18- 344 Gumpuler Syslems and the Hardware-Software Inferface ~ Fan 2023

bourse DBSC”D”U" Lecture 10: Design Space Exploration

This course covers the design and implementation of computer systems from the perspective of the
hardware software interface. The purpose of this course is for students to understand the
relationship between the operating system, software, and computer architecture. Students that
complete the course will have learned operating system fundamentals, computer architecture
fundamentals, compilation to hardware abstractions, and how software actually executes from the
perspective of the hardware software/boundary. The course will focus especially on understanding
the relationships between software and hardware, and how those relationships influence the design
of a computer system's software and hardware. The course will convey these topics through a series

of practical, implementation-oriented lab assignments. ] .
p Al 5 Credit: Brandon Lucia



Some details...

* HW3 was released last week, due Oct 3 (Thursday), 11:59 pm ET
 Lab 2 has been released today, due Oct 21 (Monday), 11:59 pm ET

e How is the class going in general? Anything you want to bring up?



Today: Design Space Exploration

* Defining the design space of a hardware or software system
e Pareto Frontiers and optimizing within a design space

* Applied Performance Evaluation
* Finding the best performing design under constraints



.De,‘fi.ni.n'g'a' desigh space

.
L/

« A design space is a set of p.'ossible-:ihcarnations of a s.yst‘em |
e A design space is defined over a set: i paramet"ers |

« A pomt in the: design. space is a concrete system with a concrete
value for’ each of the design space’s parameters '

"R De'5|gn spaces exist to aliow systematlc exploratlon of a collectlon of -
p055|ble designs, Ilke archltectures | -



Example: Branch Predictor Design Space
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Example: Branch Predictor Design Space

Global History Table

Branch History Table
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These parameters are the dimensions of a
design space vector

GHT size Sg
BHT # entries Nb
GHT/PC hash func Hp
BHT entry size Sh
BranchID hash Hb
BTB # entries Nt
BTB assoc At




Example: Branch Predictor Design Space
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Example: Branch Predictor Design Space
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Can find a good design by measuring points in
the design space

Run Time (s)

Faster design!




Can find a good design by measuring points in
the design space

Side Q: Why might this particular
design have lower energy?
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s one of these better?
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xor()

Faster design!

hash()




Plotting the design space:

Geometric view of design dimensions r
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Plotting the design space:
Geometric view of design dimensions pr
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Limited medium: too many dimensions to render visually
Limited interpretability: what does position mean?
Can be helpful for clustering designs if non-obvious



Plotting the design space:
Geometric view of figures of merit

16
1k
xor()

Time
Energy

Time

Simple medium: can easily render multiple FoMs & designs
Limited view of designs: points do not show design info
Benefit: allows comparing designs in multiple dimensions

Energy

FoM = “Feature of Merit”, i.e. an attribute we care about.




Plotting many designs to study a tradeoftf

What can we learn from this plot?
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Plotting many designs to study a tradeoftf
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Which points in this plot are optimal?
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Pareto Optimality of Design Alternatives

Pareto Optimality:
A design is optimal if no change leads to Vilfredo Pareto
improvement in one dimension without a
loss in at least one other dimension

Time




Pareto Optimality of Design Alternatives

All other points offer a level

® of performance in one
dimension which can be had,
or more, at a lower cost in the

Time
Time

other dimension.




Design Consequence of Pareto Optimality

Never select designs other than at the frontier, at least without motivation outside of plot.
Any design anywhere other than at the frontier can achieve the same or better performance at
a lower cost w.r.t. the plotted dimensions.

: This level of energy efficiency can
"""""""""""" : be had at a lower cost along the
frontier

Time

........................ This point is strictly better, right?

Energy



Designh Consequence of Pareto Optimality

How do we choose from between
these Pareto Optimal alternatives?

Time




Worthwhile Options Are Along the Pareto Frontier

o Need low energy (battery powered maybe?)

® How do we choose from between these
Pareto Optimal alternatives?
Need to decide what matters to you!
Want to strike a balance of performance and

/ energy consumption (not make anyone too mad)
PY ./ Need high performance (for latency requirement)

Time

Energy



- ..."\‘.

- -
»

pe,sign'Space -Explorati‘oh.

