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Abstract

A network of switches controlled by Boolean variables can be represented as a
system of Boolean equations. The solution of this system gives a symbolic description
of the conducting paths in the network. Gaussian elimination provides an efficient
technique for solving sparse systems of Boolean equations. For the class of networks
that arise when analyzing digital metal-oxide semiconductor (MOS) circuits, a simple
pivot selection rule guarantees that most s switch networks encountered in practice can
be solved with O(s) operations. When represented by a directed acyclic graph, the set
of Boolean formulas generated by the analysis has total size bounded by the number of
operations required by the Gaussian elimination. This paper presents the mathematical
basis for systems of Boolean equations, their solution by Gaussian elimination, and data
structures and algorithms for representing and manipulating Boolean formulas.

Keywords and phrases: switch networks, symbolic analysis, MOS circuit analysis,
Gaussian elimination, series-parallel graphs, Boolean manipulation.

1 Introduction

The advent of metal-oxide semiconductor (MOS) circuit technology has revived interest in
analyzing networks of switches. This field originated when digital circuits were constructed
with electromechanical relays. Shannon, in the first application of Boolean algebra to digital
systems, developed several techniques for analyzing a switch network symbolically[1]. For a
network of switches, each of which is either open or closed depending on the value of some
Boolean variable, the goal of symbolic analysis is to derive formulas expressing the conditions
under which conducting paths will exist between specified pairs of terminals.!

*This research was supported in part by the Defense Advanced Research Projects Agency, ARPA Order
Number 4976, and in part by the Semiconductor Research Corporation under Contract 86-01-068.

!Shannon characterized a network by its “hindrance” function, with logic value 1 indicating the absence
of any path. This paper adopts the more conventional view of 1 indicating the presence of a path.



A MOS transistor can often be abstracted as a switch—it conditionally forms a connection
between its source and drain nodes depending on the voltage on its gate node. Several models
of static logic gates in MOS treat transistors as simple switches and define the behavior of
a gate in terms of the conditions under which a conducting path is formed from the supply
or ground to the gate output[2, 3, 4]. More complex MOS models take into account such
effects as resistance ratios, dynamic memory, and invalid or uninitialized logic values[5, 6].
A companion paper [7] shows that even with these more elaborate models, the behavior of a
MOS circuit can be determined by analyzing a series of switch networks. Thus the symbolic
analysis of switch networks remains as a key problem in deriving an abstract representation
of the function computed by a digital circuit.

The demands placed upon symbolic analysis have changed greatly since the days of relay
circuits. These circuits were relatively small, and the analysis was performed manually.
Under these conditions, the asymptotic performance of the method matters less than its
conceptual simplicity. For example, Shannon describes a method that involves enumerating
every possible simple path between two terminals, forming the Boolean product of the switch
labels in each path, and then forming the Boolean sum of these path formulas. In general,
the number of simple paths in a network can grow exponentially with the number of switches
(e.g., the parity ladder shown in Figure 7.) Consequently, path analysis cannot be applied
to networks of significant size. Furthermore, there was no concern about data structures and
algorithms for representing and manipulating Boolean formulas. Fven more recent methods
based on matrix representations[8] do not address these algorithmic issues.

Today symbolic analysis methods are to be executed by computers on networks contain-
ing thousands of switches. To implement an analyzer, every detail of representation and
algorithm must be specified. Success must be measured by worst or average case complexity
rather than by performance on small examples. Unfortunately, the state of the art in sym-
bolic analysis has not kept up with these demands. For example, most published symbolic
analysis methods for MOS circuits start by enumerating all possible simple paths in the
network[9, 10, 11]. A second method involves enumerating the possible sets of connected
components formed in the switch network for different values of the control variables [12].
This approach can also produce a description of size exponential in the number of transistors.
These accounts indicate little progress since Shannon’s day.

In general, a MOS circuit can be partitioned into smaller subnetworks and each subnet-
work analyzed separately. Most of these subnetworks are small—containing no more than 10
transistors. Hence, one can argue that even an algorithm of exponential complexity can work
well in practice. However, subnetworks containing over 1000 transistors commonly occur in
large pass transistor and datapath circuits. A program for general use cannot rely so heavily
on a particular circuit style to achieve tolerable efficiency.

This paper proposes a far more exacting standard for symbolic analysis: that the size of
the symbolic description should be comparable to the size of the original network. That is,
a network of s switches should be represented by a set of formulas containing, in total, O(s)
Boolean operations. This paper shows how to achieve this goal for most networks arising
in the analysis of MOS circuits. Even for the dense pass transistor circuits that lead to a
nonlinear complexity, the method produces a description of size O(s%/2). This performance
results from a combination of several techniques:
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e A network is represented by a system of Boolean equations. This system expresses the
effects of all paths in the network but lends itself to solution methods of polynomial
complexity.

e The system of equation is solved symbolically by Gaussian elimination. A simple
heuristic for selecting pivots guarantees that most practical networks of s switches can
be solved with O(s) algebraic operations.

e The set of Boolean formulas is represented by a directed acyclic graph (DAG), with
each DAG node specifying a Boolean operation to be applied to its children, and with
each leaf denoting a variable or constant. This representation naturally allows sharing
of common subexpressions. The number of nodes in the DAG is bounded by the
number of algebraic operations required during Gaussian elimination.

o Expression simplification techniques are applied to the DAG but only in ways that
reduce the size of the DAG even further.

The algorithm presented is efficient in terms of execution speed as well as the size of the
result produced.

The formulation of the switch network analysis problem used in this paper is tailored to
the particular needs of the MOS circuit analysis method presented in the companion paper.
It differs from the classic formulation in the following respects:

e The control signals of switches can be arbitrary Boolean formulas, not just variables
or their complements.

e Switches are directed—the conduction conditions from one point to another can differ
from those in the reverse direction.

e The analysis does not compute the conduction conditions between specified pairs of
terminals. Instead, each node is given an initial value represented by a Boolean formula.
A path is viewed as having an “effect” on its destination node equal to the Boolean
product of formulas representing the initial value on the source node and the control
signals of the switches. Symbolic analysis derives a formula for each node describing
the Boolean sum of the effects of all paths to the node.

e The analysis may need to characterize the absence rather than the presence of con-
ducting paths.

Each of these differences represents only a slight generalization of the original problem with-
out increasing its complexity. The requirement for directed switches may seem counterintu-
itive given that MOS transistors are fully bidirectional devices. However, the MOS analyzer
accounts for signals of varying strength (representing different driving admittances) by as-
signing different labels to the two directed edges representing a transistor.

This paper presents some new results on the efficiency of Gaussian elimination for solving
systems of equations defined over general series-parallel graphs. Otherwise, it contains little
that has not been presented in some form elsewhere. However, material has been drawn



from a diversity of disciplines, including switching theory, graph theory and algorithms,
linear systems, optimizing compilers, and symbolic manipulation. In many cases, ideas or
techniques are applied in ways much different from those conceived by their developers. Few
practitioners in the field of computer-aided design are well versed in all of these disciplines.
Furthermore, other presentations of methods for solving path problems in graphs have been
in terms far more general, abstract, and harder to understand. The main contribution of this
paper is to synthesize a collection of ideas into a single framework for solving an important
problem.

