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Recap: Advanced Microarchitecture Techniques

• Advanced Instruction-Level Parallelism: Deep pipelining, Multiple 
Issue, and Out of Order Execution

• Vector / SIMD processors



A Superscalar Processor Executes Multiple 
Instructions at the Same Time
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Scalar executes one instruction at a time
Superscalar executes multiple instructions at a time

Front End Challenges:
1)Need to supply 
enough instructions
2)Need hw resources 
for multiple ID & EX



Superscalar processors: Challenges & sources 
of complexity
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Fetch: Branch prediction 
more complex.  Risk of 
overfetch because we’re 
fetching a whole block?
Must consider multiple, 
sequential fetches based on 
predictions

lw

sw
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sw

Decode: Not too bad, just 
replication of resources

Issue: Dependence / hazard 
detection logic complexity.
Need to detect dependences 
between all instructions in 
issue queue and some 
combinations of instructions 
cannot issue simultaneously

Reg Read: Multi-porting 
register file has high cost (4-
wide = 8 read ports) & area 
cost is proportional to 
square of port count

Execute / Memory: More 
execute units, more cache 
ports.   Forwarding paths & 
input operand selection logic 
become very complicated.

Reg. WB: Write port per 
instruction that may complete 
that writes a register (4-wide 
= 4 write ports)
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Out-of-Order Execution: Register Renaming Eliminates 
Dependences that Prevent Simultaneous Dispatch
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In-order Front-end

Out of Order Execution

In-order Commit

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Rename

Rename: Replace reg names w/ ref to 
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table.  Prevent issue only for 
true deps.



All Types of Data Hazards Matter in OoO Execution

sub x6 x5 x4

lw  x16 0xabc 

add x12 x6 x14

Read-After-Write (RAW)

sub x8 x16 x4

add x16 x6 x14

lw  x16 0xabc 

Write-After-Read (WAR) Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14



Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc



Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
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Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4



Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
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Write-BackMemory Memory

lw x6 0xabc
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Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc
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Types of Data Hazards
lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14

Write-After-Write (WAW)

Fetch Decode Execute Memory
Register
Write-BackMemory Memory

lw x6 0xabc

sub x6 x5 x4sub x6 x5 x4

Non-mem-op, single memory cycle

lw x6 0xabclw x6 0xabc

Multi-cycle latency memory op

Earlier lw instruction finishes after later sub 
instruction.  Both write x6. Wrong final value in x6.
Explicitly handled with logic to maintain ordering in 
processors that allow this behavior (not our datapath)



Types of Data Hazards

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

Later add instruction writes x16 before earlier 
sub instruction reads x16. sub sees wrong value!

sub x8 x16 x4

add x16 x6 x14

lw  x11 0xabc 

add x16 x6 x14

Stalled at decode/reg. read

Completes quickly and writes reg.



Renaming Example

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Question: How can instructions issue to our 
out-of-order pipeline in which instructions 
may execute and complete out of order?
If WAW or WAR, can’t just dispatch or OoO 
execution may read regs not yet updated



Renaming Example

A1: add r0 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0



Renaming Example

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

RAW dependence on x6
M1 waiting on result from A1 (r0)



Renaming Example

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

WAW dep b/w A1 & A2 & WAR dep w/ M1
Resolved by renaming output regs



Renaming Example

A1

M1

A2

A3

A4

M2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

RAW dependence between M1 & A3
Cannot be resolved by renaming

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add x6 x7 x9



Renaming Example

A1

M1

A2

A3

A4

M2

WAW dep w/ A1 resolved by renaming
True dep w/ A2 handled by looking up 
renamed result of A2

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add x6 x7 x9



Renaming Example

A1

M1

A2

A3

A4

M2

WAR dep with M2 & WAW w/ A2 
resolved by renaming
True deps w/ A3 and M1 resolved by 
looking up renamed regs in table

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1



Renaming Example

A1

M1

A2

A3

A4

M2

After register renaming, only RAW 
dependences (i.e., “True Dependences”) 
remain in the execution

A1: add x6 x8 x11

M1: mul x9 x6 x13

A2: add x6 x17 x30

A3: add x7 x9 x14

M2: add x8 x18 x6

A4: add x6 x7 x9

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1



Renaming Example

A1

M1

A2

A3

A4

M2

After register renaming, only RAW 
dependences (i.e., “True Dependences”) 
remain in the execution

