <] Input .
= Writeback

Read Reg B l

Register
A B Write Write
elect Reg C Reg C
Data Select

Control Signals: N
Op select

°p=[+l -lxI/]

Instruction
Memory

ALU: output C data

Execute Memory Register Write-Back
Branch Predictor o

Read Regs A & B Data Read Data C (Ld)
ead Data
Outcome Write Register C Select
Write Register C Data
Target

Instruction Fetch

Write Reg C Data

MMU has fast access to memory and TLB for translation

Instruction PC+4

Branch Target

L. PC Source Select (1 if branch taken)

Mem/Exec Forward

Branch

PC Source
Select

Instruction
Memory

Branch Predictor

Instruction Fetch

Branch

Target
Offset
Instruction
PC+4

Branch‘
Target

PC
"o IR source
RegB e Select
Read

Register
A IR B

Control Signals: N

Op select

Execute

op=[+l -lxI/]

ALU: output C data

WB/Mem Forward
Exec/Exec Forward
1
Output/Read Output/Read
Reg C Data RengeIect

Register

Writeback
Write l Write
Reg C Reg C

Data Select

Memory Register Write-Back

Read Regs A & B Data

Write Register C Select

Read Data C (Ld)

Write Register C Data

Write Reg C Data

Key idea: page table walk entails extra memory

operations not extra memory instructions

Performance and Storage Overhead Analysis of
Translation with Page Tables

Page Tables Stored in Kernel Space of Virtual
Memory & (all but first) Paged In & Out

OXFFFFFFFF

First level page table always in physical memory at address in Register CR3.
Other levels of page table can be paged out to make space for other data.

Register CR3

All paged & page table data moves through cache hierarchy like any other data

Question: How much space overhead to store
hierarchical vs. linear page tables?

Question: How much time overhead to access
hierarchical vs. linear page tables?

0x00000000
4GB of
Physical Memory
Acts as cache for disk

Space Overhead Analysis of Page Tables

4 Levels of Page Tables How much space for tables vs. mapped data? Compared to linear?

8bytes / PTE
(sign extend to
64-bit word size)

Space Overhead Analysis of Page Tables

4 Levels of Page Tables

8bytes / PTE
(sign extend to
64-bit word size)

Table Size = Page Size
2173 bytes / PTE * 2A9 PTEs / Table = 212 = 4kB / Table

Pictured Example page tables size:
10 * 4kB = 40kB of page tables

Possible to map every page in last level PT:
4 last level tables exist * 512 entries * 4kB / page =
2723B mappable with just these page tables

Hierarchical Page Table Overhead:
40kB / 2723B = 40kB / 2~13kB = 0.005x overhead

Naive Linear page tables:
550GB of page tables
With 2723B of data to map, 65565x overhead

Performance Analysis of Page Tables

What is the time cost per memory access to use a
hierarchical page table structure?

l‘ sw 0x2000

Performance Analysis of Page Tables

What is the time cost per memory access to use a hierarchical
page table structure?

sw 0x2000

Four extra memory accesses:

* one memory access per page table level

* three of which levels may be swapped out / page fault
* all of which can be a cache miss

Worst case time overhead:

L1 cache hit, all page tables miss in cache & page fault

1 cycle L1 hit becomes 4 cache misses & 3 page faults (DRAM
~20 cycles) = 60-100 cycles overhead for a 1 cycle L1 hit

Minimum Overhead:
_ L1 miss, all page table accesses hit in cache & no page faults
Time Overhead Summary: 3 cycle L1 miss becomes 4 cache hits (1 cycle cache hits) = 4

Worst: >60-100x overhead cycles overhead on 3 cycle L1 miss
Best: ~2x overhead

Hierarchical Page Tables Trade Time to Save

Space

Time overhead:

From 2x constant time overhead
to a variable overhead that can
be upwards of 100x!