Sections 2-4 present a mathematical description of the symbolic analysis problem in
terms of systems of equations defined over a Boolean algebra. It parallels previous work
on the symbolic analysis of contact networks [8], and more general algebraic formulations
of path problems [13, 14, 15, 16]. The presentation differs from previous ones in several
respects. First, Boolean algebra is selected as the domain of interest. This gives properties
that more general presentations cannot assume, including a finite, partially ordered domain,
and an idempotent sum operation. In addition, systems of equations are expressed in terms
of labeled graphs rather than with matrix algebras. Graphs more clearly capture the sparse
structure of the problem to be solved and directly map into data structures for efficient al-
gorithms. Section 5 describes how a system of Boolean equations can be solved by Gaussian
elimination. A combination of formal and empirical arguments shows that most networks
arising when analyzing MOS circuits can be solved with a linear number of operations using
a simple pivot selection rule. This result could prove useful for other circuit analysis pro-
grams such as circuit-level simulators. Section 6 describes data structures and algorithms
for representing and simplifying Boolean formulas. Section 7 presents an example showing
some strengths and weaknesses of the method, and Section 8 summarizes the results.

2 Symbolic Algebra

Symbolic analysis derives formulas that express conditions under which conducting paths
are formed in a network of switches. Such formulas are concrete, syntactic representations
of Boolean functions. Several formulas may represent a single function. In mathematical
terms, the analyzer computes over a domain consisting of the set of all functions mapping a
set of p variables (describing the control signals on the switches) to the set {0, 1}, i.e.,

B = {£:{0.1}» = {0,1} }

In the Boolean algebra of the analysis (B,A,V,—,0,1) the operations A, V, and = denote
Boolean AND, OR, and NOT, respectively, applied to functions. The distinguished elements 0
and 1 denote the constant functions that yield 0 and 1, respectively, for all argument values.
This process of abstracting from a primitive domain of Boolean values to one of functions
over these values forms the basis of symbolic analysis. Most algebraic properties carry over
from the original domain to the abstract one.

The Boolean product of the elements in a set A is denoted A,c4 ¢. The product of an
empty set is defined to equal 1. Similarly, the Boolean sum of the elements in a set A is
denoted V,c4 a. The sum of an empty set is defined to equal 0.
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Elements of B are partially ordered as b < a when bV a = a, i.e., by their lattice ordering
[2, 17]. This partial ordering obeys the following properties, as can easily be derived from
the laws of Boolean algebra:

Proposition 1 For any b e A

Proposition 3 Ifa <b, then =b < —a.

Proposition 4 b < a if and only if b A —a = 0.

3 Systems of Boolean Equations

Just as a resistor network can be represented by a system of linear equations, so a switch
network can be represented by a system of equations in which V and A replace addition and
multiplication, respectively. This section develops the theory of such systems in terms of
labeled graphs and then shows how the switch network analysis problem can be formulated
in these terms. In this discussion, (V, F) is a finite, directed graph with vertices V and edges
E CV xV, where |V]| =n.

Definition 1 A vertex labeling x is an assignment x(v) € B to each vertex v € V.
Two vertex labelings @ and y are partially ordered @ <y when z(v) < y(v) for all v € V.
Definition 2 An edge labeling A is an assignment A(u,v) € B to each edge (u,v) € E.

Definition 3 A system of Boolean equations [A,b] consists of an edge labeling A and a
vertex labeling b.

Definition 4 A vertex labeling x satisfies the system [A,b] when

z(v) = blv)V \/ [2(u) A A(u,v)] (1)

(uw,v)eE
for everyv € V.

Observe that unlike the usual formulation of systems of linear equations (Ax = b), the
unknown x appears on both the left and right hand side of Equation 1. In a matrix notation,
this equation would have the form « = bV Az. This departure from convention is forced by
the fact that the domain has no inverses under V.

The following property follows directly from the above definition and Proposition 1.



Proposition 5 [f x satisfies a system [A,b], then x > b.

In general, many labelings can satisfy a system of equations. For example, any vertex
labeling satisfies the system [/, z] defined over a graph with all edges of the form (v,v),
where [(v,v) equals 1 and z(v) equals O for all v. We focus our attention on a particular
one, considered the “solution” of the system.

Definition 5 Vertex labeling x is a solution of the system [A,b], when
1. it satisfies the system, and

2. x <y for any labeling y satisfying the system.

By this definition, a system can have at most one solution. In fact, we can show that any
system has exactly one solution.

Theorem 1 Any Boolean system [A,b] has a unique solution x given by the limit of the
sequence x*, where 2°(v) = 0 for all v, and x*(v) is defined for all i > 0 and all v as:

(o) = blo) vV N o' u) A Afu,0)]. (2)

(uw,v)eE

A proof of this theorem is given in Appendix A, based on the following series of arguments.
First, the sequence satisfies #' < z'*! for all 7 and therefore converges. Second, the value
to which the sequence converges satisfies the system. Finally, for any labeling y satisfying
the system, 2 < y for all 7. Therefore, the sequence converges to the minimum labeling
satisfying the system.

A system of Boolean equations defines a path problem as follows. Let P, , denote the
set of paths from vertex u to vertex v. A path contributes an “effect” to its destination
vertex equal to the Boolean product of labels on its source vertex and edges. The net effect
at a vertex is given by the Boolean sum of the effects of all paths having this vertex as
destination. The solution of a Boolean system yields the vertex labeling giving the net effect
at each vertex as is expressed in the following theorem.

Theorem 2 [f x(v) is defined for all v € V as

) = VOV [bw A Als.1)

u€V pEPy (s,t)ep

then x is the solution of the system [A,D].

A proof of this theorem is shown in Appendix A based on the following series of ar-
guments. First, @ satisfies the system [A,b]. Second, for any path p to vertex v and any
labeling y satisfying the system, the effect of path p is less than or equal to y(v). Therefore,
the combined effects of the paths to every vertex must equal the minimum labeling satisfying
the system.
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Theorem 2 shows how to formulate the classical switch network analysis problem as one
of solving a system of Boolean equations. For example, consider a switch network with a
designated source terminal s. Let the graph (V, E') have the nodes of the network as vertices,
and have an edge (m,n) for each pair of nodes m and n connected by a switch. Let edge
labeling A(m,n) equal the Boolean sum of all signals controlling switches connecting nodes
m and n. Define the vertex labeling b as b(s) = 1, and b(n) = 0 otherwise. Then the solution
of the system [A, b] is a vertex labeling & where x(n) describes the conditions under which a
conducting path will form from s to node n.

4 Dual Systems

Some applications require formulas expressing conditions for the absence of any conducting
path between terminals of a switch network. Such formulas could be obtained by first solving
a system expressing conditions for the presence of paths and then complementing the solution
values. These negation operations, however, complicate the task of simplifying the formulas.
Alternatively, the formulas can be derived directly by solving a dual system in which the
roles of V and A are interchanged. The mathematical basis for this technique stems from
DeMorgan’s Laws.

Definition 6 A dual system of Boolean equations [A,b]P consists of an edge labeling A and
a vertex labeling b.

Definition 7 Vertex labeling = satisfies the dual system [A,b]P when

z(v) = b)) A N [#(w)V A(u,v)]

(uw,v)eE

for everyv € V.

As before, only one vertex labeling is considered to solve a dual system, but this time
the maximum one is selected.

Definition 8 Vertex labeling x is a solution of the dual system [A, b7, when
1. it satisfies the system, and

2. x >y for any labeling y satisfying the system.

Definition 9 The complement of vertex labeling b, denoted b, is a vertex labeling with b(v) =
=b(v) for allv e V.

Definition 10 The complement of edge labeling A, denoted A, is an edge labeling with

A(u,v) = = A(u,v) for all (u,v) € E.

Theorem 3 w is the solution of the system [A, ] if and only if T is the solution of the dual
system [A, b|P.



The proof of this theorem is given in Appendix A. It involves a straightforward applica-
tion of DeMorgan’s Laws.

From this theorem, the role of dual systems in expressing the absence of paths becomes
clear.