A1: add r0 x8 x11

M1: mul r1 r0 x13

A2: add r2 x17 x30

A3: add r3 r1 x14

M2: add r4 x18 r2

A4: add r5 r3 r1

Rename Table

A1.x6 -> r0

M1.x9 -> r1

M1.x6 <- r0

A2.x6 -> r2

A3.x7 -> r3

A3.x9 <- r1

M2.x8 -> r4

M2.x6 <- r2

A4.x6 -> r5

A4.x7 <- r3

A4.x9 <- r1



Renaming Avoids False Deps

Write-After-Read (WAR)

Fetch Decode Execute Memory
Register
Write-Back

sub x8 x16 x4

Later add instruction writes r1 before earlier sub 
instruction reads x16, which is perfectly ok!

sub x8 x16 x4

add r1 x6 x14

lw  x11 0xabc 

add x16 x6 x14

Stalled at decode/reg. read

Completes quickly and writes reg.
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Superscalar Out of Order Execution is 
extremely complex to implement
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In-order Front-end

Out of Order Execution

In-order Commit

We will leave out of order execution details here, but there is 
a lot more to learn about this topic.
Register renaming algorithms, how to do forwarding in 
SS/OoO, what to do on exceptions in SS/OoO…  447 & 740
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In-order commit tracks instruction completion 
and ensures architectural state updates in order
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Out of Order Execution

In-order Commit

Replace reg names w/ ref to 
entry in table of physical registers

add t1 x8 x11

mul x9 t1 x13

add t2 x12 x14

Eliminate WAW, WAR, and preserve RAW (why?)

Rename table

add1.x6 t1

add2.x6 t2

mul.x6 t1

Map from architectural registers 
to physical registers and 
dynamically maintain mapping 
table.  Prevent issue only for 
true deps.

Reorder Buffer

add1 t1

add2 t2

mul x9

17

???

245

Reorder buffer (ROB) ensures 
instructions commit in order.  Tracks 
instruction, result reg, value, and validity.  
On commit, instructions waiting to issue 
can issue using newly produced value 
now available in the ROB entry

add2 is complete, but waits 
to update t2 (i.e., x6) until 
mul is done
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Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time
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Performance in a superscalar processor depends on the 
existence of ILP in the program.

We need there to be parallelizable instructions in the 
instruction stream that we fetch, dispatch, and issue.
Question: how to avoid issue slot waste?

Empty issue slot represent 
wasted opportunity to do 
some work on a cycle
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Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.

Out of Order Execution
Issue Time
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SMT exploits thread-level parallelism (TLP) instead of ILP to 
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with 
instructions from another 
thread 

Susan Eggers, inventor of SMT, ca. 1980
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Very Large Instruction Word (VLIW) Architectures
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Change the ISA!  In VLIW, the ISA exposes the issue width architecturally 
Each fetch / issue is on a packet of instructions, hopefully independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type 
(5b)

Intel IA-64 bundles up to 3 instructions with a type that says 
whether & how they’re dependent or parallelizable

Type:
Mem, Float, 
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.



Today: More Advanced Architecture Concepts

• (more) VLIW

• Vector machines & SIMD

• Dataflow as a hardware/software boundary design problem

• Systolic Array Architectures (if time)
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Superscalar execution exploits ILP to increase IPC
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Performance in a superscalar processor depends on the 
existence of ILP in the program.

We need there to be parallelizable instructions in the 
instruction stream that we fetch, dispatch, and issue.
Question: how to avoid issue slot waste?

Empty issue slot represent 
wasted opportunity to do 
some work on a cycle
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Superscalar execution exploits ILP to increase IPC

Out of Order Execution
Issue Time
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Question: how to avoid issue slot waste?
• Schedule code in program to avoid dependences
• Schedule code in loops to align with fetch granularity
• Schedule code to avoid oversubscribing functional units (i.e., 

a sequence of consecutive multiplies can’t issue together)

Empty issue slot represent 
wasted opportunity to do 
some work on a cycle
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Simultaneous Multi-Threading (SMT)
Also known as “Hyper-threading” on Intel processors, used for decades now.
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SMT exploits thread-level parallelism (TLP) instead of ILP to 
increase a machine’s useful IPC.
If a program has multiple threads, issue from each thread.
Question: Sources of hardware complexity for SMT?

