
CMU 18-344: Computer
Systems and the

Hardware/Software Interface

Recap: Advanced Microarchitecture Techniques

• Advanced Instruction-Level Parallelism: Deep pipelining, Multiple
Issue, and Out of Order Execution

• Vector / SIMD processors

A Superscalar Processor Executes Multiple
Instructions at the Same Time

Fetch Decode

Execute
non-mul

Memory
Register
Write-Back

mul0 mul1 mul2

add

mul

add
stall

Scalar executes one instruction at a time
Superscalar executes multiple instructions at a time

Front End Challenges:
1)Need to supply
enough instructions
2)Need hw resources
for multiple ID & EX

Superscalar processors: Challenges & sources
of complexity

Fetch Decode

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

a
d
d

m
u
l

m
u
l

a
d
d

Fetch: Branch prediction
more complex. Risk of
overfetch because we’re
fetching a whole block?
Must consider multiple,
sequential fetches based on
predictions

lw

sw

lw

lw

sw

Decode: Not too bad, just
replication of resources

Issue: Dependence / hazard
detection logic complexity.
Need to detect dependences
between all instructions in
issue queue and some
combinations of instructions
cannot issue simultaneously

Reg Read: Multi-porting
register file has high cost (4-
wide = 8 read ports) & area
cost is proportional to
square of port count

Execute / Memory: More
execute units, more cache
ports. Forwarding paths &
input operand selection logic
become very complicated.

Reg. WB: Write port per
instruction that may complete
that writes a register (4-wide
= 4 write ports)

Fetch Decode ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

Out-of-Order Execution: Register Renaming Eliminates
Dependences that Prevent Simultaneous Dispatch

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

All Types of Data Hazards Matter in OoO Execution

sub x6 x5 x4

lw x16 0xabc

add x12 x6 x14

Read-After-Write (RAW)

sub x8 x16 x4

add x16 x6 x14

lw x16 0xabc

Write-After-Read (WAR) Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4

Types of Data Hazards
lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4sub x6 x5 x4

Non-mem-op, single memory cycle

lw x6 0xabclw x6 0xabc

Multi-cycle latency memory op

Earlier lw instruction finishes after later sub
instruction. Both write x6. Wrong final value in x6.
Explicitly handled with logic to maintain ordering in
processors that allow this behavior (not our datapath)

Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

Later add instruction writes x16 before earlier
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4

add x16 x6 x14

lw x11 0xabc

add x16 x6 x14

Stalled at decode/reg. read

Completes quickly and writes reg.

Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Question: How can instructions issue to our
out-of-order pipeline in which instructions
may execute and complete out of order?
If WAW or WAR, can’t just dispatch or OoO
execution may read regs not yet updated

Renaming Example

A1: add r0 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

Renaming Example

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

RAW dependence on x6
M1 waiting on result from A1 (r0)

Renaming Example

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

WAW dep b/w A1 & A2 & WAR dep w/ M1
Resolved by renaming output regs

Renaming Example

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

RAW dependence between M1 & A3
Cannot be resolved by renaming

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add x6 x7 x9

Renaming Example

A1

M1

A2

A3

A4

M2

WAW dep w/ A1 resolved by renaming
True dep w/ A2 handled by looking up
renamed result of A2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add x6 x7 x9

Renaming Example

A1

M1

A2

A3

A4

M2

WAR dep with M2 & WAW w/ A2
resolved by renaming
True deps w/ A3 and M1 resolved by
looking up renamed regs in table

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1

Renaming Example

A1

M1

A2

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

Renaming Example

A1

M1

A2

A3

A4

M2

After register renaming, only RAW
dependences (i.e., “True Dependences”)
remain in the execution

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

Renaming Avoids False Deps

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

Later add instruction writes r1 before earlier sub
instruction reads x16, which is perfectly ok!

sub x8 x16 x4

add r1 x6 x14

lw x11 0xabc

add x16 x6 x14

Stalled at decode/reg. read

Completes quickly and writes reg.