Key Insight:

AV |
iy

f-/lﬁ]
i

Space Savings:
From 65565x space overhead
to a 0.005x space overhead

Use microarchitectural support in the form of a Translation Lookaside
Buffer to eliminate the time cost of most translations

Translation Lookaside Buffers: Harc

Sup

nort for Caching Page Address

ware

ranslations

Translation Lookaside Buffer: Basic ldea (Hit)

Page Table

OXFFFFFFFF

0x2000 Ox1EO000

x1E000
e /

rage

0x00000000
4GB of
Physical Memory

Permissions Check

Translate

Virtual Memory

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

0x2000

0x2000 => 0x1E000

0x0000000000000000
Process

sw 0x2522

Translation Lookaside Buffer: Basic ldea (Hit)

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

0x2000

Awesome property of the TLB:

On a TLB Hit, no need to run translation function, access
page tables, traverse page table hierarchy, experience a page

! : 0x2000 => 0x1E000
fault, access the page table again, and return a translation sw 0x2522

Translation stays core-local, extra memory accesses

0x0000000000000000
Process

Translation Lookaside Buffer: Basic Idea

TLB Miss (4): cache
0x2000 => Ox1E000 in TLB OXFFFFFFFFFFFFFFFF

Page Table
OxFFFFFFFF
VPN PPN
0x1000
1t TLB: Translatio
0x2000 Ox1E000
‘ 0x2000
TLB ‘ o \ Ux2000:;
O
transg 2 . 17) M 0x3000
o raﬂs/ s/-l}-
e & al‘/'o 7 Nho
211= ip 7 sw 0x2522
x1E000 % & 8
all+-
. .
rage :
0x00000000
4GB of
Physical Memory I | 0x0000000000000000

Virtual Memory Process

Translation Lookaside Buffer: Basic ldea (Hit)

OXFFFFFFFFFFFFFFFF

TLB: On-core Hardware

Cache of Translations
0x1000

On the next access to same page:

TLB Hit! Subsequent accesses to ns

0x2000 => 0
same page cost of page 7 TR0 sw 0x2522

table “walk”

0x0000000000000000
Process

Processor package

i Core x4
Registers Instruction
fetch
L1 d-cache L1 i-cache L1 d-TLB L1 i-TLE
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way | | 128 entries, 4-way

L2 unified cache
256 KB, 8-way

L2 unified TLB
512 entries, 4-way

QuickPath interconnect

4 links @ 25.6 GB/s
102.4 GB/s total

8 MB, 16-way

L3 unified cache
(shared by all cores)

DDR3 memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

> To other
> cores

L. To /0
i bridge

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Separate L1 data & instruction (L1) TLB

oY o / Size? Reach? Why i-TLB larger?

Unified (L2) TLB
512 entries: total size? total reach?

Processor package

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Separate L1 data & instruction (L1) TLB
Size: 64 * 8B =512B; 128 * 8B = 1024B

/ Data Reach: 64 * 4kB = 256kB data

Core x4
; Instruction MMU
Registers fetch (addr translation)
le— !
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way '

L2 unified cache
256 KB, 8-way

L2 unified TLB

512 entries, 4-way

QuickPath interconnect
4 links @ 25.6 GB/s
102.4 GB/s total

Code Reach: 128 * 4kB = 512kB code

\ Unified (L2) TLB
2 aorae Size: 512 * 8B = 4kB

. To /O Reach: 512 * 4kB = 2721 = 2MB code+data

L3 unified cache
8 MB, 16-way
(shared by all cores)

DDR3 memory controller
3 x 64 bit @ 10.66 GB/s
32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

i bridge

~ Awesome Property of the TLB:
With a 3MB-ish working set of data + code, can run
without ever running virtual memory translation

Processor package

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Separate L1 data & instruction (L1) TLB
Size: 64 * 8B =512B; 128 * 8B = 1024B

/ Data Reach: 64 * 4kB = 256kB data

Core x4
; Instruction MMU
Registers fetch (addr translation)
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

L2 unified cache
256 KB, 8-way

L2 unified TLB !
512 entries, 4-way o

QuickPath interconnect
4 links @ 25.6 GB/s
102.4 GB/s total

Code Reach: 128 * 4kB = 512kB code

i Unified (L2) TLB
2 aorae Size: 512 * 8B = 4kB
L To O Reach: 512 * 4kB = 2A21 = 2MB code+data

L3 unified cache
8 MB, 16-way
(shared by all cores)

DDR3 memory controller
3 x 64 bit @ 10.66 GB/s
32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

i bridge

Awesome Property of the TLB?
What if my working set is, like, 58GB?
Question: How do we increase TLB Reach?

Revisiting the Assumption of Page Granularity

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check ()

Translate

OXFFFFFFFFFFFFFFFF

0x40000000

e1ep 4o g9

0x80000000

0x0000000000000000
Process

What if a page were large
(2MB) or huge (1GB)?