Fill empty issue slots with 
instructions from another 
thread 

Susan Eggers, inventor of SMT, ca. 1980
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Simultaneous Multi-Threading (SMT)

Out of Order Execution
Issue Time

Is
su

e 
W

id
th

Question: Sources of hardware complexity for SMT?
• Need fetch to support multiple streams (including branch prediction logic…)
• Need to tag functional units, rename table entries, ROB entries (and other 

structures) to route values to correct downstream instructions

Fill empty issue slots with 
instructions from another 
thread 
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Change the ISA!  In VLIW, the ISA exposes issue width architecturally. Each 
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type 
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says 
whether & how they’re dependent or parallelizable

Type:
Mem, Float, 
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.

Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)
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What do we rely on for VLIW to work?  What assumptions do we depend 
on for VLIW to work and be efficient?

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type 
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says 
whether & how they’re dependent or parallelizable

Type:
Mem, Float, 
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.

Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)



Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)

Issue Time
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Like single-issue scalar execution

Issue Time
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th

Like SMT superscalar, exploiting
thread-level parallelism in prog.

Issue Time
Is
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e 

W
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Like multi-issue superscalar execution

Software-constructed (compiler-constructed) bundles 
of instructions can come from anywhere

EPIC assumes in-order execution (static scheduling) and presence 
of ILP exploiting features, e.g.,  branch pred., load speculation
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Question: how can static scheduling be good enough to 
justify eliminating dynamic scheduling & SS/OoO?

Superscalar OoO is great at finding ILP to reduce 
CPI, but EPIC eliminates dynamic scheduling. Why?

Goal for static & dynamic scheduling: Find instructions to 
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14
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Question: how can static scheduling be good enough to 
justify eliminating dynamic scheduling & SS/OoO?

Dynamic Scheduling vs. Static VLIW

Goal for static & dynamic scheduling: Find instructions to 
keep the issue window full at all times.

ld x11 (x8)

add x2 x3 x4

mul x4 x10 x11

mul x10 x8 x9

st x10 (x8)

add x6 x8 x11

mul x9 x6 x13

add x6 x12 x14

Dynamic scheduling has a limited scope 
for analysis and optimization
Short window limits reordering distance

ld x11 (x8)

mul t1 x10 x11

mul x10 x8 x9

… //other ops taking t_mul cycles

add x2 x3 x4

st x10 (x8)

Latency = t_mul

At this point, muls are 
done and we keep 
rolling, overlapped 
latency.

Static scheduling has global scope 
for reordering / optimization
Long window allows long reorderings



Effective scheduling relies on approximately 
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory 
operations?

div

add

add

add

add

add



Effective scheduling relies on approximately 
equal execution latency for all instructions
• If some instructions in a bundle are long-latency and others short-

latency, the longs delay the shorts
• Scheduling same-latency ops together keeps the machine moving

• What about unpredictable latency instructions like memory 
operations?
• Unpredictable stalls in the pipeline waiting for memory operations.  

• Can tolerate latencies by scheduling same-latency operations together, if 
compiler has an expectation about memory latency, cache structure, and 
producer / consumer relationships.
• This is a very difficult compilers problem!!



Branch instructions in EPIC

• EPIC / VLIW does branches differently than in SS/OoO

• Option 1: Waste space in a bundle, run branches like in SS/OoO
• if taken, grab taken bundle, if not, grab sequentially next bundle

• Option 2: Predication
• run both sides of branch and commit only insns with true predicate

• Predication takes pressure off of control logic & branch prediction 
(why?)
• Do we need a branch predictor?

• Costs of predication?
Insn1 (41b) Insn2 (41b) Insn3 (41b)

Type 
(5b)

P
1

P
2

P
3

If !P nullify insn



If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 = 

x9+x11

X9 = 
x10+x14If cond2

St x9 (0xabc)



If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 = 

x9+x11

X9 = 
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional



If conversion

bne cond, pc+12

Add x9 x7 x8

bne cond2 pc+12

Sub x10 x9 x11

Add x9 x10 x14

St x9 (0xabc)

If cond

X9 = x7+x8
X10 = 

x9+x11

X9 = 
x10+x14If cond2

St x9 (0xabc)

!cond cond || (!cond && cond2)

cond || (!cond && cond2)

Join:
cond || (!cond && cond2) || (!cond && !cond2)
Which is the same as:
cond || !cond, i.e., unconditional

P1=!cond

P2=cond||(!cond&&cond2)

(P1)Add x9 x7 x8

(P2)Sub x10 x9 x11

(P2)Add x9 x10 x14

St x9 (0xabc)

Add explicit predicates to the 
code that executes.  Predicates 
evaluate dynamically using 
predicate registers.