Corollary 1 If z is the solution of the dual system [A, b7, then

() = =\ [bw A Als.1)

u€V pEPy (s,t)ep

5 Equation Solution

The equations of the preceding section give an implicit representation of the network func-
tion. Symbolic analysis derives explicit formulas by solving these equations. The following
presentation describes the solution of normal systems. Dual systems are solved similarly by
interchanging the roles of A and V, as well as those of 0 and 1.

As Equation 2 suggests, a simple, iterative method can solve a Boolean system [A, b].
Although this method lacks efficiency, it aids in understanding more advanced methods.
Starting with x(v) = b(v) for each vertex v, the iterative method “propagates” values from
a vertex v through an edge (v,u) to the adjacent vertex u, and combines this value into the
value already on vertex u. That is, each step involves a computation of the form

w(u) + x(u) V [z(v) A A(v,u)l.

Ultimately, this process converges to a solution. However, an iterative method must either
test the solution for convergence, i.e., that [#(v)AA(v, u)] < @(u) for all (v,u) € E, or it must
perform enough iteration steps to guarantee that for every simple path in the graph, the value
on the source vertex has been propagated through the edges of the path to the destination
vertex. The first method requires solving the NP-hard problem of testing Boolean formulas
for equivalence [18], while the second requires O(|V| - |E]) steps, except for restricted graph
structures [19].

5.1 Gaussian Elimination

Gaussian elimination provides the most efficient known method for solving sparse Boolean
systems, where Boolean operations replace the real arithmetic used when solving linear
systems [13, 20]. Figure 1 shows a sketch of the Gaussian elimination algorithm. The code
has two parts: forward elimination and back substitution. Forward elimination successively
modifies the system structure, each time eliminating a vertex and all incident edges, and
possibly adding edges between some remaining vertices. These structural modifications give
Gaussian elimination its performance advantage over iterative methods. Eliminating a vertex
v; (termed the “pivot”) involves updating the value of b(v) for each uneliminated neighbor
v of v;. Then for each pair of uneliminated neighbors u and v, the value of A(uw,v) is
updated. This may require adding a new “fill-in” edge to the graph if (u, v) does not already
exist. During back substitution, the vertices are processed in the reverse of their elimination
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{ Forward elimination }
Vo ¢« V;{ The uneliminated vertices }
Ey < FE; { The original edges plus fill-in’s}
fori < 1tondo
begin
choose vertex from V;_; and call it v;; { Select pivot }
Vi Vior —{wihs
Ei — Ei—l N [‘/z X ‘/2]7
for each v € V; such that (v;,v) € E;_y do
begin
b(v) < b(v) V [b(v;) A A(vs,v)];
for each u € V; such that (u,v;) € E;_; and u # v do
begin
if (u,v) € E;
then A(u,v) < A(u,v) V [A(u,v;) A A(vi,v)]
else begin
{ Create fill-in edge. }
E; «— E;U{(u,v)};
A(u,v) «— A(u,v;) A A(vg,v)
end
end
end
end;

{ Back Substitution }
for v < nstep —1to 1 do
begin
z(v;) + b(v;);
for each u € V; such that (u,v;) € E;_y do
x(v;) «— x(v;) V [x(u) A Alu,v;)];
end

Figure 1: Gaussian Elimination Algorithm. The code differs from the conventional
presentation in that it uses graph notation and substitutes Boolean for numerical operations.
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ordering. For each vertex v;, the value of x(v;) is computed in terms of b(v;) and the value
of x(u) for every neighboring vertex u eliminated after v;.

The code of Figure 1 also defines some notation to assist the proof of correctness and the
performance analysis. To summarize, the vertices of V are labeled vy,. .., v, in the order they
are eliminated. The set V; C V is defined as the set of all vertices eliminated after v;. The
set F; is defined as the set of all edges (both original and fill-in) connecting vertices in V;. In
the actual implementation, little of this information need be stored explicitly. Edges can be
represented by adjacency lists with fill-in edges appended to the lists. A stack can keep track
of the elimination ordering for use in back substitution. The set of uneliminated vertices can
be represented by a priority data structure to implement the desired pivot selection rule.

Theorem 4 The Gaussian elimination algorithm of Figure 1 solves the system [A,].

A proof of this theorem is given in Appendix A. It involves showing that the elimination
of a vertex does not change the solution for the remaining vertices. The final system involves
only one vertex and is solved trivially. Each back substitution step then adds back a vertex,
computing its solution in terms of those for the other vertices.

5.2 Pivot Selection

The efficiency of Gaussian elimination depends largely on the number of uneliminated neigh-
bors each vertex has as it is eliminated. Consider a graph with n vertices. Assume for
simplicity that the graph is structurally symmetric, that is (u,v) € F whenever (v,u) € E.
This requirement can be met by adding edges to the graph with labels equal to 0.2 With
this simplification, an undirected graph describes the structure of the system to be solved.
Referring to Figure 1, define the elimination degree of vertex v, denoted d(v), as

d(v;) = [{u € Vil(u,vi) € Bi_y}],
The number of algebraic operations (A and V) for elimination is at most

2 3 [d(v:) + d(v:)?].

1<i<n

This formula is highly sensitive to the values of d(v). For example, if the degrees are all
bounded by a constant, then only O(n) operations are required. On the other hand, in the
worst case d(v;) can equal |V;]| for all vertices and O(n®) operations are required.

The vertex elimination degrees depend greatly on the elimination order. Consider, for
example a “star” graph, such as the one shown in Figure 2. If the center vertex is eliminated
first, fill-in edges are added between every pair of remaining remaining vertices, and the
algorithm requires O(n®) operations. If, on the hand, this vertex is eliminated last, we
would have d(v) < 1 for all v, requiring only O(n) operations.

?In fact such edges are often added to simplify the data structures, as it eliminates the need to store
explicit pointers in the reverse direction of the edges.
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Figure 2: Star Graph Example. The elimination complexity of this class of graphs ranges
between linear and cubic, depending on the elimination ordering.

Acyclic Branch Series Parallel-Series
v
v v v
v e — ve—ew I == w I - I>- w
u u u
u

Figure 3: General Series-Parallel Production Rules. Any GSP graph can be generated
by starting with a single vertex and applying a sequence of these rules.

Much has been written on strategies for choosing elimination orderings, including both
empirical [21, 22] and theoretical [23] results. In general, the problem of selecting an opti-
mal ordering is NP-complete [18]. However, we would be satisfied with a “good”, but not
necessarily optimal, ordering, and we can exploit properties of the graphs that arise in MOS
circuit analysis.

The following heuristic strategy is often cited [21, 22] for deciding which vertex to select
as the next pivot during Gaussian elimination:

Rule M: Choose a vertex that minimizes d(v).

This rule is an example of a “greedy” strategy. That is, it selects a pivot to minimize the
computational effort of the next step without regard to future eliminations. For MOS circuits,
this strategy works quite well—with only a few exceptions the resulting elimination requires
only O(n) operations. A MOS circuit maps into a “channel graph” for symbolic analysis[7].
This graph contains a vertex for each storage (i.e., non-input) node n, and an edge (m,n)
for each pair of storage nodes m, n forming the source and drain of a transistor. In general,
this graph will contain many components, and each component is analyzed separately.
Most channel graphs describing digital MOS circuits fall into a restricted class that we
shall term “general series-parallel” (GSP). This class extends conventional series-parallel
graphs[24] to include those containing acyclic branches. GSP graphs can be defined induc-
tively starting with a single vertex as the basis, and applying the production rules illustrated
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Figure 4: Channel Graph for Complex nMOS Gate. Even though the gate has a bridge
in its pulldown network, the graph is general series-parallel.