Fetch Decode ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

Superscalar Out of Order Execution is
extremely complex to implement

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

We will leave out of order execution details here, but there is
a lot more to learn about this topic.
Register renaming algorithms, how to do forwarding in
SS/OoO, what to do on exceptions in SS/OoO… 447 & 740

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

In-order commit tracks instruction completion
and ensures architectural state updates in order

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

end

Out of Order Execution

In-order Commit

Replace reg names w/ ref to
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers
to physical registers and
dynamically maintain mapping
table. Prevent issue only for
true deps.

Reorder Buffer

add1 t1

add2 t2

mul x9

17

???

245

Reorder buffer (ROB) ensures
instructions commit in order. Tracks
instruction, result reg, value, and validity.
On commit, instructions waiting to issue
can issue using newly produced value
now available in the ROB entry

add2 is complete, but waits
to update t2 (i.e., x6) until
mul is done

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
W

id
th

Performance in a superscalar processor depends on the
existence of ILP in the program.

We need there to be parallelizable instructions in the
instruction stream that we fetch, dispatch, and issue.
Question: how to avoid issue slot waste?

Empty issue slot represent
wasted opportunity to do
some work on a cycle

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.

Out of Order Execution
Issue Time

Is
su

e
W

id
th

SMT exploits thread-level parallelism (TLP) instead of ILP to
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with
instructions from another
thread

Susan Eggers, inventor of SMT, ca. 1980

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Very Large Instruction Word (VLIW) Architectures

Issue Time

Is
su

e
W

id
th

Change the ISA! In VLIW, the ISA exposes the issue width architecturally
Each fetch / issue is on a packet of instructions, hopefully independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type
(5b)

Intel IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Today: More Advanced Architecture Concepts

• (more) VLIW

• Vector machines & SIMD

• Dataflow as a hardware/software boundary design problem

• Systolic Array Architectures (if time)

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
W

id
th

Performance in a superscalar processor depends on the
existence of ILP in the program.

We need there to be parallelizable instructions in the
instruction stream that we fetch, dispatch, and issue.
Question: how to avoid issue slot waste?

Empty issue slot represent
wasted opportunity to do
some work on a cycle

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time

Is
su

e
W

id
th

Question: how to avoid issue slot waste?
• Schedule code in program to avoid dependences
• Schedule code in loops to align with fetch granularity
• Schedule code to avoid oversubscribing functional units (i.e.,

a sequence of consecutive multiplies can’t issue together)

Empty issue slot represent
wasted opportunity to do
some work on a cycle

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.

Out of Order Execution
Issue Time

Is
su

e
W

id
th

SMT exploits thread-level parallelism (TLP) instead of ILP to
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with
instructions from another
thread

Susan Eggers, inventor of SMT, ca. 1980

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Simultaneous Multi-Threading (SMT)

Out of Order Execution
Issue Time

Is
su

e
W

id
th

Question: Sources of hardware complexity for SMT?
• Need fetch to support multiple streams (including branch prediction logic…)
• Need to tag functional units, rename table entries, ROB entries (and other

structures) to route values to correct downstream instructions

Fill empty issue slots with
instructions from another
thread

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Issue Time

Is
su

e
W

id
th

Change the ISA! In VLIW, the ISA exposes issue width architecturally. Each
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Issue Time

Is
su

e
W

id
th

What do we rely on for VLIW to work? What assumptions do we depend
on for VLIW to work and be efficient?

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

Issue Time

Is
su

e
W

id
th

Like single-issue scalar execution

Issue Time

Is
su

e
W

id
th

Like SMT superscalar, exploiting
thread-level parallelism in prog.

Issue Time
Is

su
e

W
id

th

Like multi-issue superscalar execution

Software-constructed (compiler-constructed) bundles
of instructions can come from anywhere

EPIC assumes in-order execution (static scheduling) and presence
of ILP exploiting features, e.g., branch pred., load speculation

Issue
Issue Time

Is
su

e
W

id
th

Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Superscalar OoO is great at finding ILP to reduce
CPI, but EPIC eliminates dynamic scheduling. Why?

Goal for static & dynamic scheduling: Find instructions to
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Issue
Issue Time

Is
su

e
W

id
th

Question: how can static scheduling be good enough to
justify eliminating dynamic scheduling & SS/OoO?