No branch instructions here!
Microarchitectural implication?

Store predicate results in explicit 
predicate registers



Pipeline Characteristics
• Execute 2 bundles (6insns) per cycle
• 10 stage pipeline
• 4 Integer Units (2 of which do Ld/St)
• 2 Floating Point Units
• 3 Branch Units
• Issue in order, execute in order
• Simple register dependence tracking 

using a “scoreboard”

Control Characteristics
• Predication and sophisticated two-level branch 

predictor (why?)
• Instruction queues connect fetch to execute 

units hiding some fetch bubble latency with 
execute latency (how?)

Intel Itanium EPIC Architecture

Register File
• Fairly complex and highly abundant
• Separate predicate / branch, int, and FP regs
• “Register stack engine” efficiently doles out 

physical registers, avoiding structural hazard



VLIW / EPIC is a Very Cool HW/SW Interface!

• Why did Itanium not seize the 
(any?) market as Intel 
anticipated?

• (In the top500 
supercomputers, we mostly 
have x86-64, not IA64)



VLIW / EPIC is a Very Cool HW/SW Interface!

• Donald Knuth: “the "Itanium" 
approach [was] supposed to be 
so terrific—until it turned out 
that the wished-for compilers 
were basically impossible to 
write”



Parallelism Beyond ILP



Flynn’s Taxonomy of Parallel Architectures

SISD SIMD

MIMDMISD



MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Used for …what?



MISD – Multiple Instruction Single Data
• Send same inputs (logically) simultaneously to multiple functions

• Rare, sometimes used in DSP, filter signal using multiple programs

• Modular redundancy, replicated hardware for execution



SIMD – Single Instruction Multiple Data

Apply instruction to many data: Single instruction (fetched, decoded, 
etc) applies its operation to a large number of data elements

Amortizes Instruction Costs: Each instruction corresponds to a large 
number of operations

A Few Flavors: most notable/effective are Vector machines
• Also: historically, Array Machines but these are not widely used anymore

Data-oriented, Not Necessarily Parallel: Instructions specify what do 
to to each element of data, but not how to do it (i.e., parallel, partially 
parallel, sequential) 



Vector Machines

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

setvl 5

vld v0, a

vld v1, b

vadd v0, v1

vst v0, c

setvl: tell machine length of input vector. Actual in-memory length can be 
thousands of elements!  Machine returns max it can handle in a vector register 
(varies by implementation, can be tens of elements)

vld <vector register>, <mem>: load vector of length vl starting at 
memory location <mem>

vst <vreg>, <mem>: store elems of <vreg> to memory starting from memory 
location <mem>

vadd <vreg1> <vreg2>: add element-wise store into vreg1

Assumes explicit vector register file that can temporarily store vector operands

A
[4

]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

vector register file (VRF)

v0

v1



Vector register file

Large, performance-critical structure accessed 
potentially many times per-cycle during vector 
operation. How large? How critical?

maxvl is an implementation-dependent 
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl 
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the 
excess vectors get set to 0 during ops



Vector register file

Large, performance-critical structure accessed 
potentially many times per-cycle during vector 
operation. How large? How critical?

maxvl is an implementation-dependent 
parameter. How do we (architects) set maxvl?

If setvl sets vl to greater than maxvl, then vl 
gets set to maxvl. HW/SW consequence?