Original Redrawn
by by ®
as b3 as bs
a2 by by az
ay by ay by
bo by ®

Figure 5: Channel Graph for Shift Network. Redrawing it shows the general series-
parallel structure more clearly.

Figure 6: Channel Graph for Section of Carry Chain. Although not GSP, no vertex
has elimination greater greater than 3.
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Figure 7: Channel Graph for Parity Ladder. Although not GSP, no vertex has elimi-
nation degree greater than 3.

Figure 8: Channel Graph for Tally Circuit. This class of graphs has O(n?) elimination
complexity when pivots are selected by Rule M.

Figure 9: Channel Graph for Barrel Shifter. This class of graphs has O(n?) elimination
complexity regardless of pivot sequence.
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in Figure 3. That is, given a GSP graph containing a vertex v, a new vertex w and edge
(v,w) can be added to give a new GSP graph. Similarly, given a GSP graph containing
vertices u and v and edge (u,v), a new vertex w along with edges (v, w) and (u,w) can be
added. The edge (u,v) is either deleted for the Series production rule or retained for the
Parallel-Series rule. We do not define a pure Parallel rule to avoid creating multigraphs. It
can easily be seen that this class of graphs has significance for MOS circuits. Most MOS cir-
cuits involve transistors connected series-parallel to implement logic functions and acyclically
to implement information transfer.

Figures 4 and 5 show examples of GSP channel graphs. Figure 4 is typical of those that
arise when analyzing complex nMOS logic gates with connected pass transistors. Note that
the graph contains no edge corresponding to the pullup transistor, since this transistor is
connected directly to an input node. The pulldown network contains a “bridge”, and hence
many would not consider this a series-parallel graph. Most presentations of series-parallel
networks assume a “virtual edge” between the top and bottom terminals (to represent the
power supply.) Switch graphs need not include such an edge, and hence the channel graph
is GSP. CMOS logic gates usually have GSP channel graphs as well. Figure 5 is typical
of those that arise when analyzing pass transistor shift networks. This network transfers a
set of inputs on the left to the outputs on the right shifted either -1, 0, or 1 positions. As
normally drawn, the graph appears quite complex. However, it can be redrawn as shown
on the right, making it easier to see the GSP structure. FExperience has shown that many
seemingly complex circuits have simple channel graphs.

Theorem 5 A system of equations defined on a graph can be solved by Gaussian elimination
such that no vertex has elimination degree greater than 2 if and only if the graph is general
series-parallel.

A proof of this theorem is given in Appendix A. It follows from the observation that the
production rules of Figure 3 and the graph transformations caused by eliminating a vertex
of degree less than or equal to 2 are inverses of each other. Our application requires only the
“if” part of the theorem. The “only if” part is included for intellectual interest. It shows
that only GSP graphs satisfy this bound on the maximum elimination degree.

Corollary 2 Gaussian elimination applied to an n vertex GSP graph with pivots selected by
Rule M requires at most 12n algebraic operations.

An n vertex GSP graph must have between n — 1 and 2n — 1 edges. Hence, this result
shows that an the analysis of an s switch network requires O(s) operations when the network
has a GSP structure.

A survey of 4 books on VLSI [25, 26, 27, 28], plus a direct analysis of many circuit
designs has uncovered only a handful of non-GSP channel graphs, as illustrated in Figures
6, 7, 8 and 9. Figure 6 shows the graph for a section of the carry chain circuit from the
MIPS-X processor [29]. Even when repeated for a number of stages, systems with this
graph have linear elimination complexity, because no vertex has elimination degree greater
than 3. The same holds for pass transistor parity ladders based on a well known relay
contact network [1], as illustrated in Figure 7. In contrast, path enumeration over this
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graph gives a result of exponential complexity, while iterative methods have quadratic worst
case complexity. Graphs that arise when a circuit is created by repeating a structure in one
dimension generally have some constant upper bound on elimination degree and hence linear
elimination complexity.

The Tally network of Mead and Conway [25], with graph illustrated in Figure 8 does
not yield such favorable results. This network has the lower triangle of a square mesh as its
channel graph. For such meshes, informal experiments indicate that selecting pivots by Rule
M gives quadratic complexity. For a planar graph such as this, pivot selection by nested
dissection can solve an s switch system with O(s*?) operations [23]. In practice, however,
only small versions of this circuit are used, or restoring buffers are inserted for performance
reasons. Either case yields small channel graphs, and Rule M handles small graphs well. For
example, the four input tally circuit shown in the figure has maximum elimination degree 3.

A variety of pass transistor shift networks yield non-GSP channel graphs. A barrel shifter
as shown in Figure 9 provides the most extreme case. The channel graph for this circuit is
a complete bipartite graph. For solving such a dense system O(n®) operations are required
for any elimination ordering. Given that the number of switches s grows quadratically with
the number of nodes, however, the elimination complexity is a respectable O(s%/2).

Other shift networks have complexity between those of Figures 5 and 9. For example, the
Caltech Mosaic processor [30] has a network that passes the data either straight through,
shifted 1 position, or shifted 4 positions, where shifts are circular. When following Rule
M, experiments indicate that the elimination degree never exceeds 12 for such a graph,
regardless of the shifter width. Although this bound yields a solution of linear complexity, the
constant of proportionality becomes noticeably high. Fortunately, shift networks constitute
only a small fraction of the total circuitry in a full scale VLSI chip. Even subnetworks with
O(n?) elimination complexity should have little impact on the total result. Furthermore,
this polynomial worst case complexity compares favorably to the exponential complexity of
other methods.

As an aside, this analysis shows that Gaussian elimination would provide an efficient
method for computing node voltages in a linear switch simulator such as RSIM [11]. On
the other hand, the results do not carry over as well to circuit simulators such as SPICE
[22]. When an implicit integration method is used in a circuit simulator, a conductance is
inserted across the terminals of each capacitor. This effectively creates a connection between
the gate, source, and drain of every MOS transistor. The resulting graphs can have far more
complex structure than channel graphs.

6 Boolean Formula Representation and Manipulation

Up to this point, the presentation has intentionally remained vague as to how Boolean
formulas are represented and manipulated. In fact, there are many possible representations
offering a wide range of capabilities and limitations. As has been shown, most networks
arising in MOS circuit analysis require a linear number of algebraic operations to analyze.
Ideally, the Boolean formulas should be represented in such a way that the total size of the
formulas for a network preserves this linear growth. A directed acyclic graph representation
satisfies this requirement.
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Figure 10: DAG Representation of Two Formulas. The leaves denote variables and
constants, while the nodes denote Boolean operations. A formula is denoted by a pointer to
a node.

6.1 DAG Representation of Formulas

A directed acyclic graph (DAG) [31, 32] resembles a parse tree, with leaves representing
either variables or constants, and with internal nodes representing Boolean operations. In
a DAG, however, a given subgraph may be shared by several branches, yielding a more
compact representation. During the analysis of a switch network, the program constructs a
single DAG having multiple roots. A formula is indicated by a pointer to some DAG node,
where the formula denoted consists of the node and all of its descendants. Figure 10 shows
a DAG representing two formulas.

During Gaussian Elimination, the program can perform an operation symbolically by
simply adding a new node to the DAG with branches to the nodes representing the argu-
ments. As observed by Tarjan [20], the DAG produced by this method can grow no larger
than the total number of algebraic operations.