Dynamic Scheduling vs. Static VLIW

Goal for static & dynamic scheduling: Find instructions to
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Dynamic scheduling has a limited scope
for analysis and optimization
Short window limits reordering distance

ld x11 (x8)

mul t1 x10 x11

mul x10 x8 x9

… //other ops taking t_mul cycles

add x2 x3 x4

st x10 (x8)

Latency = t_mul

At this point, muls are
done and we keep
rolling, overlapped
latency.

Static scheduling has global scope
for reordering / optimization
Long window allows long reorderings

Effective scheduling relies on approximately
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory
operations?

div

add

add

add

add

add

Effective scheduling relies on approximately
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory
operations?
• Unpredictable stalls in the pipeline waiting for memory operations.

• Can tolerate latencies by scheduling same-latency operations together, if
compiler has an expectation about memory latency, cache structure, and
producer / consumer relationships.
• This is a very difficult compilers problem!!

Branch instructions in EPIC

• EPIC / VLIW does branches differently than in SS/OoO

• Option 1: Waste space in a bundle, run branches like in SS/OoO
• if taken, grab taken bundle, if not, grab sequentially next bundle

• Option 2: Predication
• run both sides of branch and commit only insns with true predicate

• Predication takes pressure off of control logic & branch prediction
(why?)
• Do we need a branch predictor?

• Costs of predication?
Insn1 (41b) Insn2 (41b) Insn3 (41b)

Type
(5b)

P
1

P
2

P
3

If !P nullify insn

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 =

x9+x11

X9 =
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

P1=!cond

P2=cond||(!cond&&cond2)

(P1)Add x9 x7 x8

(P2)Sub x10 x9 x11

(P2)Add x9 x10 x14

St x9 (0xabc)

Add explicit predicates to the
code that executes. Predicates
evaluate dynamically using
predicate registers.

No branch instructions here!
Microarchitectural implication?

Store predicate results in explicit
predicate registers

Pipeline Characteristics
• Execute 2 bundles (6insns) per cycle
• 10 stage pipeline
• 4 Integer Units (2 of which do Ld/St)
• 2 Floating Point Units
• 3 Branch Units
• Issue in order, execute in order
• Simple register dependence tracking

using a “scoreboard”

Control Characteristics
• Predication and sophisticated two-level branch

predictor (why?)
• Instruction queues connect fetch to execute

units hiding some fetch bubble latency with
execute latency (how?)

Intel Itanium EPIC Architecture

Register File
• Fairly complex and highly abundant
• Separate predicate / branch, int, and FP regs
• “Register stack engine” efficiently doles out

physical registers, avoiding structural hazard

VLIW / EPIC is a Very Cool HW/SW Interface!

• Why did Itanium not seize the
(any?) market as Intel
anticipated?

• (In the top500
supercomputers, we mostly
have x86-64, not IA64)

VLIW / EPIC is a Very Cool HW/SW Interface!

• Donald Knuth: “the "Itanium"
approach [was] supposed to be
so terrific—until it turned out
that the wished-for compilers
were basically impossible to
write”

Parallelism Beyond ILP

Flynn’s Taxonomy of Parallel Architectures

SISD SIMD

MIMDMISD

MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Used for …what?

MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Rare, sometimes used in DSP, filter signal using multiple programs

• Modular redundancy, replicated hardware for execution

SIMD – Single Instruction Multiple Data

Apply instruction to many data: Single instruction (fetched, decoded,
etc) applies its operation to a large number of data elements

Amortizes Instruction Costs: Each instruction corresponds to a large
number of operations

A Few Flavors: most notable/effective are Vector machines
• Also: historically, Array Machines but these are not widely used anymore

Data-oriented, Not Necessarily Parallel: Instructions specify what do
to to each element of data, but not how to do it (i.e., parallel, partially
parallel, sequential)