If setvl sets vl to less than maxvl, then the 
excess vectors get set to 0 during ops

8B / word * 16 words / VRF entry * 32 VRF entries per VRF = 4kB!
Larger than many L1 Caches 



Dealing with limited vector size is easy in SW

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

setvl 8192 //machine says “vl = 5, actually”

for(i = 0…(8192 / vl) ): //loop vl at a time

  vld v0, a + i*vl

  vld v1, b + i*vl

  vadd v0, v1

  vst v0, c + i*vl

A
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]

A
[3

]

A
[2

]

A
[1

]

A
[0

]

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

vector register file (VRF)

v0

v1



Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an 
instruction’s operation over an 
entire vector of data

Implementation: Parallel 
functional units each process 
parts of a vector, producing a 
vector output. Why simple?

Lane 0 Lane 1



Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Simple: Vector instruction 
operates on v0[i] and v1[i] not 
v0[i] and elem *v. 

Very simple operand matching 
logic, no need to track complex 
producer consumer relationships 
across inputs of operations.  

Primary cost?

Lane 0 Lane 1



Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1
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m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

v0[0] = 

v0[0] + Σ_i v1[i]



Reduction Operations

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, vm

0

B
[4

]

B
[3

]

B
[2

]

B
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]

B
[0

]

v0

v1
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B
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]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

v0[0] = 

v0[0] + Σ_i v1[i]



Vector Masking
vadd v3, v0, v2, v1.t

Behavior of a masked vector operation: For elements up to vl in v3, add elements from 
v0 and v2 if that element in v1’s LSB is set to 1, set other v3 elems to 0
What high-level programming concept does this get used to implement?



Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vredsum v0, v0, v1, v2

0

B
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]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1
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m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1 v0[0] = 

v0[0] + 

v1[1] + v1[2] + v1[3]

01110v2

01110v2

Reduction operations accumulate the result 
of an operation on a vector into the first 
element of a destination vector
Uses for reduction?

dst init
val

input 
vec

mask



Reduction Operations with a vector mask

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

A [0]

setvl 5

vld v0, a

vld v1, b

vmul v0, v1

vredsum v0, v0, v1, v2

0

B
[4

]

B
[3

]

B
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]

B
[1

]

B
[0

]

v0

v1
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m

B
[4

]

B
[3

]

B
[2

]

B
[1

]

B
[0

]

v0

v1

11111v2

11111v2

Uses for reduction?
Dot product, e.g., 

for( i = 0..len){

  v[i] += a[i] * b[i]

}



Indexed Memory Accesses (Scatter/Gather)

vluxei64 v1, (&B), v0, v2 

34021

v0

v1

34021

B
[4

]

B
[0

]

B
[2

]

3402

B
[4

]

B
[0

]

B
[2

]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

base
addr

dest

Indexed memory loads “gather” elements from all over 
memory into a contiguous vector register.

Indexed memory stores “scatter” elements from a 
contiguous vector register into locations all over memory

Uses?



Indexed Memory Accesses (Scatter/Gather)

vluxei64 v1, (&B), v0, v2 

34021

v0

v1

34021

B
[4

]

B
[0

]

B
[2

]

3402

B
[4

]

B
[0

]

B
[2

]

v0

v1 v1[i] = v2[i] ? B[v0[i]] : v1[i]

01110v2

01110v2

mask

index
vector

base
addr

dest

Common Use: indirect array accesses.  Common in graph analytics

for( src in 0 .. n ){

  for( dst in 0..ind[src].len() ){

    data[ ind[src][dst] ]++;

  }

}



Summary of Benefits: Vector Architectures
• Compared to scalar architectures:

• Single instruction performs many operations: one instruction is the equivalent of executing 
an entire loop of a program!

• Control is simpler: no loops, no branches, no misprediction/misspeculation

• Vector interface makes data-independence across vector elements explicit: simplifies 
implementations and eliminates complex dependence logic

• Dependence checking of vectors, not elements: what dependence tracking is required 
pertains to entire vector registers, not individual elements, amortizing its cost significantly

• Easy to express data parallelism: avoids software complexity of multithreading on a 
multiprocessor (i.e., MIMD)

• Maximize value of memory bandwidth: contiguous/strided vector fetch operations are a good 
match for highly-banked memories

• Energy efficiency: instruction & data fetch amortize costs across vector saving energy

• Require vector programming style, which means changing all of your code.  Code doesn’t 
match vector style well?  Can’t use the vector architecture without lots of extra work!



Vector execution model saves energy (and 
time) over scalar processing

Taken from a very recent research project about optimizing for minimum energy by using a new vector processor (V bars in 
the plot) and a customized variant (VDF bars in the plot).  V/VDF use RISCV vector insns., scalar plain RISCV insns.

