

Brandon Lucia - Carnegie Mellon University - Challenges of Intermittent Computing

2

Energy-minimal Computing
Edge architectures for extreme efficiency

Existing architectures are extremely inefficient

3

Control/Communication

Instruction energy* breakdown:

Useful
compute

(10%)

>90%

*Horowitz ISSCC 2014 + measured values

Extreme Edge Computing Goal:
increase energy-efficiency and preserve programmability

Where does all the energy go in existing
computer architectures?

4*Horowitz ISSCC 2014 + measured values

Fetch/Decode (40-50%) Register file (20%) Other control

Instruction energy* breakdown:

Something is fundamentally wrong here:

Useful
compute

(10%)

ASICs/Accelerators would improve this, but forfeit programmability

Fundamental extreme edge trade-offs

5

High
Performance

Low Power

High
Programmability

Opportunity for the
extreme edge

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)

Fundamental extreme edge trade-offs

6

High
Performance

Low Power

High
Programmability

Opportunity for
the extreme edge

Manic

x
SNAFU

x

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)

RipTide

x

Key Idea:
Different architecture, different

set of tradeoffs

Extreme edge applications
demand programmable & energy-

minimal architectures

MANIC: Extreme Edge Vector-dataflow processor

• Reduce instruction supply energy + VRF energy

• Maintain high-degree of programmability to support future kernels

7

Energy

Model Insns RF Reads RF Writes

Scalar

Vector

Vector-
Dataflow

8

Scalar execution model

for i in 0...3:

 load r0, &a[i]

 mul r1, r0, r0

 add r2, r1, r0

 store &b[i], r2

load

mul

add

store

Dataflow

mul

register

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

Related: MSP430, ARM M0

Dataflow

Control-flow

9

for i in 0...3:

 load r0, &a[i]

 mul r1, r0, r0

 add r2, r1, r0

 store &b[i], r2

load

mul

add

store

Dataflow

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

Dataflow

Control-flow

Scalar execution model

10

for i in 0...3:

 load r0, &a[i]

 mul r1, r0, r0

 add r2, r1, r0

 store &b[i], r2

load

mul

add

store

Dataflow

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

register

add

Dataflow

Control-flow

Scalar execution model

11

for i in 0...3:

 load r0, &a[i]

 mul r1, r0, r0

 add r2, r1, r0

 store &b[i], r2

load

mul

add

store

Dataflow
register

load

register

mul

register

add

register

store

Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Repeat fetches +
decodes

Read and write
to RF

Example Program

Dataflow

Control-flow

Scalar execution model

Scalar execution is inefficient

12

Memory Compute + ControlICache accessDCache access

• Energy wasted on instruction & data supply

Vector execution

13

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow

14

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow

Vector execution

15

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow

Vector execution

16

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore:

Read and write
to VRF

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Dataflow

Control-flow

Vector execution

Vector pays huge energy cost for VRF writes

17

Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute +

Control
ICacheDCache access Vector register file

MANIC’s Vector-dataflow execution

18

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow

Control-flow

19

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

Dataflow

Control-flow

MANIC’s Vector-dataflow execution

20

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

Dataflow

Control-flow

MANIC’s Vector-dataflow execution

21

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

v[0]

Dataflow

Control-flow

MANIC’s Vector-dataflow execution

22

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

v[0]

v[0]

v[1]

Dataflow

Control-flow

MANIC’s Vector-dataflow execution

23

vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF

Reads
RF

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow
Forwarding

Dataflow

Control-flow

MANIC’s Vector-dataflow execution

Vector-dataflow reduces energy without costing
programmability

24

Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute +

Control
ICacheDCache access Vector register file

Dataflow

Memory
Compute +

Control
ICacheDCache access Vector register file

• Vector-dataflow execution
• Vector execution reduces instructions fetched
• Dataflow execution eliminates VRF reads

• Software support to eliminate VRF writes

MANIC is an energy-minimal computer
architecture implementing vector-dataflow

25

RISC-V
Scalar Core

2KB
I$

4KB D$

I2C 4KB
VRF

Boot
ROM 64KB

SRAM
256KB
MRAMMain

Memory

MANIC

Arbiter

Arbiter

GPIO

IO
 B

u
s

Block diagram

Implementation Characteristics

• Complete standalone system

• Scalar, Vector & MANIC designs

• Intel 22nm bulk FinFet (HVT)

• Embedded MRAM

• SRAM, logic, MRAM power isolated

Intel 22nm FinFET 8 metal layers, MANIC +
Vector + Scalar, 256kB MRAM + 64kB SRAM

Evaluation Goals: Energy characterization
of first ever vector-dataflow chip.