Vector Machines

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

setvl 5

vld v0, a

vld v1, b

vadd v0, v1

vst v0, c

setvl: tell machine length of input vector. Actual in-memory length can be
thousands of elements! Machine returns max it can handle in a vector register
(varies by implementation, can be tens of elements)

vld <vector register>, <mem>: load vector of length vl starting at
memory location <mem>

vst <vreg>, <mem>: store elems of <vreg> to memory starting from memory
location <mem>

vadd <vreg1> <vreg2>: add element-wise store into vreg1

Assumes explicit vector register file that can temporarily store vector operands

A
[4

]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

vector register file (VRF)

v0

v1

Vector register file

Large, performance-critical structure accessed
potentially many times per-cycle during vector
operation. How large? How critical?

maxvl is an implementation-dependent
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the
excess vectors get set to 0 during ops

Vector register file

Large, performance-critical structure accessed
potentially many times per-cycle during vector
operation. How large? How critical?

maxvl is an implementation-dependent
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the
excess vectors get set to 0 during ops

8B / word * 16 words / VRF entry * 32 VRF entries per VRF = 4kB!
Larger than many L1 Caches

Dealing with limited vector size is easy in SW

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

setvl 8192 //machine says “vl = 5, actually”

for(i = 0…(8192 / vl)): //loop vl at a time

 vld v0, a + i*vl

 vld v1, b + i*vl

 vadd v0, v1

 vst v0, c + i*vl

A
[4

]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

vector register file (VRF)

v0

v1

Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an
instruction’s operation over an
entire vector of data

Implementation: Parallel
functional units each process
parts of a vector, producing a
vector output. Why simple?

Lane 0 Lane 1

Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Simple: Vector instruction
operates on v0[i] and v1[i] not
v0[i] and elem *v.

Very simple operand matching
logic, no need to track complex
producer consumer relationships
across inputs of operations.

Primary cost?

Lane 0 Lane 1

Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

su
m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]

Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

su
m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

v0[0] =

v0[0] + Σ_i v1[i]

Vector Masking
vadd v3, v0, v2, v1.t

Behavior of a masked vector operation: For elements up to vl in v3, add elements from
v0 and v2 if that element in v1’s LSB is set to 1, set other v3 elems to 0
What high-level programming concept does this get used to implement?

Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, v2

0

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

su
m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1 v0[0] =

v0[0] +

v1[1] + v1[2] + v1[3]

01110v2

01110v2

Reduction operations accumulate the result
of an operation on a vector into the first
element of a destination vector
Uses for reduction?

dst init
val

input
vec

mask

Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vmul v0, v1

vredsum v0, v0, v1, v2

0

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

su
m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

11111v2

11111v2

Uses for reduction?
Dot product, e.g.,

for(i = 0..len){

 v[i] += a[i] * b[i]

}

Indexed Memory Accesses (Scatter/Gather)

vluxei64 v1, (&B), v0, v2

34021

v0

v1

34021

B
[4

]

B
[0

]

B
[2

]

3402

B
[4

]

B
[0

]

B
[2

]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

base
addr

dest

Indexed memory loads “gather” elements from all over
memory into a contiguous vector register.

Indexed memory stores “scatter” elements from a
contiguous vector register into locations all over memory

Uses?

Indexed Memory Accesses (Scatter/Gather)

vluxei64 v1, (&B), v0, v2

34021

v0

v1

34021

B
[4

]

B
[0

]

B
[2

]

3402

B
[4

]

B
[0

]

B
[2

]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

base
addr

dest

Common Use: indirect array accesses. Common in graph analytics

for(src in 0 .. n){

 for(dst in 0..ind[src].len()){

 data[ind[src][dst]]++;

 }

}

Summary of Benefits: Vector Architectures
• Compared to scalar architectures:

• Single instruction performs many operations: one instruction is the equivalent of executing
an entire loop of a program!

• Control is simpler: no loops, no branches, no misprediction/misspeculation

• Vector interface makes data-independence across vector elements explicit: simplifies
implementations and eliminates complex dependence logic

• Dependence checking of vectors, not elements: what dependence tracking is required
pertains to entire vector registers, not individual elements, amortizing its cost significantly

• Easy to express data parallelism: avoids software complexity of multithreading on a
multiprocessor (i.e., MIMD)

• Maximize value of memory bandwidth: contiguous/strided vector fetch operations are a good
match for highly-banked memories

• Energy efficiency: instruction & data fetch amortize costs across vector saving energy

• Require vector programming style, which means changing all of your code. Code doesn’t
match vector style well? Can’t use the vector architecture without lots of extra work!