Key take-away: vector processing cuts energy by more than half compared to scalar processing.



What did we just learn?

• We learned about how VLIW and Vector processing are two different 
takes on the hardware software boundary that admit more 
parallelism than SS/OoO’s ILP focus allows

• VLIW did not take over, vector has been a consistent background hum

• Both approaches require the programmer and the compiler to make 
big changes to code to work well with these new hardware/software 
interfaces. 



What to think about next?

• Lab 3 out Thursday

• Next we look at Virtual Memory as an abstraction

• Also look at the underlying mechanisms and options for implementing 
virtual memory in a modern CPU



RISCV-RV32I Specification

• Four base instruction encoding formats
• R(egister), I(mmediate), S(tore), U(pper Immediate)

• Mnemonics are non-binding and formats get flexibly used



A “single-cycle” design

ALU

In A reg select

Input A Input B

ALU: output C

Reg 1
Reg 2

Reg 3
Reg 4

Register File

Output 
Register
Control

Input A 
Register
Control

Input B 
Register
Control

Instruction 
Memory

In
st

ru
ct

io
n

 D
ec

o
d

e

Instruction 
FetchProgram

Counter(PC)

In B reg select

Op select
op = [+, -, x, /]

Out reg select

4

+

Memory 
Unit

Op select
op = [ld,st]

ld: data

Data
Memory

ld/st: address

st: dataBranch Target Address Offset

MUX

Branch: PC Source Select

PC+4

+

Clock



Pipeline with Branch Predictor

ALU

Input
Read 
Reg A

ALU: output C data

Instruction 
Memory

Instruction 
Fetch

Read Regs A & B Data

Control Signals:
Op select
op = [+, -, x, /]

Memory 
Unit

Data
Memory

4 +

Branch Target

+

MUX

PC

PC Source
Select

Write Register C Select

Reg 1
Reg 2

Reg 3
Reg 4

Input
Read 
Reg B

Write Register C Data

Write Reg C Data ALU

Branch
Target
Offset

+

Instruction PC+4

Branch
Target

Instruction
PC + 4

B
ran

ch
 Targe

t

Addr

Read
Data C
Read
Data C

Register
Writeback

Output/Read 
Reg C Data

Output/Read 
Reg Select

Write 
Reg C 
Data

Write 
Reg C 
Select

MemRead/
MemWrite

Instruction Fetch Instr. Decode Execute Memory Register Write-Back

IF/
ID

ID/
EX

EX/
Mem

Mem
/WB

Wr 
Data

Write Reg C Data Mem

Control 
Signals

Read
Register
A & B
Select

P
C

 S
o

u
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e 
Se
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ct

 (
1

 if
 b
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n

ch
 t

ak
en

)
Branch Predictor

Branch 
Predictor

Outcome:

Branch

Target:



Types of Data Hazards

sub x6 x5 x4

lw  x16 0xabc 

add x12 x6 x14

Read-After-Write (RAW)

sub x8 x16 x4

add x16 x6 x14

lw  x16 0xabc 

Write-After-Read (WAR) Write-After-Write (WAW)

Only Read-After-Write (RAW) hazards are possible in our simple pipeline

lw  x6 0xabc 

sub x6 x5 x4

add x12 x6 x14



How many bits in tag/index/offset?

L3$L3$

Se
t 

0
Se

t 
1

Se
t 

2
Se

t 
3

Way 0 Way 1 Way 2 Way 3

Line

Valid TagDirty 32 bytes data

lb x6 0x7fff0053

Total cache size = 32B x 4 sets x 4 ways = 512B

0x01111111111111110000000001010011

tag bits

set index

block
offset

Enough block offset bits to count block bytes
Enough set index bits to count the ways
All left-over bits are tag bits
Question: what do tag bits mean?



Physical implementation separates data & tags

L3$L3$

Se
t 

0
Se

t 
1

Se
t 

2
Se

t 
3

Way 0 Way 1 Way 2 Way 3

Line

0x01111111111111110000000001010011

tag bits

set index

block
offset

L3$L3$

Se
t 

0
Se

t 
1

Se
t 

2
Se

t 
3

tag 1 tag 2 tag 3

Way 0 Way 1 Way 2 Way 3

tag 0

Cache Data Array Cache Tag Array



Average Memory Access Time (AMAT):
Measuring the performance of a memory hierarchy

Byte 0

Byte 1

Byte 2

. .
 .

lw x6 0xC

Byte 0xC

. .
 .