.
L/

. Applled Performance 'Evaluatlon to flnd the best fea5|ble system
* Define a system’s important design parameters '
- o Define'a system S ﬂgure(s) of merit ,
» Define.a set of constraints on the fea5|b|I|ty of a bmdlng of de5|gn parameters :
». Choose a feasible parameter settmg and measure its. merit
**|lterate until satlsﬁed B . £ U5 R

* If this system is better than the last one, keep |t If worse, dlscard it.
* « Cheosea parameter and change |t !
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Constraining your design space

Branch Hstory ape (1) Physical design constraints
Max BP power =4mW
xor Max BTB associativity = 2

| Cutcome Max memory (BTB+BHT) = 20kB
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Systematically fill out your design space
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Experiments to get time/energy (or other FoM)
Change dimensions when way off frontier




Systematically fill out you
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As you start plotting different designs’ points, you

will discover which dimensions matter to your space
(What do we learn from these labeled points?)
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Example of Design Space Optimization
The Q100 Database Acceleration Architecture

Q100: The Architecture and Design
of i Database Brocessing Lk Cutting edge database query hardware accelerator
Lisa Wu  Andrea Lottarini  Timothy K. Paine  Martha A. Kim  Kenneth A. Ross g ”G PU for SQL & Data base Ope ratlons”

Columbia University, New York, NY

e Architecture built up of a collection of special
computing tiles in hardware

e Each tile runs a particular kind of database
operation

* Tiles connected by configurable wires that can be
set up to make circuits to do a database query

* (Includes one of the best design space
explorations I’ve encountered in a research paper)

Final
Answer




Design Space Constraints
The Q100 Database Acceleration Architecture

Area Power Critical Path Design Width (bits)
Tile mm? % Xeon ¢ mW % Xeon ns Record Column Comparator Other Constraint
Aggregator  (0.029 0.07% 7.1 0.14% 1.95 256 256
ALU 0.091 0.21% 12.0 0.24% 0.29 64 64
BoolGen 0.003 0.01% D2 <0.01% 0.41 256 256
Functional ColFilter 0.001 <0.01% 0.1 <0.01% 0.23 256
Joiner 0.016 0.04% 2.6 0.05% 0.51 1024 256 64
Partitioner  0.942 2.20% 28.8 0.58% wbeg 17 1024 256 64
Sorter 0.188 0.44% 394 0.79% 2.48 1024 256 64 1024 entries at a time
Append 0.011 0.03% 54 0.11% 0.37 1024 256
Ausiliary ColSelect 0.049 0.11% 8.0 0.16% 0.35 1024 256
Concat 0.003 0.01% 1.2 0.02% 0.28 256
Stitch 0.011 0.03% 5.4 0.11% 0.37 256

Design space optimization problem statement:
Choose the right mixture of tiles to have the best performance
and power without using too much area or limiting frequency



Design Space Constraints
The Q100 Database Acceleration Architecture
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Design Space Constraints
The Q100 Database Acceleration Architecture

Area Power Maximum “Tiny” Tile Counts

Tile Wh dile Tile Useful Count Tile Explored er Constraint
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and power without using too much area or limiting frequency



Design Space Constraints
The Q100 Database Acceleration Architecture
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Design Space Constraints
The Q100 Database Acceleration Architecture

Area Power Critical Path Design Width (bits)
Tile mm? % Xeon? | mW % Xeon ns Record MW Other Constraint
Aggregator 0.029 0.07% 7.1 0.14% 1.93 - wer
ALU 0.091 0.21% 120  0.24% inimize po red the e number
BoolGen 0.003  0.01% 02 <001% |Wantto work, imite <100, L
Functional  ColFilter 0.001 <0.01% 0.1 <0.01% |\ \n the orign® r (10s of W) unit t of “iny”
Joiner 0016 004% | 26 005% || ofpigh"POWS 17 pitrary coun
Partitioner  0.942 2.20% 28.8  0.58% 2, and allow L have <10m
Sorter 0.188  044% | 394  079% |\ 7 | unitsthd 64 1024 entries at a time
Append 0.011 0.03% 54 011% | Le— 104 256
Avsillary ColSelect 0.049 0.11% 8.0  0.16% 035 1024 256
Concat 0.003 0.01% 1.2 0.02% 0.28 256
Stitch 0.011 0.03% 54  0.11% 0.37 256