6.2 Formula Simplification

As the example of Figure 10 shows, formulas can often be simplified by applying laws of
Boolean algebra. Fortunately, the DAG representation forms an ideal data structure for
performing these simplifications and for detecting and eliminating common subexpressions
[31]. In general, the problem of reducing a formula to its simplest form is NP-hard (proving
tautology involves proving that a formula can be simplified to 1). However, a large class
of simplifications can be expressed in terms of local transformation on the DAG, where no
transformation increases the number of nodes. This paper presents only transformations
appropriate for the formulas generated by switch network analysis. In particular, it includes
only a limited set of negation rules, because negation can only occur within the control
formulas for the switches.

The program can readily apply simplifying transformations each time an operation is
requested. That is, if some operation op (either A, V, or =) is to be applied to a list
of arguments A, the procedure applies transformations to produce a new list A’, possibly
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changing the operation to op’ as well. Then the procedure checks a symbol table (e.g., a
hash table) to see if a node with this operation and with these arguments already exists. If
not it creates a new node and stores a pointer to it in the symbol table. This method avoids
ever creating duplicate subexpressions.

6.3 Simplification Rules

This presentation utilizes the following node representation. Associated with each node
is a type € {A,V,—,0,1,var}. Types A, V, and — represent operations. Types 0 and 1
represent constants, while type var represents a variable. Associated with a node x for which
type(x) € {A, V, or =} is a list of arguments Args(x). Although the list is not technically
a set (because it is ordered and contains duplicates), set notation is used to denote list
operations. The set of all nodes is assumed totally ordered, as can be implemented by
assigning a unique integer identifier to each node and ordering nodes by their identifiers.
This total ordering serves only to permit a canonical listing of all children of a node.

The steps below outline a procedure to apply operation V to a list of arguments A, where
each argument is specified by a DAG node. The steps to apply A are similar, interchanging
the roles of A and V, as well as those of 0 and 1. Each step indicates an algebraic identity
and an associated set of transformations. The steps are ordered in such a way that the
procedure need only sequence through the list once to implement the operation.

1. Associativity: (aVb)Ve=aV (bVc)
For each © € A such that type(x) =V, remove x from A and add Args(z) to A. This
transformation guarantees that no node in the DAG will ever have a child of the same
type. This transformation may or may not be desirable as is discussed below.

2. Commutativity: a Vb=5bV a
Sort the elements of A. This transformation guarantees that all nodes in the DAG will
list their children in the same order.

3. Idempotency: aVa=a
Remove any duplicate entries from A. Since the elements of A are sorted, duplicates
must appear consecutively.

4. Identity: a VO =a
Remove from A any element @ such that type(x) = 0.

5. Annihilator: a V1 =1
If A contains any element x such that type(z) = 1, then return « as the result of the
evaluation.

6. Excluded Middle: a V —a =1
If A contains elements x and y such that type(x) = = and y € Args(x), then return a
node of type 1 as the result of the evaluation.
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7. Redundancy: b6 <a = bVa=a.
For each @ € A, label # with 1 and every y € A — {a} with 0. If a search with
these labels leads to a contradiction, then remove & from A. The search procedure is
described in detail below.

8. Degenerate Cases: V,epya =0, V,epa =0

(a) If A contains only a single element x, then return x as the result of the evaluation.

(b) If A is empty, then return a node of type 0 as the result of the evaluation.

9. Common Subexpressions
Look in the symbol table for an entry with key (V, A).

(a) If an entry is found, then return it as the result of the evaluation.

(b) If no entry is found, then create a new node x with type(x) = V and Args(z) = A.
Add an entry for = to the symbol table with key (V, A). Return x.

By this method, we guarantee that duplicate nodes are never created.

6.4 Discussion of Transformations

Observe that this list of transformations does not include any for the two distributive laws:

(aVb)ANe = (aVe)AN(bVe)
(anNb)Ve = (ane)V (bAc).

If we were to apply transformations that distribute one operation over the other, the size of
the DAG would be increased. The DAG could even grow to exponential size, if for example,
distributivity were applied to transform the formula into sum-of-products form. On the
other hand, we could attempt to recognize opportunities to factor expressions. However,
expressions such as (aAb)V(bAc)V(aAc) can be factored in more than one way, giving different
degrees of simplification. Thus, the manipulator ignores the distributive laws altogether.
The associativity transformation (step 1) does not increase the number of nodes in the
DAG, and hence incurs no added complexity under a node cost model, where the complexity
of a DAG is expressed as the total number of nodes. However, it can create nodes with more
children than the number of arguments in the original list. For example, the evaluation

sequence
r +— aAb
y < xAc
z +— yAd

would create 3 nodes having 2, 3, and 4 children, respectively. The binary cost model
expresses the DAG complexity as the sum of its node costs, where a node with n children
has cost n — 1. This measure corresponds to the number of binary operations required to
evaluate the resulting expression. Under this cost model, the associativity transformation
can increase the complexity. The above example would yield a DAG of binary cost 6, whereas
omitting the transformation would yield a DAG of cost 3.
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The associativity transformation also interacts with the redundancy transformation (step
7), described in detail later. This transformation requires a search of the DAG for each
element of the list A, incurring a significant computational effort. The associativity trans-
formation can expand this list and, consequently, the number of searches.

Of course, omitting this transformation causes the manipulator to overlook some useful
simplifications. It will fail to recognize the equivalence of some expressions. Furthermore,
it will fail to eliminate some redundancies that would otherwise be found. For example,
consider the DAG for the expression a V [¢ V (a A b)]. The associativity transformation
would create a list of arguments a, ¢, and @ Ab. The redundancy transformation would then
eliminate the third argument, yielding a simplified expression a V ¢. On the other hand, no
simplification would occur if the associativity transformation were omitted, because neither
the expression a nor ¢V (a A b) is redundant with respect to the other.

The choice of whether or not to apply the associativity transformation depends on the
nature of the formulas generated and the appropriate complexity measure for the DAG. Our
experiments with a symbolic MOS circuit analyzer clearly indicate that, under the binary cost
model, the associativity transformation increases the DAG complexity by a factor of at least
2 for almost all circuits. Furthermore, depending on the particular circuit, it can greatly
increase the amount of CPU time spent searching for redundancies. However, omitting
the transformation yields formulas with a noticeable number of redundant terms. Hence
the desirability of the transformation depends on the intended application of the symbolic
analyzer output.

6.5 Redundancy Testing

The redundancy test mentioned in step 7 has proved important when simplifying the formulas
arising during MOS circuit analysis. Due to the way the program analyzes a MOS network by
solving a series of switch networks, it would otherwise construct complex formulas containing
many redundancies. Methods for discovering redundancy range widely in their completeness
and efficiency. On one extreme, a method that reliably detects any case where 2 formulas
are ordered # < y can solve the NP-hard equivalence problem. That is, two formulas are
equivalent if and only if both < y and y < 2. On the other extreme, simple graph
transformations can apply the simple absorption rule @ V (¢ A b) = a. Simple approaches,
however, miss many opportunities for simplification.

The method discussed below strikes a compromise between efficiency and completeness.
It applies a search technique that attempts to prove that an argument is redundant but
applies tight controls to avoid combinatorial complexity.

Proposition 4 states that two Boolean formulas are ordered x < y if and only if no
assignment of 1’s and 0’s to the variables can cause z to evaluate to 1, while y evaluates
to 0. The redundancy test attempts to prove this property by contradiction, in a manner
reminiscent of an automatic theorem prover based on the Resolution Principle [33]. That is,
it assigns value 1 to x, 0 to y, and determines the logical consequences of these assignments.
If it reaches a contradiction, then the formulas are ordered, otherwise they are assumed
unordered. The manipulator applies this test to each argument x in the list A in an attempt
to drop the argument from the list. That is, for an V (respectively, A) operation, the
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C1 C2 C3 C4 C5 C6
0 1 1 0 0 1
A \% A \% - -
7N\ 7N\ . I I I
1 1 0 0 0 1 0 1

Figure 11: Contradiction Rules for Redundancy Test. The search terminates success-
fully when one of these labelings arises.