Vector execution model saves energy (and
time) over scalar processing

Taken from a very recent research project about optimizing for minimum energy by using a new vector processor (V bars in
the plot) and a customized variant (VDF bars in the plot). V/VDF use RISCV vector insns., scalar plain RISCV insns.

Key take-away: vector processing cuts energy by more than half compared to scalar processing.

What did we just learn?

• We learned about how VLIW and Vector processing are two different
takes on the hardware software boundary that admit more
parallelism than SS/OoO’s ILP focus allows

• VLIW did not take over, vector has been a consistent background hum

• Both approaches require the programmer and the compiler to make
big changes to code to work well with these new hardware/software
interfaces.

What to think about next?

• Lab 3 out Thursday

• Next we look at Virtual Memory as an abstraction

• Also look at the underlying mechanisms and options for implementing
virtual memory in a modern CPU

RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used

A “single-cycle” design

ALU

In A reg select

Input A Input B

ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output
Register
Control

Input A
Register
Control

Input B
Register
Control

Instruction
Memory

In
st

ru
ct

io
n

 D
ec

o
d

e

Instruction
FetchProgram

Counter(PC)

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory
Unit

Op select
op = [ld,st]

ld: data

Data
Memory

ld/st: address

st: dataBranch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+

Clock

Pipeline with Branch Predictor

ALU

Input
Read
Reg A

ALU: output C data

Instruction
Memory

Instruction
Fetch

Read Regs A & B Data

Control Signals:
Op select
op = [+, -, x, /]

Memory
Unit

Data
Memory

4 +

Branch Target

+

MUX

PC

PC Source
Select

Write Register C Select

Reg 1
Reg 2

Reg 3
Reg 4

Input
Read
Reg B

Write Register C Data

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch
Target

Instruction
PC + 4

B
ran

ch
 Targe

t

Addr

Read
Data C
Read
Data C

Register
Writeback

Output/Read
Reg C Data

Output/Read
Reg Select

Write
Reg C
Data

Write
Reg C
Select

MemRead/
MemWrite

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

EX/
Mem

Mem
/WB

Wr
Data

Write Reg C Data Mem

Control
Signals

Read
Register
A & B
Select

P
C

 S
o

u
rc

e
Se

le
ct

 (
1

 if
 b

ra
n

ch
 t

ak
en

)
Branch Predictor

Branch
Predictor

Outcome:

Branch

Target:

Types of Data Hazards

sub x6 x5 x4

lw x16 0xabc

add x12 x6 x14

Read-After-Write (RAW)

sub x8 x16 x4

add x16 x6 x14

lw x16 0xabc

Write-After-Read (WAR) Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw x6 0xabc

sub x6 x5 x4

add x12 x6 x14

How many bits in tag/index/offset?

L3$L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

Valid TagDirty 32 bytes data

lb x6 0x7fff0053

Total cache size = 32B x 4 sets x 4 ways = 512B

0x01111111111111110000000001010011

tag bits

set index

block
offset

Enough block offset bits to count block bytes
Enough set index bits to count the ways
All left-over bits are tag bits
Question: what do tag bits mean?

Physical implementation separates data & tags

L3$L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

0x01111111111111110000000001010011

tag bits

set index

block
offset

L3$L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

tag 1 tag 2 tag 3

Way 0 Way 1 Way 2 Way 3

tag 0

Cache Data Array Cache Tag Array

Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

Byte 0

Byte 1

Byte 2

. .
 .

lw x6 0xC

Byte 0xC

. .
 .