Processor package

Hardware Support for Virtual Memory:
Translation Lookaside Buffers in Intel Core i7

Separate L1 data & instruction (L1) TLB
Size: 64 * 8B =512B; 128 * 8B = 1024B
Max Data Reach: 64 * 1GB = 64GB data

Core x4
; Instruction MMU
Registers fetch (addr translation)
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way

L2 unified cache
256 KB, 8-way

L2 unified TLB
512 entries, 4-way

QuickPath interconnect
4 links @ 25.6 GB/s
102.4 GB/s total

8 MB, 16-way

L3 unified cache
(shared by all cores)

DDR3 memory controller
3 x 64 bit @ 10.66 GB/s
32 GB/s total (shared by all cores)

Main memory

The Core i7 memory system.

Code Reach: 128 * 4kB = 512kB code
Implication of this TLB organization

: Unified (L2) TLB
2 tores Size: 512 * 8B = 4kB
L To 110 Max Reach: 512 * 1GB = 512GB code+data

i bridge

Awesome Property of the TLB!
Huge pages make reach of L1TLB be 64GB!

Increasing Page Size to Increase TLB Reach

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check (]

Translate

OXFFFFFFFFFFFFFFFF Modern Oses support Iarge
pages and huge pages via
mmap (& other ways).

0x40000000
IA-64 (Itanium) had 8 page
sizes 4kB — 256MIB

elep Jo go1

Can mix different page sizes
w/ hardware support

0x80000000

'1) @));
0x0000000000000000
Process

Increasing Page Size to Increase TLB Reach

OXFFFFFFFFFFFFFFFF
“Transparent” huge pages
allow the OS to promote a
normal page to HUGE status

OXFFFFFFFF

—»O | 0xa0000000

a.out

Not guaranteed to Huge-ify.
If aligned more likely to be huge

posix_memalign(memptr,

elep Jo go1

0x80000000

Permissions Check (]

Translate

Hard Drive /
Backing Storage

alignment, size);

0x00000000

4GB of
Physical Memory - 0x0000000000000000
Process

Increasing Page Size to Increase TLB Reach

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check ()

Translate

OXFFFFFFFFFFFFFFFF

0x40000000

e1ep 4o g9

0x80000000

0x0000000000000000
Process

Risks / Costs of Increasing Page
Size?

Increasing Page Size to Increase TLB Reach

OXFFFFFFFF

a.out

Hard Drive /
Backing Storage

0x00000000
4GB of
Physical Memory

Permissions Check (]

Translate

OXFFFFFFFFFFFFFFFF

0x40000000

e1ep 40 g7

0x80000000

0x0000000000000000
Process

Risks / Costs of Increasing Page

Size?

* High cost to page in/out on
page fault (eek!)

* Wasting memory if hugeness
is useless

* Internal page fragmentation

* Need HW to track page sizes

* Potential for programmer
error w/ changing sizes

* High cost to zero a page

Use at your own risk! Try it out!

How Do Virtual Memory and Caching Interact?

Recall:

Physically separate cache data & tags set index
Ox01111111111111110000000001P10011
Way 0 Way 1 Way 2 Way 3 tag bits block
138 offset

3%

Cache Data Array Cache Tag Array

Reca | |: Question: Virtual or Physical Address?

Physically separate cache data & tags \ set index

Ox01111111111111110000000001p10011
Way 0 Way 1 Way 2 Way 3 tag bits block
13% offset

L3$

tag0 tagl tag 2 tag3

Cache Data Array Cache Tag Array

Physical Cache: Translate First Then Access Cache

Tag bits change with translation b/c

VPN VPO

cache uses physical addresses but Virtual Address 0x01111111111111110000000001010011

\

page Offset bits Staysamﬂ
PPN PPO

Physical Address 0x01100001111011100001001101010011

S
tag ¢,

==

Translate

Issues with the physical cache approach?

Physical Cache: Translate First Then Access Cache
(PIPT: Physically Indexed, Physically Tagged)

Tag bits change with translation b/c \Y VPO
cache uses physical addresses but Virtual Address 0x01111111111111110000000001010011

page Offset bits stw \
PPN PPO
Physical Address 0x01100001111011100001001101010011
S,
tag ¢,
%,

Translate

Issues with the physical cache approach?
e Translation is on the L1 critical path!

* Even w/ TLB hit, increases L1 hit time
* Limits cycle time & performance

Virtual Cache: Access Cache Then Translate
(VIVT: Virtually Indexed, Virtually Tagged)

Benefits of the virtual cache approach?
* Parallelize cache lookup & translate
Costs of the virtual cache approach?