F1 F2 F3 F4 F5 F6
1% 0% 0% 1% 0% 1%
A vV

A \
7\ 7\ S P ]
1 1 0 0 0 1

Figure 12: Forward Inference Rules for Redundancy Test. These rules change the
value of a node based on those of its children. Asterisks mark the values changed from X to

0 or 1.

test searches for a contradiction with x assigned value 1 (resp., 0) and all other arguments
assigned 0 (resp., 1).

The redundancy test requires augmenting the DAG data structure with an additional
value field for each node, set to either 0, 1, or X (indicating an unknown value). Initially,
the nodes in argument list A are set to 0 or 1 specifying the proof goal, while the other nodes
are set to X. Each node also has a list of pointers to its parents in the DAG. The program
searches for a contradiction in a manner similar to the implication step of the D-algorithm

B1 B2 B3 B4 B5 B6
1 0 0 1 0 1
A V A V - -
I* 0% I 10« 0 0 I I* 0%

Figure 13: Backward Inference Rules for Redundancy Test. These rules change the
value of a child based on those of its parent and siblings. Asterisks mark the values changed

from X to 0 or 1.
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used in test generation [34]. A queue, initialized with the nodes in argument list A plus
their parents, holds nodes that are candidates for further inferences. Boolean values are
propagated through the DAG by repeatedly removing a vertex from the queue and applying
inference rules that may change the node value or that of one or more child. If a node
value changes the program adds either its children or parents to the queue as candidates for
further inferences. This process continues until either a contradictory labeling is encountered
(success), or the queue becomes empty (failure).

Figure 11 illustrates the set of contradictory labelings that cause the search to terminate
successfully. In this figure, the label above the node indicates the value associated with the
node, while the labels below indicate the values associated with the children. Note that rules
C1 and C2 require all children to have a particular value, while rules C3 and C4 require only
a single child with the specified value.

Figures 12 and 13 present the set of inference rules by which Boolean values are propa-
gated through the DAG. For each rule, an asterisk indicates the value changed by the rule
from X to 0 or 1. Figure 12 illustrates the set of forward inference rules, i.e., those that
cause the value of a node to change based on the values of its children. For example, rule
F1 indicates that if all children of an A node have value 1, then it too must have value 1.
Rule F3 indicates that if an A node has any child with value 0, then it must have value 0.
Successful application of a forward inference rule to a node causes queueing of any parent
not already in the queue.

Figure 13 illustrates the set of backward inference rules, i.e., those that cause the value
of one or more child to change based on the value of the node and possibly the values of the
other children. For example, rule Bl indicates that if an A node has value 1, then every child
must have value 1. Rule B3 indicates that if an A node has value 0 and all but one child
have value 1, the remaining child must have value 0. Successful application of a backward
inference rule to a node causes queuing of any child whose value changes and is not already
on the queue. Any other parent of a child whose value changes is also queued, unless it is
already in the queue.

Figure 14 shows an example of how the redundancy test can prove that two formulas
x and y are ordered x < y. This example was adapted from one that can actually occur
during the symbolic analysis of a MOS circuit, demonstrating the need for a sophisticated
redundancy test. The figure does not show the descendants of the nodes labeled with op-
eration op, as they are not required to prove redundancy. This example arises when a back
substitution step of Gaussian elimination requires an evaluation of the form y < zVy. As a
result of the successful redundancy test, formula y remains unchanged, yielding a significant
simplification. For purpose of discussion, each node is labeled with an identifying letter to
its left. The initial values assigned to the nodes are shown to their right. The queue initially
contains nodes a, d, and c. The search proceeds by the series of steps shown in Table 1. It
terminates once a conflicting labeling is found at node e.

The following analysis of the search algorithm shows that it has linear complexity, as
measured in the total number of branches in the DAG. The search only queues a node when
the value on the node, one of its parents, or one of its children changes from X to 0 or 1. Each
branch in the DAG can cause the nodes on either end to be queued at most once. Therefore,
the total number of queuing operations cannot exceed twice the number of branches in the
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Figure 14: Redundancy Search Example. The search proves that formula z is redundant
with respect to formula y. Nodes are labeled by their values at the start of search and by

letters for discussion in the text.

Step | Node | Rule | Changed Nodes | New Value | Queued Nodes
1. a | Bl |bnh 1 b, h
2. d B2 e, 0 e,
3. c F3 c 0
4. b B4 g 1 g
5. h none
6. e C1

Table 1: Inference Sequence for Redundancy Search Example. The search finds a
contradiction at node e.

DAG. The set of inference rules can be applied to a node in constant time, if counts are
maintained for each node specifying the number of children with value 0, 1, and X. Hence
the algorithm has time complexity linear in the DAG size. Furthermore, the constant of
proportionality is quite small.
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Graph Initial Labelings
!

Figure 15: Example System of Equations.

However, since the search must be initiated once for each argument every time a Boolean
operation is performed, the total time spent searching for redundancies can become quite
large. Our implementation controls the time spent searching in 2 ways. First, the search
need only consider nodes that are descendants of the nodes in the argument list A. The
program avoids visiting extraneous nodes by keeping the value fields of the nodes initialized
to a special value indicating “unreachable.” Before a search begins, the program traces
all descendants of the nodes in A and sets their values to X. The search then only visits
nodes with values X, 0, or 1, and upon termination resets all nodes to “unreachable”. This
constraint will not reduce the success rate of the search. Second, the search proceeds in
breadth-first order (by using a first-in, first-out queueing discipline), and can be constrained
to give up once it reaches a specified depth. This constraint reduces the success rate of the
search, but eliminates cases requiring extensive search having little chance of success. With
appropriate constraint, experience indicates that this approach to redundancy testing yields
significant simplifications for a reasonable computational effort.

It must be emphasized, however, that the redundancy test is not complete. For example,
it will recognize that a A (bV d) is redundant with respect to (a A b) V (a A d), but not vice-
versa, even though the two expressions are equivalent. The algorithm could be extended
to one that detects all redundant cases by adding combinatorial search and backtracking.
However, this could greatly increase the computational effort, especially considering that in
most cases the redundancy test will fail.

7 Symbolic Analysis Example

As with many algorithms designed for computer implementation, this analysis method
is very tedious to execute by hand. For systems of significant size, the DAG becomes far
to large to draw. Small systems, on the other hand, lend well to exhaustive path analysis.
Hence it is hard to demonstrate the advantages of our method with an example. With these
limitations in mind, several useful insights can be gained from a simple example.
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Figure 16: Elimination Steps for Example System.

Figure 15 shows the graph corresponding to a bridge network with source terminal «.
In this example, the edge labeling is symmetric: A(u,v) = A(v,u), and hence the system
structure can be represented by an undirected graph. The steps of Gaussian elimination
preserve this symmetry, and a straightforward modification of the elimination code reduces
the number of operations by almost a factor of 2. Figure 16 shows the sequence of labelings
produced by the successive elimination steps. For readability, the Boolean formulas were
simplified by hand and are shown without A symbols. The back substitution steps yield:

z(y) = bVacVade

z(#) = aVbeVbde

2(6) = adVbedV beV ace
rla) = 1

Figure 17 shows the complete DAG produced in analyzing this system. For readability,
the branches to nodes representing variables are indicated by the variable names. This
DAG looks very complex, and it is difficult to verify that it correctly characterizes the
network. Observe, however, that this representation of the formulas involves only 10 Boolean
operations. The formulas derived by hand simplification appear much more readable, but
they require a total of 11 Boolean operations. Furthermore, under the binary cost model, (a
better measure of the evaluation cost for a set of formulas), the DAG has cost 11, whereas
a straightforward implementation of the hand-derived formulas has cost 19. Only with
considerable effort can the hand-derived formulas be transformed into ones involving a total
of 11 binary operations. This example shows that our method produces results that are very
compact although difficult for humans to read. Compactness counts more for results that
are used by other computer programs.