Byte 0xD
Byte 0xE

Byte 0xF
Memory 
Unit

Read
Data CCont.

Sigs.:
Op. 
Select
[Ld/St]

Memory

MUX

A
d

d
r 

R
eg

 A
M

em
/M

em
 F

w
d

W
B

/M
em

 F
w

d

MUX

A
d

d
r 

R
eg

 A

W
B

/M
em
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w

d

MUX

D
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a 
R
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 B

W
B
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em
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w

d
M

em
/M
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 F

w
d

AMAT = L1HitRate x L1AccTime + L1MissRate x ( L1MissTime +
                 L2HitRate x L2AccTime + L2MissRate x ( L2MissTime +
                   L3HitRate x L3AccTime + L3MissRate x ( L3MissTime +
                     DRAM Latency ) ) )

L1$ L2$ L3$

Miss rate = 0.1
Access time = 322ps
Miss time = 305ps

1MB,
8way

4kB,
4way

64kB,
8way

Miss rate = 0.02
Access time = 461ps
Miss time = 395ps

Miss rate = 0.01
Access time = 1.28ns
Miss time = 485ps

7.5ns
Latency



lb x6 0xe

Belady’s MIN Algorithm for Optimal Replacement

lb x6 0xb

lb x6 0xc

lb x6 0xd

lb x6 0xa

Miss

Hit

Hit

Hit

Miss

Bélády László:
“What defines optimality for a cache replacement algorithm?”
Evict the cached element that will be used furthest in the future.

Se
t 

0

ad b c



lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Least-Recently Used (LRU) Replacement

Se
t 

0

ae b c

Evict the block that was used the furthest in the execution’s past

kn
o

w
ab

le
gu

e
ss

ab
le

If a block was not used recently, it will not be used again soon

Evict 
Next

last use: -6 last use: -1 last use: -4 last use: -2

LRU’s Gamble: “Haven’t used block 0xe for longest, 
probably won’t use it again any time soon, either”



lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xa

lb x6 0xc

lb x6 0xa

lb x6 0xd

lb x6 0xa

lb x6 0xe

lb x6 0xa

lb x6 0xb

lb x6 0xe

Bit-Pseudo-Least-Recently Used (Bit-PLRU)

Se
t 

0

ae b c

Evict a block that was definitely not most recently used

kn
o

w
ab

le
gu

e
ss

ab
le

Set MRU bit when block is used (most recently), clear all MRU bits when 
all MRU bits are set, evict the left-most block with unset MRU bit

MRU: 0 MRU: 1 MRU: 0 MRU: 0

Bit-PLRU 

Evicts



Victim Caches/Buffers

L3$L3$
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t 

0
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t 
1

Se
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2
Se

t 
3

Way 0 Way 1 Way 2 Way 3

Line

Victim Cache

What problem does a victim cache solve?

Block evicted from cache goes into (usually 
fully associative, small) victim buffer.  

On next access, “victim” can be re-cached 
without going down the hierarchy.



Non-blocking Writes & Write Buffering
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. .
 .
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. .
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Completed memory operations’ effects not yet in memory (complicated stuff, 
later in the semester…)
What is the latency of a write if it ends up buffered?
Unpredictable write completion latency.  Need ordering logic.

Cache

Write Buffer

sw 0xc $1000

Write Buffer Entry (e.g.)

…memory, if write-through
(why WB important for 
write-through caches?)

Memory unit can read 
from write buffer

WB drains to…

…cache if 
write-back



Non-temporal/Streaming Stores
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Non-temporal Store: Acts like no-write-allocate+write-through even if 
write-allocate+write-back for rest of cache.
When would you use a non-temporal store instruction?

Cache

Write Buffer

…memory, if write-through 
or non-temporal instruction

Memory unit can read 
from write buffer

WB drains to…

…cache if write-back 
& not non-temporal

In x86: movntdq r15, 0xC



Scratchpad Memories
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Most important thing about scratchpads:
Software control is as good (or bad) as the programmer.