Design space opti
Choose the ri

ization problem statement:
t mixture of tiles to have the best performance

and power without using too much area or limiting frequency



Design Space Constraints
The Q100 Database Acceleration Architecture

Area Power Critical Path Design Width (bits)
Tile mm? % Xeon ¢ mW % Xeon ns Record Column Comparator Other Constraint
Aggregator 0.029 0.07% 7.1 0, 1.95 256 256
ALU 0.091 0.21% 0.29 64 64
BoolGen 0002 10 latency 0.41 256 256
! e
Functional plds= ency m\ted \ltdeS'\g means 'd'.\at - 0.23 256
J{ Frequ pelined 0>  the maximy 0.51 024 256 64
Py pegresstV ~th delay defin e as the £Eeg 19 024 256 64
So\ e critica D\ g (which is the > 2.48 024 256 64 1024 entries at a time
. hine deld :
Ap] switching design)- for 0100) | 0.37 024 256
of the .~ g fred -
p— Col| frequency \ways define oTCT | 035  [1024 256
y Con (parﬂ'f-"oner a T 1:2 0.02% 0.28 256
Stitc) U.0l1 0.03% 54 0.11% 0.37 256

Design space optimization problem st
Choose the right mixture of tiles to have the

ent:
t performance

and power without using too much area or limiting frequency



Design Space Constraints
The Q100 Database Acceleration Architecture
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Q100 Pareto Frontier
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Pareto plot from a research paper on the Q100
Database accelerator by Wu et al, ASPLOS 2014
* How did they select magenta points?
 What other points might they have selected?
* Whatis the value in seeing all these points?

« “Pareto Design” as used in the paper means the design
that maximizes (runtime) performance per watt.

» Although there were designs with nominally better runtime,
the goal of the paper was to select three options for further
study. The two options with a nominally better runtime
were only negligibly better but at a much higher cost in
terms of energy, rendering them less interesting to the
authors.




Results of Design Space Exploration

Area Power
Tiles NoC SBs Total Total | Tiles NoC SBs Total Total
mm? mm? mm? mm? %Xeon| W W W W % Xeon
LowPower | 1.890 0.567 0.520 2978 7.0% ]0.238 0.071 0.400 0.710 14.2%
Pareto 3.107 0.932 0.780 4.819 11.3% |0.303 0.091 0.600 0.994 19.9%
HighPerf | 5.080 1.524 0.780 7.384 17.3% |0.541 0.162 0.600 1.303 26.1%
= 3
.q';ﬂ:ﬁ 2.5 ¥ |deal : : : :
TS 9 Flnalresultsshowldeallzed f:le5|.gn
" NocBW Limi et et ooy
G'E;’En 1 + MemBW + networkand memory access
2505 NOCBW Limit bandwidth
(a'd 0
LowPower Pareto HighPerf



Heat Plots Can Be Used to Explore 2D Space

SRC SRC SRC
MEM X Rix x EEEEX X X % MEM x Rix x EEEEx x Elx MEM X  Rix x EEEEx x BElx
AGG X AGG X AGG X
ALU ALU ALU
APPEND APPEND APPEND
BOOLGEN BOOLGEN BOOLGEN
COLFILTER COLFILTER COLFILTER
COLSELECT  [3¢ 3¢ X X X COLSELECT  [3€ 3¢ X X X X X COLSELECT  [$¢ ¢ 4 KX P4
CONCAT p %X % CONCAT o X CONCAT X X
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Figure 10. Even with a LowPower de-
sign, the communication bandwidth for
most connections exceed the provisioned
6.3 GB/s NoC bandwidth, marked as X’s
in the figures.

Figure 11. Similar to connection count Figure 12. Heat map of HighPerf design
heat map, Pareto design maximum intra- max bandwidth per connection.
connection bandwidth exhibit almost

identical behavior as HighPerf design.

Here heat plots are used to show the communication bandwidth needed
between tiles and which design elements exceed a reference threshold.




Q100 Takeaways / What did we just learn

* Practical application of design space exploration
* Defined design space based on tiles and connections between tiles

* Defined constraints and optimization goals based on power, area,
frequency

* Runs experiments to produce Pareto Frontier with performance and
power as main design dimension

* Final designs come from Pareto Frontier —fast, balanced, low-power

 Compare design to characteristics of known baseline (Xeon)



What to think about next?

* Miscellaneous (micro)architectural tricks & optimizations (future)
e Super-scalar Out-of-Order
 VLIW
 Vector processors / SIMD
e SIMT/GPU
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