Byte 0xD
Byte 0xE

Byte 0xF
Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUX

A
d

d
r

R
eg

 A
M

em
/M

em
 F

w
d

W
B

/M
em

 F
w

d

MUX

A
d

d
r

R
eg

 A

W
B

/M
em

 F
w

d

MUX

D
at

a
R

eg
 B

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

AMAT = L1HitRate x L1AccTime + L1MissRate x (L1MissTime +
 L2HitRate x L2AccTime + L2MissRate x (L2MissTime +
 L3HitRate x L3AccTime + L3MissRate x (L3MissTime +
 DRAM Latency)))

L1$ L2$ L3$

Miss rate = 0.1
Access time = 322ps
Miss time = 305ps

1MB,
8way

4kB,
4way

64kB,
8way

Miss rate = 0.02
Access time = 461ps
Miss time = 395ps

Miss rate = 0.01
Access time = 1.28ns
Miss time = 485ps

7.5ns
Latency

lb x6 0xe

Belady’s MIN Algorithm for Optimal Replacement

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Miss

Hit

Hit

Hit

Miss

Bélády László:
“What defines optimality for a cache replacement algorithm?”
Evict the cached element that will be used furthest in the future.

Se
t

0

ad b c

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Least-Recently Used (LRU) Replacement

Se
t

0

ae b c

Evict the block that was used the furthest in the execution’s past

kn
o

w
ab

le
gu

e
ss

ab
le

If a block was not used recently, it will not be used again soon

Evict
Next

last use: -6 last use: -1 last use: -4 last use: -2

LRU’s Gamble: “Haven’t used block 0xe for longest,
probably won’t use it again any time soon, either”

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Se
t

0

ae b c

Evict a block that was definitely not most recently used

kn
o

w
ab

le
gu

e
ss

ab
le

Set MRU bit when block is used (most recently), clear all MRU bits when
all MRU bits are set, evict the left-most block with unset MRU bit

MRU: 0 MRU: 1 MRU: 0 MRU: 0

Bit-PLRU

Evicts

Victim Caches/Buffers

L3$L3$

Se
t

0
Se

t
1

Se
t

2
Se

t
3

Way 0 Way 1 Way 2 Way 3

Line

Victim Cache

What problem does a victim cache solve?

Block evicted from cache goes into (usually
fully associative, small) victim buffer.

On next access, “victim” can be re-cached
without going down the hierarchy.

Non-blocking Writes & Write Buffering

Byte 0

Byte 1

Byte 2

. .
 .

Byte M

Byte 0xC

. .
 .

Byte 0xD
Byte 0xE

Byte 0xF
Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUX

A
d

d
r

R
eg

 A
M

em
/M

em
 F

w
d

W
B

/M
em

 F
w

d

MUX

A
d

d
r

R
eg

 A

W
B

/M
em

 F
w

d

MUX

D
at

a
R

eg
 B

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

Completed memory operations’ effects not yet in memory (complicated stuff,
later in the semester…)
What is the latency of a write if it ends up buffered?
Unpredictable write completion latency. Need ordering logic.

Cache

Write Buffer

sw 0xc $1000

Write Buffer Entry (e.g.)

…memory, if write-through
(why WB important for
write-through caches?)

Memory unit can read
from write buffer

WB drains to…

…cache if
write-back

Non-temporal/Streaming Stores

Byte 0

Byte 1

Byte 2

. .
 .

Byte M

Byte 0xC

. .
 .

Byte 0xD
Byte 0xE

Byte 0xF
Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUX

A
d

d
r

R
eg

 A
M

em
/M

em
 F

w
d

W
B

/M
em

 F
w

d

MUX

A
d

d
r

R
eg

 A

W
B

/M
em

 F
w

d

MUX

D
at

a
R

eg
 B

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

Non-temporal Store: Acts like no-write-allocate+write-through even if
write-allocate+write-back for rest of cache.
When would you use a non-temporal store instruction?

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

In x86: movntdq r15, 0xC

Scratchpad Memories

Byte 0

Byte 1

Byte 2

. .
 .

Byte M

Byte 0xC

. .
 .

Byte 0xD
Byte 0xE

Byte 0xF
Memory
Unit

Read
Data CCont.

Sigs.:
Op.
Select
[Ld/St]

Memory

MUX

A
d

d
r

R
eg

 A
M

em
/M

em
 F

w
d

W
B

/M
em

 F
w

d

MUX

A
d

d
r

R
eg

 A

W
B

/M
em

 F
w

d

MUX

D
at

a
R

eg
 B

W
B

/M
em

 F
w

d
M

em
/M

em
 F

w
d

Most important thing about scratchpads:
Software control is as good (or bad) as the programmer.