Cache

Write Buffer

…memory, if write-through 
or non-temporal instruction

Memory unit can read 
from write buffer

WB drains to…

…cache if write-back 
& not non-temporal

Byte M

Byte S.0 Byte S.N

Memory Unit controls loading 
data from memory to SP

Most often manipulated by accessing 
special range of addresses mapped to SP



Amdahl’s Law

100% of execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer 12.5% - Fetch

5% - Floating
Point

Amdahl’s Law:
optimized time = [ 1-p x time / 1.0 ] + [ p x time / speedup ]
Or equivalently:
speedup = 1 / [ (1 – p) / 1.0  +  p / speedup ]



Limit Cases for Amdahl’s Law

100% of original execution time

45% - Memory Accesses 20% - Control Flow 17.5% - Integer

0% - Fetch 5% - Floating
Point

Ideally optimized execution time

Amdahl’s Law with infinite speedup:
optimized time = [ 1-p x time / 1.0 ] + [ p x time / infinity ]



optimizable
part (p)

Optimized speedup for optimizable part

Amdahl’s Law Speedup

>100x
optimized part 
speedup?
80% 
optimizable? 
max speedup
5x!



100% of execution energy

Memory 
Accesses

Control Flow Integer Fetch Floating
Point

Idea: find an optimizable part of your system and make it bigger
Here, we have already optimized memory by 2x, so we know
that memory is optimizable by 2x.  Can we do more memory accesses?

Another view of the world: Gustaffson’s Law



100% of execution energy

90% - Memory Accesses

Q: How to change a system to be bottlenecked 
by one thing instead of another?
(We will return to this for lab4.)

Another view of the world: Gustaffson’s Law

data_size = 50

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

for d in 0..data_size{ d++ }

 

data_size = 100

data[data_size] = {…}

if(…){ }

…//18 more of these conditionals

if(…){ }

for d in 0..data_size{ d++ }

 

Gustaffson!

This idea assumes you have a clever way to optimize memory



Design Consequence of Pareto Optimality
Ti

m
e

Energy

How do we choose from between these 
Pareto Optimal alternatives?
Need to decide what matters to you!

Need low energy (battery powered maybe?)

Need high performance (for latency requirement)

Want to strike a balance of performance and 
energy consumption (not make anyone too mad)



Fetch Decode ALU (non-
mul)
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Write-Backmul0 mul1mul2
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Out of Order Execution
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/Dispatch
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Commit
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d
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d
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In-order Front-end

Out of Order Execution

In-order Commit

Dispatch instructions into an issue 
window that issues instructions to 
execute as soon as input operands 
are available

Execute instructions from the issue 
window fully out of order even if 
instructions have a WAW or WAR 
dependence that would prevent 
them from superscalar issuing 
together (how!?)

Commit in order 
to respect 
original program 
semantics



Vector Machines are Easily Parallelizable

A[4]

A[3]

A[2]

A[1]

A[0]

B[4]

B[3]

B[2]

B[1]

B[0]

+

C [0]

C [1]

A[4]

A[3]A[2]

A[0]

B[4]

B[3]B[2]

B[0]

+ +

A[1] B[1]

C [0]

C [2]

C [4]

C [1]

C [3]

Abstraction: execute an 
instruction’s operation over an 
entire vector of data

Implementation: Parallel 
functional units each process 
parts of a vector, producing a 
vector output. Why simple?

Lane 0 Lane 1



ALU (non-
mul)

Memory
Register
Write-Backmul0 mul1mul2Issue

ALU (non-
mul)

Reg. Read

lw

sw

lw
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sw

Issue Time
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Change the ISA!  In VLIW, the ISA exposes issue width architecturally. Each 
fetch / issue is on a bundle of instructions that are independent

Insn1 (41b) Insn2 (41b) Insn3 (41b)
Type 
(5b)

EPIC/IA-64 bundles up to 3 instructions with a type that says 
whether & how they’re dependent or parallelizable

Type:
Mem, Float, 
Int, Long Imm.
Branch
e.g.,
MMI, IIF, MMI
MM/I, M/MI

“/” indicates a 
”stop”, break 
parallelism.

Very Large Instruction Word (VLIW) and the EPIC 
Architecture (Explicit Parallel Instruction Computer)
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