* Synonyms & homonyms

Virtual Address 0x01111111111111110000000001010011 E
\\\\ |(///%%
Translate

| Physical Address ppy \ PPO
0x01100001111011100001001101010011

* To: lower caches & memory

Virtual Caches: The Synonym Problem

Problem: two VAs refer to the same PA. Cached

Process 1: . .
separately, in memory as a single block.

Virtual Address 1 VPN VPO
OXOl\I_llll111111111000011100@10010

Process 2:
Virtual Address 1 VPN VPO

0x07111111111111110000000000110011

/

Way 0 \Way 1 Way 2 Way 3

L3 ‘

Translate

Physical Address ppy \ PPO
0x01100001111011100001001101010011

* To: lower caches & memory

Cache Data Array

Cache Tag Array

Virtual Caches: The Homonym Problem

Process 1:

Virtual Address 1 VPN

Problem: Same VA refers to two different PAs. Same

VPO block in cache, but distinct in memory.

0x01\L11111111111110000011000010011

Process 2:
Virtual Address 2 VPN VPO

0xQ4111111111111110000000000110011

/

Way 0

L3

I Way 2 Way 3

Cache Data Array

Translate

Physical Address 1
0x011000011110111000¢1001101010011
Physical Address 2

0x0100000011111000001001101010011

* To: lower caches & memory

Cache Tag Array

Virtually Indexed, Physically Tagged Caches

Use index bits from VPO and
use tag bits from PPN. Overlap
set indexing w/ translation

VPN VPO
Virtual Address 0x0111111111111111000000000101001

Ky
Qp /}70,
%

PPN PPO
Physical Address 0x01100001111011100001001101010011

Way 0 Way 1 Way 2 Way 3

) v
15 [N — — —

15— — — S— o
&] Forwhat cache organizations does VIPT work?

Cache Tag Array

Translate

Virtually Indexed, Physically Tagged Caches

Use index bits from VPO and
use tag bits from PPN. Overlap
set indexing w/ translation

VPN VPO
Virtual Address 0x0111111111111111000000000101001

Ky
Qp /}70,
%

PPN PPO
Physical Address 0x01100001111011100001000001010011

Translate

Requires #VPO bits > #cache block offset + #cache set
index bits (why?)

Cache Data Array Cache Tag Array

Virtual Caches vs. Physical Caches

* Virtual Cache: uses virtual address to do cache lookups
* Physical Cache: uses physical address to do cache lookups

e Virtually-Indexed, Physically-Tagged (VIPT): uses virtual set index bits
to do set lookup, uses physical tag bits to do tag comparison

What did we just learn?

* Virtual memory, from the ground up

 Partitioning & segmentation: partial solutions

* Dynamic, software mapping, translation, and permissions checking
* Page tables & hierarchical page tables