& Conclusion

This paper has shown that a careful choice of algorithm and data structures yields a far
more efficient solution than does a naive approach. Furthermore, by casting the problem in
terms of systems of equations, the wealth of knowledge that has accumulated about solving
linear systems could be applied.



Symbolic Switch Network Analysis 25

/N /N

Figure 17: DAG Produced in Analyzing Example Network. Although appearing
more complex than the formulas derived by hand, the DAG representation is actually more
compact.

The symbolic analysis technique described in this paper has a wide range of applications
beyond switch networks. Direct methods such as Gaussian elimination are examples of obliv-
tous algorithms. That is, the control sequence depends only on the graph structure of the
system to be solved and not on the data values.® In contrast, iterative methods perform
data-dependent branches when testing for convergence or when deciding which vertex to
update next. Any oblivious algorithm can be executed symbolically to yield some explicit

3Although data-dependent pivoting may be required when solving linear systems for numerical reasons.
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representation (e.g., a DAG) of the output generated by the program for all possible input
data. Such a preprocessing step can yield a significant performance advantage in applica-
tions that must evaluate many systems sharing a common structure but differing in data
values. Furthermore, the representation generated by symbolic analysis can be executed by
hardware that supports only the operations of the underlying algebra, rather than general
purpose computation. Hardware that supports only restricted domains such as Boolean
operations can achieve very high performance at a reasonable cost. Problems that can be
solved by Gaussian elimination and hence are amenable to symbolic analysis include: lin-
ear systems, shortest path calculations, bottleneck flow path calculations, and conversion of
finite automata to regular expressions [16].

Solving path problems by Gaussian elimination becomes especially attractive as com-
puters with parallel processing capabilities become available. The “greedy” pivot selection
rule presented here gives very good results in terms of the total size of the formulas. If the
results are to be executed on machines that support high degrees of parallelism, however, the
potential concurrency allowed by the formulas should be maximized as well. As the DAG
of Figure 17 illustrates, greedy pivot selection tends to yield “long, skinny” formulas with-
out much potential for concurrent evaluation. On the other hand, pivot selection based on
nested dissection [23, 35] yields “short, fat” formulas, many terms of which could be evalu-
ated simultaneously. In particular, the family of GSP graphs satisfies a 2-separator theorem,
meaning that it is always possible to find 2 vertices whose removal would split the graph into
two GSP graphs of roughly equal size. For such graphs, nested dissection yields formulas
with O(n) operations, although the constant of proportionality would be somewhat higher.
However, the formulas also have maximum depth O(log n), giving sublinear evaluation times
if sufficient resources are available. Various other graph classes lead to formulas with sub-
linear maximum depth. In contrast, no iterative method can give sublinear performance for
the graph structures of interest regardless of the processing hardware.

Symbolic analysis, as presented here, simply transforms one description of a Boolean
computation into another, that is from a switch network to a set of formulas. Some ap-
plications, such as proving two networks equivalent or that a network implements a given
function, require stronger results. These problems are NP-hard [18], and many believe ef-
ficient algorithms for such tasks do not exist. However, several approaches yield practical
results in many instances. One approach uses a different representation of Boolean functions
that makes equivalence testing more straightforward. The author [36] has devised a repre-
sentation based on a different type of directed acyclic graph that is canonical, i.e., a given
function has a unique representation. Equivalence testing then becomes a simple matter of
testing whether two graphs match exactly. Furthermore, many of the functions encountered
in logic design applications are represented by reasonably small graphs. Symbolic analysis
could also be performed using these graphs as the underlying data structure for representing
Boolean functions, yielding a canonical description of the network function.
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A Proofs of Theorems

A.1 Systems of Boolean Equations

Theorem 1 Any Boolean system [A,b] has a unique solution x given by the limit to the
sequence x*, where 2°(v) = 0 for all v, and J}Z(U) is deﬁned for all v > 0 and all v as:

) = b)) v\ () A AG)] (4)

(w, ’U)EE

Proof : First, we will show by induction on 7 that ' < 2*+'. The basis clearly holds, because
2%(v) = 0 < z'(v). Assuming by induction that z‘(u) = z'(u) V 2'~}(u) for any vertex u,

expanding Equation 4 for 2! and separating terms gives

) = by v\ ([ () Ve T W) A Afu,v))

(uw,v)eE

= [bv)V V [2'(u) AAu v)]] V [b(v) Voo [ (w) A A(u,v)]

(w, ’U)EE

= 2*F(v)Vz'(v).

Thus, the sequence is nondecreasing. Since the domain B is finite, there must be some value
k such that 2* = 2%+ * From Equation 4 and by induction on 4, it is easy to see that 2* = !
for all + > k, and consequently the sequence converges to a unique value. Furthermore, this
vertex labeling clearly satisfies the system [A, b].

Now suppose that some other labeling y satisfies the system [A,b]. We will show by
induction on 7 that y > ' for all 7. Clearly y(v) > 0 = 2°(v), and hence the basis condition
holds. Now suppose that z'~!(u) Vv y(u) = y(u) for every vertex u. Then

y(v) = b)v /([ () Vy(w)] A Au,v))

(uw,v)eE

= |bo) v\ [ w) A Ay, v)]] v [b(v)v V [y(u)AA(uvv)]]

(w, ’U)EE

= (v) V(o)

for every vertex v, indicating that y > z'. Hence any labeling that satisfies [A,b] must be
greater than or equal to the limit of the sequence.

d
Theorem 2 If x(v) is defined for all v €V as

RERERVIRY [bw(A A

'U«GV pePu,v 7t)ep

4n fact, & must be less than n.
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then x is the solution of the system [A,D].

Proof: First, we will show that x satisfies the system. Any path p € P,, must consist of
either a single vertex (only in the case where v = v), or a path p’ € P,, followed by the
edge (w,v). Hence, Equation 5 can be expanded as

z(v) = bv)v (\/ \/ [b(u)/\ N As,t) /\A(w,v))

(w,v)EE ueV p'EPu,w (s,t)Ep’
= b(v) v \/ [z(w)A A(w,v)].
(w, ’U)EE

Replacing w by u in the final summation gives

z(v) = b))V \ [#(u) A A(u,v)]

(w, ’U)EE

showing that x satisfies [A, b].

Second, for any path p to vertex v containing ¢ edges, and any vertex labeling y satisfying
[A, b], we will show by induction on ¢ that the effect of this path is less than or equal to y(v).
That is, if p € P, ,, then

wy A N\ Ast) < y(v).
(s,t)ep

The basis case clearly holds, because a path to v containing 0 edges must originate at v, and
b(v) < y(v) by Proposition 5. Now assume for ¢ > 0 that the induction assumption holds
for any path with ¢ — 1 edges. A path from u to v containing ¢ edges must consist of a path
p' from u to some vertex w containing ¢ — 1 edges followed by the edge (w,v). Applying the
induction assumption to p’, rearranging terms, and applying Proposition 1, gives

N A(w,v)

uy A N\ Alst) = [b(u)/\ N As,t)

(s,t)€p (s,t)ep’

< y(w) A A(wv U)

IA
PN
=
<
<
>
=
<
=

= y(v).

