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Energy-minimal Computing
Edge architectures for extreme efficiency



Existing architectures are extremely inefficient

3

Control/Communication

Instruction energy* breakdown:

Useful 
compute 

(10%)

>90%

*Horowitz ISSCC 2014 + measured values

Extreme Edge Computing Goal:
increase energy-efficiency and preserve programmability



Where does all the energy go in existing 
computer architectures?

4*Horowitz ISSCC 2014 + measured values

Fetch/Decode (40-50%) Register file (20%) Other control

Instruction energy* breakdown:

Something is fundamentally wrong here:

Useful 
compute 

(10%)

ASICs/Accelerators would improve this, but forfeit programmability



Fundamental extreme edge trade-offs
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High
Performance

Low Power

High
Programmability

Opportunity for the 
extreme edge

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)



Fundamental extreme edge trade-offs
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High
Performance

Low Power

High
Programmability

Opportunity for 
the extreme edge

Manic

x
SNAFU

x

Well-studied
(GPUs, OOO, SIMD)

Well-studied (ASICs)

RipTide

x

Key Idea:
Different architecture, different 

set of tradeoffs

Extreme edge applications 
demand programmable & energy-

minimal architectures



MANIC: Extreme Edge Vector-dataflow processor

• Reduce instruction supply energy + VRF energy

• Maintain high-degree of programmability to support future kernels
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Energy

Model Insns RF Reads RF Writes

Scalar

Vector

Vector-
Dataflow
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Scalar execution model

for i in 0...3: 

  load r0, &a[i]

  mul r1, r0, r0

  add r2, r1, r0

  store &b[i], r2

load

mul

add

store

Dataflow

mul

register

add

register

store

Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

Related: MSP430, ARM M0

Dataflow

Control-flow
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for i in 0...3: 

  load r0, &a[i]

  mul r1, r0, r0

  add r2, r1, r0

  store &b[i], r2

load

mul

add

store

Dataflow

add

register

store

Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

Dataflow

Control-flow

Scalar execution model



10

for i in 0...3: 

  load r0, &a[i]

  mul r1, r0, r0

  add r2, r1, r0

  store &b[i], r2

load

mul

add

store

Dataflow

store

Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program register

load

register

mul

register

register

add

Dataflow

Control-flow

Scalar execution model
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for i in 0...3: 

  load r0, &a[i]

  mul r1, r0, r0

  add r2, r1, r0

  store &b[i], r2

load

mul

add

store

Dataflow
register

load

register

mul

register

add

register

store

Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Repeat fetches + 
decodes

Read and write 
to RF

Example Program

Dataflow

Control-flow

Scalar execution model



Scalar execution is inefficient
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Memory Compute + ControlICache accessDCache access

• Energy wasted on instruction & data supply



Vector execution
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow

Vector execution
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore: v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

Dataflow

Control-flow

Vector execution
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program
vload:

vmul:

vadd:

vstore:

Read and write 
to VRF

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Vector Register

v[1]v[0] v[2]

Dataflow

Control-flow

Vector execution



Vector pays huge energy cost for VRF writes
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Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute + 

Control
ICacheDCache access Vector register file



MANIC’s Vector-dataflow execution
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
RF 

Reads
RF 

Writes

Scalar

Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:

vmul:

vadd:

vstore:

v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow

Control-flow
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy

Model Insns
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Reads
RF 

Writes
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Vector

Vector-
Dataflow

Example Program

Vector Register

Vector Register

vload:
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vstore:

v[0]
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v[1]
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Dataflow

Control-flow

MANIC’s Vector-dataflow execution
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vload v0, &a

vmul v1, v0, v0
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MANIC’s Vector-dataflow execution
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vload v0, &a

vmul v1, v0, v0
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v[0]

v[1]

Dataflow
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MANIC’s Vector-dataflow execution
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vload v0, &a

vmul v1, v0, v0

vadd v2, v1, v0

vstore &b, v2

vload

vmul

vadd

vstore

Dataflow
Energy
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RF 
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Vector