e TLBs for accelerating translation

* Caches & VM together

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Recap – Vector Machines
	Slide 3: Vector Machines are Easily Parallelizable
	Slide 4: Vector Machines are Easily Parallelizable
	Slide 5: Reduction Operations
	Slide 6: Reduction Operations
	Slide 7: Vector Masking
	Slide 8: Reduction Operations with a vector mask
	Slide 9: Reduction Operations with a vector mask
	Slide 10: Indexed Memory Accesses (Scatter/Gather)
	Slide 11: Indexed Memory Accesses (Scatter/Gather)
	Slide 12: Summary of Benefits: Vector Architectures
	Slide 13: Vector execution model saves energy (and time) over scalar processing
	Slide 14: What did we just learn?
	Slide 15: What to think about next?
	Slide 16: Today (& Next Time): Virtual Memory
	Slide 17: What is virtualization?
	Slide 18: Virtualization - Purpose
	Slide 19: Virtualization – What resources?
	Slide 20: Memory Virtualization
	Slide 21: Virtual Memory – Abstraction of Abundance
	Slide 22: Virtual Memory – Abstraction of Uniformity
	Slide 23: Virtual Memory – Abstraction of Isolation*
	Slide 24: Virtual Memory – Thinking about mechanism
	Slide 25: Virtual Memory – Thinking about Mechanism
	Slide 26: First Attempt: Static Partitioning [Opal, SASOS, bare-metal micros]
	Slide 27: First Attempt: Static Partitioning
	Slide 28: First Attempt: Static Partitioning
	Slide 29: First Attempt: Static Partitioning
	Slide 30: Second Attempt: Segmented Memory [8086, IBM AS/400]
	Slide 31: Second Attempt: Segmented Memory
	Slide 32: Second Attempt: Segmented Memory
	Slide 33: Virtual Memory: Software Dynamic Address Translation (and Permission Checking)
	Slide 34: Virtual Memory: Software Dynamic Address Translation and Permission Checking
	Slide 35: Virtual Memory: Software Dynamic Address Translation and Permission Checking
	Slide 36: Mapping Data Into Virtual Address Space
	Slide 37: Virtual Memory: Mapping Data into Virtual Address Space
	Slide 38: Virtual Memory: Mapping Data into Virtual Address Space
	Slide 39: Virtual Memory: Mapping Data into Virtual Address Space
	Slide 40: Virtual Memory: Accessing Data Mapped into the Virtual Address Space
	Slide 41: Virtual Memory: Shared Mapping of File-backed Data into Address Space by Multiple Processes
	Slide 42: Virtual Memory: Shared Mapping of Anonymous Data into Address Space by Multiple Processes
	Slide 43: Page Granularity for Translation (& Permissions)
	Slide 44: Virtual Memory: Translation & Permissions at Page Granularity
	Slide 45: Virtual Memory: Translation and Finding Data Outcome #1: Page Not in Physical Memory
	Slide 46: Virtual Memory: Translation and Finding Data Outcome #1: Page Not in Physical Memory
	Slide 47: Page Fault: Basic Definition Address exists in translation function but is not in physical memory
	Slide 48: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory
	Slide 49: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory
	Slide 50: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory
	Slide 51: Virtual Memory: Translation and Finding Data Outcome #2: Page in Physical Memory
	Slide 52: The Translation Function & Its Use
	Slide 53: Virtual Memory: The Translation Function Page Table Stores Translation for Paged-In Data
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Virtual Memory Translation Algorithmically
	Slide 59: Permissions Checking
	Slide 60
	Slide 61: Page Cache Placement / Replacement
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Page Tables: Another Look at the Translation Function
	Slide 67
	Slide 68
	Slide 69: Hierarchical Page Tables
	Slide 70: Translation Using Hierarchical Page Tables
	Slide 71: Mapping Using Hierarchical Page Tables
	Slide 72: (New) Intel 57-bit Virtual, 52-bit Physical, 5-level Translation Using Hierarchical Page Tables (2019)
	Slide 73: (New) Intel 57-bit Virtual, 52-bit Physical, 5-level Translation Using Hierarchical Page Tables (2019)
	Slide 74: What part of the pipeline manipulates the page tables?
	Slide 75: MMU has fast access to memory and TLB for translation
	Slide 76: Performance and Storage Overhead Analysis of Translation with Page Tables
	Slide 77: Page Tables Stored in Kernel Space of Virtual Memory & (all but first) Paged In & Out
	Slide 78: Space Overhead Analysis of Page Tables
	Slide 79: Space Overhead Analysis of Page Tables
	Slide 80: Performance Analysis of Page Tables
	Slide 81: Performance Analysis of Page Tables
	Slide 82: Hierarchical Page Tables Trade Time to Save Space
	Slide 83: Translation Lookaside Buffers: Hardware Support for Caching Page Address Translations
	Slide 84: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 85: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 86: Translation Lookaside Buffer: Basic Idea
	Slide 87: Translation Lookaside Buffer: Basic Idea (Hit)
	Slide 88: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 89: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 90: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 91: Revisiting the Assumption of Page Granularity
	Slide 92: Hardware Support for Virtual Memory: Translation Lookaside Buffers in Intel Core i7
	Slide 93: Increasing Page Size to Increase TLB Reach
	Slide 94
	Slide 95
	Slide 96
	Slide 97: How Do Virtual Memory and Caching Interact?
	Slide 98: Recall: Physically separate cache data & tags
	Slide 99: Recall: Physically separate cache data & tags
	Slide 100: Physical Cache: Translate First Then Access Cache
	Slide 101: Physical Cache: Translate First Then Access Cache (PIPT: Physically Indexed, Physically Tagged)
	Slide 102: Virtual Cache: Access Cache Then Translate (VIVT: Virtually Indexed, Virtually Tagged)
	Slide 103: Virtual Caches: The Synonym Problem
	Slide 104: Virtual Caches: The Homonym Problem
	Slide 105: Virtually Indexed, Physically Tagged Caches
	Slide 106: Virtually Indexed, Physically Tagged Caches
	Slide 107: Virtual Caches vs. Physical Caches
	Slide 108: What did we just learn?