Since this result holds for all paths to v, Proposition 2 shows that it must hold for their sum.
Hence z is the minimum vertex labeling satisfying [A, b].

d

Theorem 3 x is the solution of the system [A,b] if and only if T is the solution of the dual
system [A, b)Y

Proof: DeMorgan’s Laws can be generalized to the following rule for complementing a
Boolean formula:
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Complement every variable, replace every A by V, every V by A, every 0 by
1, and every 1 by O.

From this rule, we can see that the conditions for a labeling y to satisfy system [A,b] are
identical to those for 7 to satisfy the the dual system [A, b]”. Furthermore, if z < y for all
y in some set Y, then T > 7 for all y € Y, and vice-versa. Therefore, the minimum labeling
satisfying [A, b] must equal the complement of the maximum labeling satisfying [A, b]”, and
vice-versa.

O

A.2 Gaussian Elimination

Theorem 4 The Gaussian elimination algorithm of Figure 1 solves the system [A,b].

Proof: The key idea of the proof is to show that each time a vertex v; is eliminated, a
modified system [A;, ;] is created over (V;, F;) such that the solution of this system equals
the solution of the original for all v € V;. Assume for simplicity that there are no edges of the
form (v,v) in K. It can easily be shown that removing such edges will not alter the system
solution. Furthermore, the elimination code does not add any such edges as fill-in. We also
adopt the convention that A(u,v) = 0 whenever (u,v) ¢ F, and similarly that A;(u,v) =0
whenever (u,v) € E;. Under these two conventions, Equation 1 can be written in two ways:

x(v) = )V oV [z(u) A Au, v)]
(6)
= b(v) V \/{ }[:zj(u) A A(u,v)].

Define the system [Ag, bo] over the graph (Vg, Fo) as Ag = A and by =b. Forn > > 1
define the system [A;, b;] over the graph (V;, F;) as

Ai(u,v) = Ais1(u,v) V [Aisi(w,0) A Aimq (v, 0)] (7)

and
bZ(U) == bi_l(U) vV [bi—l(vi) A Ai_l(UZ',U)]. (8)

Observe that the definition of A; preserves the property that A;(u,v) =0 when (u,v) ¢ F;,
because F; is guaranteed to have an edge (u,v) if both (u,v;) and (v;,v) are in F;_.
For 1 <1 < n, define the labeling x;_; over the vertices of V;_; as:

i—1(v;) V u) N Aisr(u,v)], v=1;
l’i_l(U) == { uE/V (9)

zi(v), veV

Note that V,, = @), and hence x,,_; is well defined. It can also be seen that the labeling x
produced by the code of Figure 1 equals the labeling xq defined by Equation 9 for : = 1.

We will show by induction on 7 (starting from n — 1 and working downward) that «; is the
solution of the system [A;, b;]. Clearly x,,_; is the solution of [A,,_1,b,_1], because Equations
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6 and 9 both reduce to @,-1(v,) = byp—1(v,). Assume that z; is the solution of the system
[A;, b;]. We must show that x;_; satisfies the system [A;_1,b,_1], and that z;_; < y for any
other labeling y satisfying this system.

For v € V,, given that x; satisfies [AZ', by, :1;(1)) can be expanded using Equation 6 as

zi(v) = )V \/ u) A\ Ai(u,v)].

The definitions for b;(v) and A;(u,v) can then be substituted to give
J}Z(U) == bi_l(U) vV [bi—l(vi) /\Ai_l(UZ',U)] vV

\/ [a(u) A (Aisi(,0) V[ A (u,0:) A A (v:,0)])]-

ueV;
Rearranging terms gives

zi(v) = )V \/ u) N Ai—1(u,v)] Vv

ueV;

ueV;

[( i—1(v) VO [@i(u) A Aiza (v, vl)]) A Ai_l(vi,v)]

Substituting the definition for z;_y gives
ri—1(v) = xi(v) = )V \/ i (u) AN Aisi(u,v)] Vo Jrioa(v) A Aisi (v, )]

ueV;

= bi_1(v) V \/ [2i—1(u) A Ai—q1(u,v)]

ueVi_
For v = v;, we can substitute x,_;(u) for :I;Z(u) in Equation 9 giving

wi—l(Ui) == bi—l(Ui) vV \/ [l’i_l(u) A Ai_l(u,vi)].
u€V;
Combining these two cases we see that x,_; satisfies [A;_1, b;,_1].

Now suppose that a vertex labeling y defined over V;_; satisfies the system [A;_1,b;_1].
Define the labeling 3’ over V; as y'(v) = y(v) for all v € V;. We will first show that y’ satisfies
the system [A;, b;], and therefore by the induction assumption that @;_1(v) = x;(v) < y'(v) =
y(v) for all v € V;. Then we will show that x;_1(v;) < y(v;), thereby completing the proof
that x;_1 < y. For v # v;, expanding y(v) using Equation 6 and substituting the definition

of y' gives
y'(v) = ylv) = bi_i(v) V [y(vi) A Aii (v, 0)] V \/ u) A A (u,v)].
ueV;
Expanding y(v;) using Equation 6 gives
y'(v) = bi—1(v) V [bi—1(vi) A Aizq(vi,v)] V
\/ [y (u) A Aici(w,v) A Ay (v, 0)] V \/ YA Az (u,v)].

ueV; ueV;
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Combining terms and substituting the definitions of b; and A; gives

y'(v) = bi(v) v\ [y (u) A Aiu,v)].

ueV;

Therefore y' satisfies the system [A;, b;]. For v = v;, we can assume that a;_;(u)Vy(u) = y(u)
whenever A;_;(u,v;) # 0. Hence, y(v;) can be expanded by Equation 6 as

y(v) = bia(v) vV (xu V()] A Aisi(u,v))

u€Vi_

= bi—l(Ui) vV \/ [l’i_l(u) A Ai_l(u,vi)]] vV

bi—1(v;) V \/ u) N A (u, v)]]

ueVi_
= zi1(v) Vy(v),

and hence x;_1(v;) < y(v;). Thus we have shown that x,_; < y for any y satisfying the system
[Ai_1,b;_1], completing the inductive proof that z; is the solution of the system [A;,b;]. We
have therefore proved the correctness of the algorithm, because the systems [A, b] and [Ag, b
are identical, and the labeling x returned by the algorithm equals zq.

|

Theorem 5 A system of equations defined on a graph can be solved by Gaussian elimination
such that no vertex has elimination degree greater than 2 if and only if the graph is general
series-parallel.

Proof: Assume the graph (V, E) is constructed by a sequence of productions obeying the
rules of Figure 3. Suppose the final step involves adding vertex w and one or more edges
to the graph (V’, E’) and possibly deleting an edge. Then vertex w has degree less than or
equal to 2 in (V, ). Furthermore, if w is selected as a pivot in Gaussian elimination, the
resulting elimination operations will yield the graph (V’, E’). This graph is also GSP, and
hence the process can be continued until all vertices are eliminated.

Conversely, suppose Gaussian elimination can be performed for a system defined on
the graph (V, E) such that no vertex has elimination degree greater than 2. Then with
the graph (V,—1, F—1) as the basis, where V,,_; = {v,} and E,_; = (), we can construct
the graph (V, E) by a sequence of production rules, adding vertices in the reverse of their
elimination order. If vertex v; has a single neighbor v in (V,_1, E;_1), then graph (Vi_1, F;_1)
is constructed from (V;, F;) by applying the Acyclic Branch rule with w = v;. If vertex v; has
two neighbors u and v in (Vi_1, F;_1), then graph (Vi_1, F;_1) is constructed from (V;, E;) by
applying either the Series or the Parallel-Series rule with w = v;, depending on whether or
not (u,v) € F;_1. This process proceeds until it reaches (Vo, Fo) = (V, F).

O
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