Cache

Write Buffer

…memory, if write-through
or non-temporal instruction

Memory unit can read
from write buffer

WB drains to…

…cache if write-back
& not non-temporal

Byte M

Byte S.0 Byte S.N

Memory Unit controls loading
data from memory to SP

Most often manipulated by accessing
special range of addresses mapped to SP

Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Amdahl’s Law:
optimized time = [1-p x time / 1.0] + [p x time / speedup]
Or equivalently:
speedup = 1 / [(1 – p) / 1.0 + p / speedup]

Limit Cases for Amdahl’s Law

100% of original execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating
Point

Ideally optimized execution time

Amdahl’s Law with infinite speedup:
optimized time = [1-p x time / 1.0] + [p x time / infinity]

optimizable
part (p)

Optimized speedup for optimizable part

Amdahl’s Law Speedup

>100x
optimized part
speedup?
80%
optimizable?
max speedup
5x!

100% of execution energy

Memory
Accesses

Control Flow Integer Fetch Floating
Point

Idea: find an optimizable part of your system and make it bigger
Here, we have already optimized memory by 2x, so we know
that memory is optimizable by 2x. Can we do more memory accesses?

Another view of the world: Gustaffson’s Law

100% of execution energy

90% - Memory Accesses

Q: How to change a system to be bottlenecked
by one thing instead of another?
(We will return to this for lab4.)

Another view of the world: Gustaffson’s Law

data_size = 50

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

for d in 0..data_size{ d++ }

data_size = 100

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

for d in 0..data_size{ d++ }

Gustaffson!

This idea assumes you have a clever way to optimize memory

Design Consequence of Pareto Optimality
Ti

m
e

Energy

How do we choose from between these
Pareto Optimal alternatives?
Need to decide what matters to you!

Need low energy (battery powered maybe?)

Need high performance (for latency requirement)

Want to strike a balance of performance and
energy consumption (not make anyone too mad)

Fetch Decode ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2

mul

0010

1100

1010

0101

0100

0100

add

Issue

ALU (non-
mul)

Reg. Read

m
u
l

lw

sw

lw

lw

sw

Out of Order Execution

m
u
l

a
d
d

(Rename)
/Dispatch

a
d
d

m
u
l

m
u
l

a
d
d

Commit

a
d
d

m
u
l

m
u
l

a
d
d

In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue
window that issues instructions to
execute as soon as input operands
are available

Execute instructions from the issue
window fully out of order even if
instructions have a WAW or WAR
dependence that would prevent
them from superscalar issuing
together (how!?)

Commit in order
to respect
original program
semantics

Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an
instruction’s operation over an
entire vector of data

Implementation: Parallel
functional units each process
parts of a vector, producing a
vector output. Why simple?

Lane 0 Lane 1

ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw

lw

sw

Issue Time

Is
su

e
W

id
th

Change the ISA! In VLIW, the ISA exposes issue width architecturally. Each
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says
whether & how they’re dependent or parallelizable

Type:
Mem, Float,
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a
”stop”, break
parallelism.

Very Large Instruction Word (VLIW) and the EPIC
Architecture (Explicit Parallel Instruction Computer)