Vector-
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Example Program

Vector Register

Vector Register

vload:
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vadd:
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v[0]

v[0]

v[0]

v[0]

v[1]

v[1]

v[1]

v[1]

v[2]

v[2]

v[2]

v[2]

Dataflow
Forwarding

Dataflow

Control-flow

MANIC’s Vector-dataflow execution



Vector-dataflow reduces energy without costing 
programmability
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Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute + 

Control
ICacheDCache access Vector register file

Dataflow

Memory
Compute + 

Control
ICacheDCache access Vector register file

• Vector-dataflow execution
• Vector execution reduces instructions fetched
• Dataflow execution eliminates VRF reads

• Software support to eliminate VRF writes



MANIC is an energy-minimal computer 
architecture implementing vector-dataflow

25

RISC-V
Scalar Core

2KB
I$

4KB D$

I2C 4KB
VRF

Boot 
ROM 64KB

SRAM
256KB
MRAMMain

Memory

MANIC

Arbiter

Arbiter

GPIO

IO
 B

u
s

Block diagram

Implementation Characteristics

• Complete standalone system

• Scalar, Vector & MANIC designs

• Intel 22nm bulk FinFet (HVT)

• Embedded MRAM

• SRAM, logic, MRAM power isolated



Intel 22nm FinFET 8 metal layers, MANIC + 
Vector + Scalar, 256kB MRAM + 64kB SRAM

Evaluation Goals: Energy characterization 
of first ever vector-dataflow chip. 

Evaluating MANIC’s efficiency in a silicon prototype
MANIC

MRAM MRAM
SRAM

Core Logic

$ + VRF

Operational Characteristics: 
Frequency: 4-50MHz            Voltage: 0.4-1.0V
Power: 19.1uW Efficiency: 256 GOPS/W

Key Result: Power low & efficiency high 
enough to run on tiny solar panel indoors



More Pretty Chip Micrographs
Courtesy CMU’s Nanofabrication Laboratory & their electron microscope
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MANIC

MRAM

SRAM

MANIC

Scalar

Caches



Can we do even better?
Let’s eliminate all instruction control & caching costs!

29

Memory Compute + ControlICache accessDCache access

Vector

Memory
Compute + 

Control
ICacheDCache access Vector register file

Dataflow

Memory
Compute + 

Control
ICacheDCache access

Memory

Coarse-grained Reconfigurable Array Architectures

Compute
Key idea: architecture eliminates 
instruction & control overheads



CGRA Overview
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• Processing elements (PE) connected by Network-on-Chip (NoC)
• Heterogenous PE capability
• Connections configured by software compiler
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CGRA Overview
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• Collection of processing elements (PE) connected via NoC
• Configure PE once, use many times: no instruction fetch/control costs
• Data move directly PE to PE: no RF/VRF/Cache costs
• Stream data through fabric: Reduced memory costs

1. vload v0, &a

2. vload v1, &b

3. vmul v2, v0, v1

4. vredsum v3, v2

5. vstore &c, v3

Vector assembly

dot_product():

Extract

1

3

4

5

2
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3 4

5

Schedule

Nearly all energy for actually useful computation!



RipTide CGRA
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CGRAs provide efficiency & programmability
Dataflow compiler support avoids the need for programmer acrobatics
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T
C
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void test(int *a, int *b,

          int *z, int n) {

  for(int i = 0; i < n; i++) {

  for(int j = 0; j < n; j++) {

   if(a[j] < 0) {

    z[j] = 0;

   }

   z[j] += b[j];

  }

 }

}

Dataflow
Compiler

Optimized
Dataflow Graph

C code

RipTide CGRA

R

R



Dataflow Architecture



Dataflow Architecture: Dataflow Program Graphs

Conditional operations 
represented as dataflow

if( x > 3 ){ x += 2 }

else{ x -= 1 }

y = x * 4

Loop represented as dataflow

while( x > 0 ){

  x -= 3

}

Initial value



Dataflow: “Activity Template” implementation



Dataflow: Processing Element & Interconnect Arch.