Evaluating MANIC’s efficiency in a silicon prototype
MANIC

MRAM MRAM
SRAM

Core Logic

$ + VRF

Operational Characteristics:
Frequency: 4-50MHz Voltage: 0.4-1.0V
Power: 19.1uW Efficiency: 256 GOPS/W

Key Result: Power low & efficiency high
enough to run on tiny solar panel indoors

More Pretty Chip Micrographs
Courtesy CMU’s Nanofabrication Laboratory & their electron microscope

28

MANIC

MRAM

SRAM

MANIC

Scalar

Caches

Can we do even better?
Let’s eliminate all instruction control & caching costs!

29

Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute +

Control
ICacheDCache access Vector register file

Dataflow

Memory
Compute +

Control
ICacheDCache access

Memory

Coarse-grained Reconfigurable Array Architectures

Compute
Key idea: architecture eliminates
instruction & control overheads

CGRA Overview

30

• Processing elements (PE) connected by Network-on-Chip (NoC)
• Heterogenous PE capability
• Connections configured by software compiler

S

r

rr

r

B

r

rr

r

S

r

rr

r

S

r

rr

r

C

r

rr

r

B

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

CGRA Overview

31

• Collection of processing elements (PE) connected via NoC
• Configure PE once, use many times: no instruction fetch/control costs
• Data move directly PE to PE: no RF/VRF/Cache costs
• Stream data through fabric: Reduced memory costs

1. vload v0, &a

2. vload v1, &b

3. vmul v2, v0, v1

4. vredsum v3, v2

5. vstore &c, v3

Vector assembly

dot_product():

Extract

1

3

4

5

2

S

r

rr

r

B

r

rr

r

S

r

rr

r

S

r

rr

r

C

r

rr

r

B

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

1 2

3 4

5

Schedule

Nearly all energy for actually useful computation!

RipTide CGRA

32

T
C

>

+
CF

R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

CF
R R

RR

St
R R

RR

A
R R

RR

A
R R

RR

St
R R

RR

M
R R

RR

M
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

CF
R R

RR

CF
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

A
R R

RR

M
R R

RR

M
R R

RR

St
R R

RR

A
R R

RR

A
R R

RR

St
R R

RR

CF
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

M
R R

RR

CF
R R

RR

RISC-V
Scalar Core

CGRA
Control

CGRA
Configurator

Memory

Memory

Memory

Memory

M

M

St

CF

A

Memory

Multiplier

Stream

Arithmetic

Control-flow

CF-modules

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

CGRAs provide efficiency & programmability
Dataflow compiler support avoids the need for programmer acrobatics

33

T
C

>

+

void test(int *a, int *b,

 int *z, int n) {

 for(int i = 0; i < n; i++) {

 for(int j = 0; j < n; j++) {

 if(a[j] < 0) {

 z[j] = 0;

 }

 z[j] += b[j];

 }

 }

}

Dataflow
Compiler

Optimized
Dataflow Graph

C code

RipTide CGRA

R

R

Dataflow Architecture

Dataflow Architecture: Dataflow Program Graphs

Conditional operations
represented as dataflow

if(x > 3){ x += 2 }

else{ x -= 1 }

y = x * 4

Loop represented as dataflow

while(x > 0){

 x -= 3

}

Initial value

Dataflow: “Activity Template” implementation

Dataflow: Processing Element & Interconnect Arch.

Processing Element Architecture

Processing Element Interconnection Architecture

Question: what do we need to specify
in this ISA?

Dataflow: MIT Dataflow Architecture

What is the main difference in this architecture versus the
“basic” architecture on the previous slide?

Dataflow: The Riptide Ordered Dataflow Machine

Dataflow: The Riptide ISA

What program constructs do the carry and
invariant ISA ops support?

What does the order ISA op do?

What program construct(s) does the
stream ISA op support?

Background: What is a Dataflow Machine?

41

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

R R

RR

Dataflow ISA matches CGRA Architecture
Dataflow compiler efficiently targets reconfigurable dataflow architecture!

42

T
C

>

+

void test(int *a, int *b,

 int *z, int n) {

 for(int i = 0; i < n; i++) {

 for(int j = 0; j < n; j++) {

 if(a[j] < 0) {

 z[j] = 0;

 }

 z[j] += b[j];

 }

 }

}

Dataflow
Compiler

Optimized
Dataflow Graph

C code

RipTide CGRA

R

R

Intermediate representation for dataflow compilation

Steering Sends Values Only Where They Are Needed

Steering instead of predication

Avoids evaluating both sides of

branch like predication does

Control-flow Operators Handle Loop-Carried Dependences

Generate fresh value tokens for

loop carried dependences and

loop-invariant values

Memory Ordering Gates Maintain Memory Consistency

Enforce logical time ordering of

concurrent memory operations

Memory Ordering Reduction Analysis

Existing memory

ordering analyses rely

on transitive reduction of

ordering graph

Dataflow ordering

reduction requires path

sensitivity or cuts

required orders.