	Slide 1: CMU 18-344: Computer Systems and the Hardware/Software Interface
	Slide 2: Recap: Advanced Microarchitecture Techniques
	Slide 3: A Superscalar Processor Executes Multiple Instructions at the Same Time
	Slide 4: Superscalar processors: Challenges & sources of complexity
	Slide 5: Out-of-Order Execution: Register Renaming Eliminates Dependences that Prevent Simultaneous Dispatch
	Slide 6: All Types of Data Hazards Matter in OoO Execution
	Slide 7: Types of Data Hazards
	Slide 8: Types of Data Hazards
	Slide 9: Types of Data Hazards
	Slide 10: Types of Data Hazards
	Slide 11: Types of Data Hazards
	Slide 12: Types of Data Hazards
	Slide 13: Types of Data Hazards
	Slide 14: Renaming Example
	Slide 15: Renaming Example
	Slide 16: Renaming Example
	Slide 17: Renaming Example
	Slide 18: Renaming Example
	Slide 19: Renaming Example
	Slide 20: Renaming Example
	Slide 21: Renaming Example
	Slide 22: Renaming Example
	Slide 23: Renaming Avoids False Deps
	Slide 24: Superscalar Out of Order Execution is extremely complex to implement
	Slide 25: In-order commit tracks instruction completion and ensures architectural state updates in order
	Slide 26: Superscalar execution exploits ILP to increase IPC
	Slide 27: Simultaneous Multi-Threading (SMT) Also known as “Hyper-threading” on Intel processors, used for decades now.
	Slide 28: Very Large Instruction Word (VLIW) Architectures
	Slide 29: Today: More Advanced Architecture Concepts
	Slide 30: Superscalar execution exploits ILP to increase IPC
	Slide 31: Superscalar execution exploits ILP to increase IPC
	Slide 32: Simultaneous Multi-Threading (SMT) Also known as “Hyper-threading” on Intel processors, used for decades now.
	Slide 33: Simultaneous Multi-Threading (SMT)
	Slide 34
	Slide 35
	Slide 36: Very Large Instruction Word (VLIW) and the EPIC Architecture (Explicit Parallel Instruction Computer)
	Slide 37
	Slide 38
	Slide 39: Effective scheduling relies on approximately equal execution latency for all instructions
	Slide 40: Effective scheduling relies on approximately equal execution latency for all instructions
	Slide 41: Branch instructions in EPIC
	Slide 42: If conversion
	Slide 43: If conversion
	Slide 44: If conversion
	Slide 45
	Slide 46: VLIW / EPIC is a Very Cool HW/SW Interface!
	Slide 47: VLIW / EPIC is a Very Cool HW/SW Interface!
	Slide 48: Parallelism Beyond ILP
	Slide 49: Flynn’s Taxonomy of Parallel Architectures
	Slide 50: MISD – Multiple Instruction Single Data
	Slide 51: MISD – Multiple Instruction Single Data
	Slide 52: SIMD – Single Instruction Multiple Data
	Slide 53: Vector Machines
	Slide 54: Vector register file
	Slide 55: Vector register file
	Slide 56: Dealing with limited vector size is easy in SW
	Slide 57: Vector Machines are Easily Parallelizable
	Slide 58: Vector Machines are Easily Parallelizable
	Slide 59: Reduction Operations
	Slide 60: Reduction Operations
	Slide 61: Vector Masking
	Slide 62: Reduction Operations with a vector mask
	Slide 63: Reduction Operations with a vector mask
	Slide 64: Indexed Memory Accesses (Scatter/Gather)
	Slide 65: Indexed Memory Accesses (Scatter/Gather)
	Slide 66: Summary of Benefits: Vector Architectures
	Slide 67: Vector execution model saves energy (and time) over scalar processing
	Slide 68: What did we just learn?
	Slide 69: What to think about next?
	Slide 70: RISCV-RV32I Specification
	Slide 71: A “single-cycle” design
	Slide 72: Pipeline with Branch Predictor
	Slide 73: Types of Data Hazards
	Slide 74: How many bits in tag/index/offset?
	Slide 75: Physical implementation separates data & tags
	Slide 76: Average Memory Access Time (AMAT): Measuring the performance of a memory hierarchy
	Slide 77: Belady’s MIN Algorithm for Optimal Replacement
	Slide 78: Least-Recently Used (LRU) Replacement
	Slide 79: Bit-Pseudo-Least-Recently Used (Bit-PLRU)
	Slide 80: Victim Caches/Buffers
	Slide 81: Non-blocking Writes & Write Buffering
	Slide 82: Non-temporal/Streaming Stores
	Slide 83: Scratchpad Memories
	Slide 84: Amdahl’s Law
	Slide 85: Limit Cases for Amdahl’s Law
	Slide 86
	Slide 87: Another view of the world: Gustaffson’s Law
	Slide 88: Another view of the world: Gustaffson’s Law
	Slide 89: Design Consequence of Pareto Optimality
	Slide 90: Out of Order Execution
	Slide 91: Vector Machines are Easily Parallelizable
	Slide 92