Processing Element Architecture

Processing Element Interconnection Architecture

Question: what do we need to specify 
in this ISA?



Dataflow: MIT Dataflow Architecture

What is the main difference in this architecture versus the 
“basic” architecture on the previous slide?



Dataflow: The Riptide Ordered Dataflow Machine



Dataflow: The Riptide ISA

What program constructs do the carry and 
invariant ISA ops support?

What does the order ISA op do?  

What program construct(s) does the 
stream ISA op support?



Background: What is a Dataflow Machine?
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Dataflow ISA matches CGRA Architecture
Dataflow compiler efficiently targets reconfigurable dataflow architecture!
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void test(int *a, int *b,

          int *z, int n) {

  for(int i = 0; i < n; i++) {

  for(int j = 0; j < n; j++) {

   if(a[j] < 0) {

    z[j] = 0;

   }

   z[j] += b[j];

  }

 }

}

Dataflow
Compiler

Optimized
Dataflow Graph
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Intermediate representation for dataflow compilation



Steering Sends Values Only Where They Are Needed

Steering instead of predication

Avoids evaluating both sides of

branch like predication does



Control-flow Operators Handle Loop-Carried Dependences

Generate fresh value tokens for 

loop carried dependences and 

loop-invariant values 



Memory Ordering Gates Maintain Memory Consistency

Enforce logical time ordering of 

concurrent memory operations



Memory Ordering Reduction Analysis

Existing memory 

ordering analyses rely 

on transitive reduction of 

ordering graph

Dataflow ordering 

reduction requires path 

sensitivity or cuts 

required orders.



Stream Gates Optimize Patterned Address Computation

Generate new address value token 

every cycle according to affine(-ish) 

function established in program



End-to-end compilation flow



Energy-Minimal Network-on-Chip Tricks:
No Buffers & Control-Flow in NoC

✓  Multi-hop, bufferless NoC ✓  Control-flow in the NoC

Buffers @ producer

C
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Allows broadcast to multiple 
consumers w/out duplication
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Buffer on every link

v.

Duplicates data in 
multiple buffers

• Control-flow operations are numerous, but simple
→ Wasteful to assign to PEs

Switch

Router Switch

Switch

Router CF-Modules



Riptide vs. COTS Extreme Edge MCUs
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Energy savings Speedup
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Evaluating compute options for the extreme edge

HMB010 BLE

System overview:
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HMB010 BLE

System overview:

Scalar

Evaluating compute options for the extreme edge
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HMB010 BLE

System overview:

Riptide

Evaluating compute options for the extreme edge
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HMB010 BLE

System overview:

ASIC

Evaluating compute options for the extreme edge



That was “Ordered Dataflow”
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Axiom: Tokens proceed through the graph in the order of their generation

How do we ensure that tokens flow through the dataflow graph in order?



What about allowing token reordering?
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“Tagged-token dataflow architectures”

Two issues: Latency & Synchronization

Latency: time between when operation 
is issued and when completes

Synchronization: need to assure data 
properly written before read

ld Memory

t=0

t=?

(Memory) Latency: when can I 
expect my value to come back?

Synchronization: which 
value should I use?
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Tagged-token Dataflow Architecture
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I-structures: latency-tolerant memory
I-fetch send rd tok w/ addr+continuation
P: read & run; A/W: queue
I-store: send wr tok to populate table
A/W are non-blocking (why?)
I-allocate: make storage for fetch/stores Token matching: synchronization of 

out-of-order inputs, using i-structs



Parallelism is a resource congestion problem

60

Synchronization: which 
value should I use?  Many 
options accumulating over 
time

I structure



Varieties of Dataflow Execution
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Varieties of Dataflow Execution
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