Stream Gates Optimize Patterned Address Computation

Generate new address value token

every cycle according to affine(-ish)

function established in program

End-to-end compilation flow

Energy-Minimal Network-on-Chip Tricks:
No Buffers & Control-Flow in NoC

✓ Multi-hop, bufferless NoC ✓ Control-flow in the NoC

Buffers @ producer

C

r

B

M

r

Allows broadcast to multiple
consumers w/out duplication

S

S

S

S

r

rr

r

B

r

rr

r

S

r

rr

r

S

r

rr

r

C

r

rr

r

B

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

M

r

rr

r

Buffer on every link

v.

Duplicates data in
multiple buffers

• Control-flow operations are numerous, but simple
→ Wasteful to assign to PEs

Switch

Router Switch

Switch

Router CF-Modules

Riptide vs. COTS Extreme Edge MCUs

51

Energy savings Speedup

52

Evaluating compute options for the extreme edge

HMB010 BLE

System overview:

53

HMB010 BLE

System overview:

Scalar

Evaluating compute options for the extreme edge

54

HMB010 BLE

System overview:

Riptide

Evaluating compute options for the extreme edge

55

HMB010 BLE

System overview:

ASIC

Evaluating compute options for the extreme edge

That was “Ordered Dataflow”

56

Axiom: Tokens proceed through the graph in the order of their generation

How do we ensure that tokens flow through the dataflow graph in order?

What about allowing token reordering?

57

“Tagged-token dataflow architectures”

Two issues: Latency & Synchronization

Latency: time between when operation
is issued and when completes

Synchronization: need to assure data
properly written before read

ld Memory

t=0

t=?

(Memory) Latency: when can I
expect my value to come back?

Synchronization: which
value should I use?

58

Tagged-token Dataflow Architecture

59

I-structures: latency-tolerant memory
I-fetch send rd tok w/ addr+continuation
P: read & run; A/W: queue
I-store: send wr tok to populate table
A/W are non-blocking (why?)
I-allocate: make storage for fetch/stores Token matching: synchronization of

out-of-order inputs, using i-structs

Parallelism is a resource congestion problem

60

Synchronization: which
value should I use? Many
options accumulating over
time

I structure

Varieties of Dataflow Execution

61

Varieties of Dataflow Execution

62

	Slide 1
	Slide 2
	Slide 3: Existing architectures are extremely inefficient
	Slide 4: Where does all the energy go in existing computer architectures?
	Slide 5: Fundamental extreme edge trade-offs
	Slide 6: Fundamental extreme edge trade-offs
	Slide 7: MANIC: Extreme Edge Vector-dataflow processor
	Slide 8: Scalar execution model
	Slide 9: Scalar execution model
	Slide 10: Scalar execution model
	Slide 11: Scalar execution model
	Slide 12: Scalar execution is inefficient
	Slide 13: Vector execution
	Slide 14: Vector execution
	Slide 15: Vector execution
	Slide 16: Vector execution
	Slide 17: Vector pays huge energy cost for VRF writes
	Slide 18: MANIC’s Vector-dataflow execution
	Slide 19: MANIC’s Vector-dataflow execution
	Slide 20: MANIC’s Vector-dataflow execution
	Slide 21: MANIC’s Vector-dataflow execution
	Slide 22: MANIC’s Vector-dataflow execution
	Slide 23: MANIC’s Vector-dataflow execution
	Slide 24: Vector-dataflow reduces energy without costing programmability
	Slide 25: MANIC is an energy-minimal computer architecture implementing vector-dataflow
	Slide 27
	Slide 28: More Pretty Chip Micrographs Courtesy CMU’s Nanofabrication Laboratory & their electron microscope
	Slide 29: Can we do even better? Let’s eliminate all instruction control & caching costs!
	Slide 30: CGRA Overview
	Slide 31: CGRA Overview
	Slide 32: RipTide CGRA
	Slide 33: CGRAs provide efficiency & programmability
	Slide 34: Dataflow Architecture
	Slide 35: Dataflow Architecture: Dataflow Program Graphs
	Slide 36: Dataflow: “Activity Template” implementation
	Slide 37: Dataflow: Processing Element & Interconnect Arch.
	Slide 38: Dataflow: MIT Dataflow Architecture
	Slide 39: Dataflow: The Riptide Ordered Dataflow Machine
	Slide 40: Dataflow: The Riptide ISA
	Slide 41: Background: What is a Dataflow Machine?
	Slide 42: Dataflow ISA matches CGRA Architecture
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Energy-Minimal Network-on-Chip Tricks: No Buffers & Control-Flow in NoC
	Slide 51: Riptide vs. COTS Extreme Edge MCUs
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: That was “Ordered Dataflow”
	Slide 57: What about allowing token reordering?
	Slide 58
	Slide 59: Tagged-token Dataflow Architecture
	Slide 60: Parallelism is a resource congestion problem
	Slide 61: Varieties of Dataflow Execution
	Slide 62: Varieties of Dataflow Execution

