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Abstract

A network of switches controlled by Boolean variables can be represented as a
system of Boolean equations� The solution of this system gives a symbolic description
of the conducting paths in the network� Gaussian elimination provides an e�cient
technique for solving sparse systems of Boolean equations� For the class of networks
that arise when analyzing digital metal�oxide semiconductor �MOS� circuits� a simple
pivot selection rule guarantees that most s switch networks encountered in practice can
be solved with O�s� operations� When represented by a directed acyclic graph� the set
of Boolean formulas generated by the analysis has total size bounded by the number of
operations required by the Gaussian elimination� This paper presents the mathematical
basis for systems of Boolean equations� their solution by Gaussian elimination� and data
structures and algorithms for representing and manipulating Boolean formulas�
Keywords and phrases� switch networks� symbolic analysis� MOS circuit analysis�
Gaussian elimination� series�parallel graphs� Boolean manipulation�

� Introduction

The advent of metal�oxide semiconductor �MOS� circuit technology has revived interest in
analyzing networks of switches� This �eld originated when digital circuits were constructed
with electromechanical relays� Shannon� in the �rst application of Boolean algebra to digital
systems� developed several techniques for analyzing a switch network symbolically��	� For a
network of switches� each of which is either open or closed depending on the value of some
Boolean variable� the goal of symbolic analysis is to derive formulas expressing the conditions
under which conducting paths will exist between speci�ed pairs of terminals��
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�Shannon characterized a network by its �hindrance� function� with logic value 	 indicating the absence

of any path
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AMOS transistor can often be abstracted as a switch�it conditionally forms a connection
between its source and drain nodes depending on the voltage on its gate node� Several models
of static logic gates in MOS treat transistors as simple switches and de�ne the behavior of
a gate in terms of the conditions under which a conducting path is formed from the supply
or ground to the gate output�
� �� 
	� More complex MOS models take into account such
e�ects as resistance ratios� dynamic memory� and invalid or uninitialized logic values��� �	�
A companion paper ��	 shows that even with these more elaborate models� the behavior of a
MOS circuit can be determined by analyzing a series of switch networks� Thus the symbolic
analysis of switch networks remains as a key problem in deriving an abstract representation
of the function computed by a digital circuit�

The demands placed upon symbolic analysis have changed greatly since the days of relay
circuits� These circuits were relatively small� and the analysis was performed manually�
Under these conditions� the asymptotic performance of the method matters less than its
conceptual simplicity� For example� Shannon describes a method that involves enumerating
every possible simple path between two terminals� forming the Boolean product of the switch
labels in each path� and then forming the Boolean sum of these path formulas� In general�
the number of simple paths in a network can grow exponentially with the number of switches
�e�g�� the parity ladder shown in Figure ��� Consequently� path analysis cannot be applied
to networks of signi�cant size� Furthermore� there was no concern about data structures and
algorithms for representing and manipulating Boolean formulas� Even more recent methods
based on matrix representations��	 do not address these algorithmic issues�

Today symbolic analysis methods are to be executed by computers on networks contain�
ing thousands of switches� To implement an analyzer� every detail of representation and
algorithm must be speci�ed� Success must be measured by worst or average case complexity
rather than by performance on small examples� Unfortunately� the state of the art in sym�
bolic analysis has not kept up with these demands� For example� most published symbolic
analysis methods for MOS circuits start by enumerating all possible simple paths in the
network��� ��� ��	� A second method involves enumerating the possible sets of connected
components formed in the switch network for di�erent values of the control variables ��
	�
This approach can also produce a description of size exponential in the number of transistors�
These accounts indicate little progress since Shannon�s day�

In general� a MOS circuit can be partitioned into smaller subnetworks and each subnet�
work analyzed separately� Most of these subnetworks are small�containing no more than ��
transistors� Hence� one can argue that even an algorithm of exponential complexity can work
well in practice� However� subnetworks containing over ���� transistors commonly occur in
large pass transistor and datapath circuits� A program for general use cannot rely so heavily
on a particular circuit style to achieve tolerable e�ciency�

This paper proposes a far more exacting standard for symbolic analysis� that the size of
the symbolic description should be comparable to the size of the original network� That is�
a network of s switches should be represented by a set of formulas containing� in total� O�s�
Boolean operations� This paper shows how to achieve this goal for most networks arising
in the analysis of MOS circuits� Even for the dense pass transistor circuits that lead to a
nonlinear complexity� the method produces a description of size O�s����� This performance
results from a combination of several techniques�
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� A network is represented by a system of Boolean equations� This system expresses the
e�ects of all paths in the network but lends itself to solution methods of polynomial
complexity�

� The system of equation is solved symbolically by Gaussian elimination� A simple
heuristic for selecting pivots guarantees that most practical networks of s switches can
be solved with O�s� algebraic operations�

� The set of Boolean formulas is represented by a directed acyclic graph �DAG�� with
each DAG node specifying a Boolean operation to be applied to its children� and with
each leaf denoting a variable or constant� This representation naturally allows sharing
of common subexpressions� The number of nodes in the DAG is bounded by the
number of algebraic operations required during Gaussian elimination�

� Expression simpli�cation techniques are applied to the DAG but only in ways that
reduce the size of the DAG even further�

The algorithm presented is e�cient in terms of execution speed as well as the size of the
result produced�

The formulation of the switch network analysis problem used in this paper is tailored to
the particular needs of the MOS circuit analysis method presented in the companion paper�
It di�ers from the classic formulation in the following respects�

� The control signals of switches can be arbitrary Boolean formulas� not just variables
or their complements�

� Switches are directed�the conduction conditions from one point to another can di�er
from those in the reverse direction�

� The analysis does not compute the conduction conditions between speci�ed pairs of
terminals� Instead� each node is given an initial value represented by a Boolean formula�
A path is viewed as having an �e�ect� on its destination node equal to the Boolean
product of formulas representing the initial value on the source node and the control
signals of the switches� Symbolic analysis derives a formula for each node describing
the Boolean sum of the e�ects of all paths to the node�

� The analysis may need to characterize the absence rather than the presence of con�
ducting paths�

Each of these di�erences represents only a slight generalization of the original problem with�
out increasing its complexity� The requirement for directed switches may seem counterintu�
itive given that MOS transistors are fully bidirectional devices� However� the MOS analyzer
accounts for signals of varying strength �representing di�erent driving admittances� by as�
signing di�erent labels to the two directed edges representing a transistor�

This paper presents some new results on the e�ciency of Gaussian elimination for solving
systems of equations de�ned over general series�parallel graphs� Otherwise� it contains little
that has not been presented in some form elsewhere� However� material has been drawn






from a diversity of disciplines� including switching theory� graph theory and algorithms�
linear systems� optimizing compilers� and symbolic manipulation� In many cases� ideas or
techniques are applied in ways much di�erent from those conceived by their developers� Few
practitioners in the �eld of computer�aided design are well versed in all of these disciplines�
Furthermore� other presentations of methods for solving path problems in graphs have been
in terms far more general� abstract� and harder to understand� The main contribution of this
paper is to synthesize a collection of ideas into a single framework for solving an important
problem�

Sections 
�
 present a mathematical description of the symbolic analysis problem in
terms of systems of equations de�ned over a Boolean algebra� It parallels previous work
on the symbolic analysis of contact networks ��	� and more general algebraic formulations
of path problems ���� �
� ��� ��	� The presentation di�ers from previous ones in several
respects� First� Boolean algebra is selected as the domain of interest� This gives properties
that more general presentations cannot assume� including a �nite� partially ordered domain�
and an idempotent sum operation� In addition� systems of equations are expressed in terms
of labeled graphs rather than with matrix algebras� Graphs more clearly capture the sparse
structure of the problem to be solved and directly map into data structures for e�cient al�
gorithms� Section � describes how a system of Boolean equations can be solved by Gaussian
elimination� A combination of formal and empirical arguments shows that most networks
arising when analyzing MOS circuits can be solved with a linear number of operations using
a simple pivot selection rule� This result could prove useful for other circuit analysis pro�
grams such as circuit�level simulators� Section � describes data structures and algorithms
for representing and simplifying Boolean formulas� Section � presents an example showing
some strengths and weaknesses of the method� and Section � summarizes the results�

� Symbolic Algebra

Symbolic analysis derives formulas that express conditions under which conducting paths
are formed in a network of switches� Such formulas are concrete� syntactic representations
of Boolean functions� Several formulas may represent a single function� In mathematical
terms� the analyzer computes over a domain consisting of the set of all functions mapping a
set of p variables �describing the control signals on the switches� to the set f�� �g� i�e��

B �
n
f � f�� �gp � f�� �g

o

In the Boolean algebra of the analysis hB����������i the operations �� �� and � denote
Boolean and� or� and not� respectively� applied to functions� The distinguished elements �
and � denote the constant functions that yield � and �� respectively� for all argument values�
This process of abstracting from a primitive domain of Boolean values to one of functions
over these values forms the basis of symbolic analysis� Most algebraic properties carry over
from the original domain to the abstract one�

The Boolean product of the elements in a set A is denoted
V
a�A a� The product of an

empty set is de�ned to equal �� Similarly� the Boolean sum of the elements in a set A is
denoted

W
a�A a� The sum of an empty set is de�ned to equal ��
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Elements of B are partially ordered as b � a when b�a � a� i�e�� by their lattice ordering
�
� ��	� This partial ordering obeys the following properties� as can easily be derived from
the laws of Boolean algebra�

Proposition � For any b � A

b �
�
a�A

a

Proposition � If b � a for all a � A then

b �
�
a�A

a�

Proposition � If a � b� then �b � �a�

Proposition � b � a if and only if b � �a � ��

� Systems of Boolean Equations

Just as a resistor network can be represented by a system of linear equations� so a switch
network can be represented by a system of equations in which � and � replace addition and
multiplication� respectively� This section develops the theory of such systems in terms of
labeled graphs and then shows how the switch network analysis problem can be formulated
in these terms� In this discussion� �V�E� is a �nite� directed graph with vertices V and edges
E 	 V 
 V � where jV j � n�

De�nition � A vertex labeling x is an assignment x�v� � B to each vertex v � V �

Two vertex labelings x and y are partially ordered x � y when x�v� � y�v� for all v � V �

De�nition � An edge labeling A is an assignment A�u� v� � B to each edge �u� v� � E�

De�nition � A system of Boolean equations �A� b	 consists of an edge labeling A and a

vertex labeling b�

De�nition � A vertex labeling x satis�es the system �A� b	 when

x�v� � b�v� �
�

�u�v��E

�x�u� �A�u� v�	 ���

for every v � V �

Observe that unlike the usual formulation of systems of linear equations �Ax � b�� the
unknown x appears on both the left and right hand side of Equation �� In a matrix notation�
this equation would have the form x � b �Ax� This departure from convention is forced by
the fact that the domain has no inverses under ��

The following property follows directly from the above de�nition and Proposition ��
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Proposition � If x satis�es a system �A� b	� then x � b�

In general� many labelings can satisfy a system of equations� For example� any vertex
labeling satis�es the system �I� z	 de�ned over a graph with all edges of the form �v� v��
where I�v� v� equals � and z�v� equals � for all v� We focus our attention on a particular
one� considered the �solution� of the system�

De�nition � Vertex labeling x is a solution of the system �A� b	� when

�� it satis�es the system� and

�� x � y for any labeling y satisfying the system�

By this de�nition� a system can have at most one solution� In fact� we can show that any
system has exactly one solution�

Theorem � Any Boolean system �A� b	 has a unique solution x given by the limit of the

sequence xi� where x��v� � � for all v� and xi�v� is de�ned for all i � � and all v as�

xi�v� � b�v� �
�

�u�v��E

�xi���u� �A�u� v�	� �
�

A proof of this theorem is given in Appendix A� based on the following series of arguments�
First� the sequence satis�es xi � xi�� for all i and therefore converges� Second� the value
to which the sequence converges satis�es the system� Finally� for any labeling y satisfying
the system� xi � y for all i� Therefore� the sequence converges to the minimum labeling
satisfying the system�

A system of Boolean equations de�nes a path problem as follows� Let Pu�v denote the
set of paths from vertex u to vertex v� A path contributes an �e�ect� to its destination
vertex equal to the Boolean product of labels on its source vertex and edges� The net e�ect
at a vertex is given by the Boolean sum of the e�ects of all paths having this vertex as
destination� The solution of a Boolean system yields the vertex labeling giving the net e�ect
at each vertex as is expressed in the following theorem�

Theorem � If x�v� is de�ned for all v � V as

x�v� �
�
u�V

�
p�Pu�v

�
�b�u� �

�
�s�t��p

A�s� t�

�
� ���

then x is the solution of the system �A� b	�

A proof of this theorem is shown in Appendix A based on the following series of ar�
guments� First� x satis�es the system �A� b	� Second� for any path p to vertex v and any
labeling y satisfying the system� the e�ect of path p is less than or equal to y�v�� Therefore�
the combined e�ects of the paths to every vertex must equal the minimum labeling satisfying
the system�
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Theorem 
 shows how to formulate the classical switch network analysis problem as one
of solving a system of Boolean equations� For example� consider a switch network with a
designated source terminal s� Let the graph �V�E� have the nodes of the network as vertices�
and have an edge �m�n� for each pair of nodes m and n connected by a switch� Let edge
labeling A�m�n� equal the Boolean sum of all signals controlling switches connecting nodes
m and n� De�ne the vertex labeling b as b�s� � �� and b�n� � � otherwise� Then the solution
of the system �A� b	 is a vertex labeling x where x�n� describes the conditions under which a
conducting path will form from s to node n�

� Dual Systems

Some applications require formulas expressing conditions for the absence of any conducting
path between terminals of a switch network� Such formulas could be obtained by �rst solving
a system expressing conditions for the presence of paths and then complementing the solution
values� These negation operations� however� complicate the task of simplifying the formulas�
Alternatively� the formulas can be derived directly by solving a dual system in which the
roles of � and � are interchanged� The mathematical basis for this technique stems from
DeMorgan�s Laws�

De�nition � A dual system of Boolean equations �A� b	D consists of an edge labeling A and

a vertex labeling b�

De�nition 	 Vertex labeling x satis�es the dual system �A� b	D when

x�v� � b�v� �
�

�u�v��E

�x�u� �A�u� v�	

for every v � V �

As before� only one vertex labeling is considered to solve a dual system� but this time
the maximum one is selected�

De�nition 
 Vertex labeling x is a solution of the dual system �A� b	D� when

�� it satis�es the system� and

�� x � y for any labeling y satisfying the system�

De�nition � The complement of vertex labeling b� denoted b� is a vertex labeling with b�v� �
�b�v� for all v � V �

De�nition �� The complement of edge labeling A� denoted A� is an edge labeling with

A�u� v� � �A�u� v� for all �u� v� � E�

Theorem � x is the solution of the system �A� b	 if and only if x is the solution of the dual

system �A� b	D�



�

The proof of this theorem is given in Appendix A� It involves a straightforward applica�
tion of DeMorgan�s Laws�

From this theorem� the role of dual systems in expressing the absence of paths becomes
clear�

Corollary � If x is the solution of the dual system �A� b	D� then

x�v� � �
�
u�V

�
p�Pu�v

�
�b�u� �

�
�s�t��p

A�s� t�

�
�

� Equation Solution

The equations of the preceding section give an implicit representation of the network func�
tion� Symbolic analysis derives explicit formulas by solving these equations� The following
presentation describes the solution of normal systems� Dual systems are solved similarly by
interchanging the roles of � and �� as well as those of � and ��

As Equation 
 suggests� a simple� iterative method can solve a Boolean system �A� b	�
Although this method lacks e�ciency� it aids in understanding more advanced methods�
Starting with x�v� � b�v� for each vertex v� the iterative method �propagates� values from
a vertex v through an edge �v� u� to the adjacent vertex u� and combines this value into the
value already on vertex u� That is� each step involves a computation of the form

x�u� � x�u� � �x�v�� A�v� u�	�

Ultimately� this process converges to a solution� However� an iterative method must either
test the solution for convergence� i�e�� that �x�v��A�v� u�	� x�u� for all �v� u� � E� or it must
perform enough iteration steps to guarantee that for every simple path in the graph� the value
on the source vertex has been propagated through the edges of the path to the destination
vertex� The �rst method requires solving the NP�hard problem of testing Boolean formulas
for equivalence ���	� while the second requires ��jV j � jEj� steps� except for restricted graph
structures ���	�

��� Gaussian Elimination

Gaussian elimination provides the most e�cient known method for solving sparse Boolean
systems� where Boolean operations replace the real arithmetic used when solving linear
systems ���� 
�	� Figure � shows a sketch of the Gaussian elimination algorithm� The code
has two parts� forward elimination and back substitution� Forward elimination successively
modi�es the system structure� each time eliminating a vertex and all incident edges� and
possibly adding edges between some remaining vertices� These structural modi�cations give
Gaussian elimination its performance advantage over iterative methods� Eliminating a vertex
vi �termed the �pivot�� involves updating the value of b�v� for each uneliminated neighbor
v of vi� Then for each pair of uneliminated neighbors u and v� the value of A�u� v� is
updated� This may require adding a new ��ll�in� edge to the graph if �u� v� does not already
exist� During back substitution� the vertices are processed in the reverse of their elimination
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f Forward elimination g
V� � V � f The uneliminated vertices g
E� � E� f The original edges plus �ll�in�sg
for i � � to n do
begin

choose vertex from Vi�� and call it vi� f Select pivot g
Vi � Vi�� 
 fvig�
Ei � Ei�� � �Vi 
 Vi	�
for each v � Vi such that �vi� v� � Ei�� do
begin

b�v� � b�v� � �b�vi� � A�vi� v�	�
for each u � Vi such that �u� vi� � Ei�� and u �� v do
begin

if �u� v� � Ei

then A�u� v� � A�u� v� � �A�u� vi� �A�vi� v�	
else begin

f Create �ll�in edge� g
Ei � Ei � f�u� v�g�
A�u� v� � A�u� vi� �A�vi� v�

end
end

end
end�

f Back Substitution g
for i � n step 
� to � do
begin

x�vi� � b�vi��
for each u � Vi such that �u� vi� � Ei�� do

x�vi� � x�vi� � �x�u� �A�u� vi�	�
end

Figure �� Gaussian Elimination Algorithm� The code di�ers from the conventional
presentation in that it uses graph notation and substitutes Boolean for numerical operations�
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ordering� For each vertex vi� the value of x�vi� is computed in terms of b�vi� and the value
of x�u� for every neighboring vertex u eliminated after vi�

The code of Figure � also de�nes some notation to assist the proof of correctness and the
performance analysis� To summarize� the vertices of V are labeled v�� � � � � vn in the order they
are eliminated� The set Vi 	 V is de�ned as the set of all vertices eliminated after vi� The
set Ei is de�ned as the set of all edges �both original and �ll�in� connecting vertices in Vi� In
the actual implementation� little of this information need be stored explicitly� Edges can be
represented by adjacency lists with �ll�in edges appended to the lists� A stack can keep track
of the elimination ordering for use in back substitution� The set of uneliminated vertices can
be represented by a priority data structure to implement the desired pivot selection rule�

Theorem � The Gaussian elimination algorithm of Figure � solves the system �A� b	�

A proof of this theorem is given in Appendix A� It involves showing that the elimination
of a vertex does not change the solution for the remaining vertices� The �nal system involves
only one vertex and is solved trivially� Each back substitution step then adds back a vertex�
computing its solution in terms of those for the other vertices�

��� Pivot Selection

The e�ciency of Gaussian elimination depends largely on the number of uneliminated neigh�
bors each vertex has as it is eliminated� Consider a graph with n vertices� Assume for
simplicity that the graph is structurally symmetric� that is �u� v� � E whenever �v� u� � E�
This requirement can be met by adding edges to the graph with labels equal to ��� With
this simpli�cation� an undirected graph describes the structure of the system to be solved�
Referring to Figure �� de�ne the elimination degree of vertex v� denoted d�v�� as

d�vi� �
���fu � Vij�u� vi� � Ei��g

����

The number of algebraic operations �� and �� for elimination is at most
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��i�n

�d�vi� � d�vi�
�	�

This formula is highly sensitive to the values of d�v�� For example� if the degrees are all
bounded by a constant� then only O�n� operations are required� On the other hand� in the
worst case d�vi� can equal jVij for all vertices and O�n�� operations are required�

The vertex elimination degrees depend greatly on the elimination order� Consider� for
example a �star� graph� such as the one shown in Figure 
� If the center vertex is eliminated
�rst� �ll�in edges are added between every pair of remaining remaining vertices� and the
algorithm requires O�n�� operations� If� on the hand� this vertex is eliminated last� we
would have d�v� � � for all v� requiring only O�n� operations�

�In fact such edges are often added to simplify the data structures� as it eliminates the need to store

explicit pointers in the reverse direction of the edges
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Figure 
� Star Graph Example� The elimination complexity of this class of graphs ranges
between linear and cubic� depending on the elimination ordering�

Acyclic Branch
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�u

� wQ
QQ

�
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Figure �� General Series
Parallel Production Rules� Any GSP graph can be generated
by starting with a single vertex and applying a sequence of these rules�

Much has been written on strategies for choosing elimination orderings� including both
empirical �
�� 

	 and theoretical �
�	 results� In general� the problem of selecting an opti�

mal ordering is NP�complete ���	� However� we would be satis�ed with a �good�� but not
necessarily optimal� ordering� and we can exploit properties of the graphs that arise in MOS
circuit analysis�

The following heuristic strategy is often cited �
�� 

	 for deciding which vertex to select
as the next pivot during Gaussian elimination�

Rule M� Choose a vertex that minimizes d�v��

This rule is an example of a �greedy� strategy� That is� it selects a pivot to minimize the
computational e�ort of the next step without regard to future eliminations� For MOS circuits�
this strategy works quite well�with only a few exceptions the resulting elimination requires
only O�n� operations� A MOS circuit maps into a �channel graph� for symbolic analysis��	�
This graph contains a vertex for each storage �i�e�� non�input� node n� and an edge �m�n�
for each pair of storage nodes m� n forming the source and drain of a transistor� In general�
this graph will contain many components� and each component is analyzed separately�

Most channel graphs describing digital MOS circuits fall into a restricted class that we
shall term �general series�parallel� �GSP�� This class extends conventional series�parallel
graphs�

	 to include those containing acyclic branches� GSP graphs can be de�ned induc�
tively starting with a single vertex as the basis� and applying the production rules illustrated
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Figure 
� Channel Graph for Complex nMOS Gate� Even though the gate has a bridge
in its pulldown network� the graph is general series�parallel�
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Figure �� Channel Graph for Shift Network� Redrawing it shows the general series�
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Figure �� Channel Graph for Section of Carry Chain� Although not GSP� no vertex
has elimination greater greater than ��
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Figure �� Channel Graph for Parity Ladder� Although not GSP� no vertex has elimi�
nation degree greater than ��
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Figure �� Channel Graph for Tally Circuit� This class of graphs has O�n�� elimination
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Figure �� Channel Graph for Barrel Shifter� This class of graphs has O�n�� elimination
complexity regardless of pivot sequence�
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in Figure �� That is� given a GSP graph containing a vertex v� a new vertex w and edge
�v�w� can be added to give a new GSP graph� Similarly� given a GSP graph containing
vertices u and v and edge �u� v�� a new vertex w along with edges �v�w� and �u�w� can be
added� The edge �u� v� is either deleted for the Series production rule or retained for the
Parallel�Series rule� We do not de�ne a pure Parallel rule to avoid creating multigraphs� It
can easily be seen that this class of graphs has signi�cance for MOS circuits� Most MOS cir�
cuits involve transistors connected series�parallel to implement logic functions and acyclically
to implement information transfer�

Figures 
 and � show examples of GSP channel graphs� Figure 
 is typical of those that
arise when analyzing complex nMOS logic gates with connected pass transistors� Note that
the graph contains no edge corresponding to the pullup transistor� since this transistor is
connected directly to an input node� The pulldown network contains a �bridge�� and hence
many would not consider this a series�parallel graph� Most presentations of series�parallel
networks assume a �virtual edge� between the top and bottom terminals �to represent the
power supply�� Switch graphs need not include such an edge� and hence the channel graph
is GSP� CMOS logic gates usually have GSP channel graphs as well� Figure � is typical
of those that arise when analyzing pass transistor shift networks� This network transfers a
set of inputs on the left to the outputs on the right shifted either ��� �� or � positions� As
normally drawn� the graph appears quite complex� However� it can be redrawn as shown
on the right� making it easier to see the GSP structure� Experience has shown that many
seemingly complex circuits have simple channel graphs�

Theorem � A system of equations de�ned on a graph can be solved by Gaussian elimination

such that no vertex has elimination degree greater than � if and only if the graph is general

series�parallel�

A proof of this theorem is given in Appendix A� It follows from the observation that the
production rules of Figure � and the graph transformations caused by eliminating a vertex
of degree less than or equal to 
 are inverses of each other� Our application requires only the
�if� part of the theorem� The �only if� part is included for intellectual interest� It shows
that only GSP graphs satisfy this bound on the maximum elimination degree�

Corollary � Gaussian elimination applied to an n vertex GSP graph with pivots selected by

Rule M requires at most �
n algebraic operations�

An n vertex GSP graph must have between n 
 � and 
n 
 � edges� Hence� this result
shows that an the analysis of an s switch network requires O�s� operations when the network
has a GSP structure�

A survey of 
 books on VLSI �
�� 
�� 
�� 
�	� plus a direct analysis of many circuit
designs has uncovered only a handful of non�GSP channel graphs� as illustrated in Figures
�� �� � and �� Figure � shows the graph for a section of the carry chain circuit from the
MIPS�X processor �
�	� Even when repeated for a number of stages� systems with this
graph have linear elimination complexity� because no vertex has elimination degree greater
than �� The same holds for pass transistor parity ladders based on a well known relay
contact network ��	� as illustrated in Figure �� In contrast� path enumeration over this
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graph gives a result of exponential complexity� while iterative methods have quadratic worst
case complexity� Graphs that arise when a circuit is created by repeating a structure in one
dimension generally have some constant upper bound on elimination degree and hence linear
elimination complexity�

The Tally network of Mead and Conway �
�	� with graph illustrated in Figure � does
not yield such favorable results� This network has the lower triangle of a square mesh as its
channel graph� For such meshes� informal experiments indicate that selecting pivots by Rule
M gives quadratic complexity� For a planar graph such as this� pivot selection by nested
dissection can solve an s switch system with O�s���� operations �
�	� In practice� however�
only small versions of this circuit are used� or restoring bu�ers are inserted for performance
reasons� Either case yields small channel graphs� and Rule M handles small graphs well� For
example� the four input tally circuit shown in the �gure has maximum elimination degree ��

A variety of pass transistor shift networks yield non�GSP channel graphs� A barrel shifter
as shown in Figure � provides the most extreme case� The channel graph for this circuit is
a complete bipartite graph� For solving such a dense system O�n�� operations are required
for any elimination ordering� Given that the number of switches s grows quadratically with
the number of nodes� however� the elimination complexity is a respectable O�s�����

Other shift networks have complexity between those of Figures � and �� For example� the
Caltech Mosaic processor ���	 has a network that passes the data either straight through�
shifted � position� or shifted 
 positions� where shifts are circular� When following Rule
M� experiments indicate that the elimination degree never exceeds �
 for such a graph�
regardless of the shifter width� Although this bound yields a solution of linear complexity� the
constant of proportionality becomes noticeably high� Fortunately� shift networks constitute
only a small fraction of the total circuitry in a full scale VLSI chip� Even subnetworks with
O�n�� elimination complexity should have little impact on the total result� Furthermore�
this polynomial worst case complexity compares favorably to the exponential complexity of
other methods�

As an aside� this analysis shows that Gaussian elimination would provide an e�cient
method for computing node voltages in a linear switch simulator such as RSIM ���	� On
the other hand� the results do not carry over as well to circuit simulators such as SPICE
�

	� When an implicit integration method is used in a circuit simulator� a conductance is
inserted across the terminals of each capacitor� This e�ectively creates a connection between
the gate� source� and drain of every MOS transistor� The resulting graphs can have far more
complex structure than channel graphs�

� Boolean Formula Representation and Manipulation

Up to this point� the presentation has intentionally remained vague as to how Boolean
formulas are represented and manipulated� In fact� there are many possible representations
o�ering a wide range of capabilities and limitations� As has been shown� most networks
arising in MOS circuit analysis require a linear number of algebraic operations to analyze�
Ideally� the Boolean formulas should be represented in such a way that the total size of the
formulas for a network preserves this linear growth� A directed acyclic graph representation
satis�es this requirement�
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Figure ��� DAG Representation of Two Formulas� The leaves denote variables and
constants� while the nodes denote Boolean operations� A formula is denoted by a pointer to
a node�

��� DAG Representation of Formulas

A directed acyclic graph �DAG� ���� �
	 resembles a parse tree� with leaves representing
either variables or constants� and with internal nodes representing Boolean operations� In
a DAG� however� a given subgraph may be shared by several branches� yielding a more
compact representation� During the analysis of a switch network� the program constructs a
single DAG having multiple roots� A formula is indicated by a pointer to some DAG node�
where the formula denoted consists of the node and all of its descendants� Figure �� shows
a DAG representing two formulas�

During Gaussian Elimination� the program can perform an operation symbolically by
simply adding a new node to the DAG with branches to the nodes representing the argu�
ments� As observed by Tarjan �
�	� the DAG produced by this method can grow no larger
than the total number of algebraic operations�

��� Formula Simpli�cation

As the example of Figure �� shows� formulas can often be simpli�ed by applying laws of
Boolean algebra� Fortunately� the DAG representation forms an ideal data structure for
performing these simpli�cations and for detecting and eliminating common subexpressions
���	� In general� the problem of reducing a formula to its simplest form is NP�hard �proving
tautology involves proving that a formula can be simpli�ed to ��� However� a large class
of simpli�cations can be expressed in terms of local transformation on the DAG� where no
transformation increases the number of nodes� This paper presents only transformations
appropriate for the formulas generated by switch network analysis� In particular� it includes
only a limited set of negation rules� because negation can only occur within the control
formulas for the switches�

The program can readily apply simplifying transformations each time an operation is
requested� That is� if some operation op �either �� �� or �� is to be applied to a list
of arguments A� the procedure applies transformations to produce a new list A�� possibly
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changing the operation to op� as well� Then the procedure checks a symbol table �e�g�� a
hash table� to see if a node with this operation and with these arguments already exists� If
not it creates a new node and stores a pointer to it in the symbol table� This method avoids
ever creating duplicate subexpressions�

��� Simpli�cation Rules

This presentation utilizes the following node representation� Associated with each node
is a type � f���������� varg� Types �� �� and � represent operations� Types � and �

represent constants� while type var represents a variable� Associated with a node x for which
type�x� � f�� �� or �g is a list of arguments Args�x�� Although the list is not technically
a set �because it is ordered and contains duplicates�� set notation is used to denote list
operations� The set of all nodes is assumed totally ordered� as can be implemented by
assigning a unique integer identi�er to each node and ordering nodes by their identi�ers�
This total ordering serves only to permit a canonical listing of all children of a node�

The steps below outline a procedure to apply operation � to a list of arguments A� where
each argument is speci�ed by a DAG node� The steps to apply � are similar� interchanging
the roles of � and �� as well as those of � and �� Each step indicates an algebraic identity
and an associated set of transformations� The steps are ordered in such a way that the
procedure need only sequence through the list once to implement the operation�

�� Associativity� �a � b� � c � a � �b � c�
For each x � A such that type�x� � �� remove x from A and add Args�x� to A� This
transformation guarantees that no node in the DAG will ever have a child of the same
type� This transformation may or may not be desirable as is discussed below�


� Commutativity� a � b � b � a

Sort the elements of A� This transformation guarantees that all nodes in the DAG will
list their children in the same order�

�� Idempotency� a � a � a

Remove any duplicate entries from A� Since the elements of A are sorted� duplicates
must appear consecutively�


� Identity� a � � � a

Remove from A any element x such that type�x� � ��

�� Annihilator� a � � � �

If A contains any element x such that type�x� � �� then return x as the result of the
evaluation�

�� Excluded Middle� a � �a � �

If A contains elements x and y such that type�x� � � and y � Args�x�� then return a
node of type � as the result of the evaluation�



��

�� Redundancy� b � a � b � a � a�
For each x � A� label x with � and every y � A 
 fxg with �� If a search with
these labels leads to a contradiction� then remove x from A� The search procedure is
described in detail below�

�� Degenerate Cases�
W
a�fbg a � b�

W
a�� a � �

�a� If A contains only a single element x� then return x as the result of the evaluation�

�b� If A is empty� then return a node of type � as the result of the evaluation�

�� Common Subexpressions
Look in the symbol table for an entry with key h�� Ai�

�a� If an entry is found� then return it as the result of the evaluation�

�b� If no entry is found� then create a new node x with type�x� � � and Args�x� � A�
Add an entry for x to the symbol table with key h�� Ai� Return x�

By this method� we guarantee that duplicate nodes are never created�

��� Discussion of Transformations

Observe that this list of transformations does not include any for the two distributive laws�

�a � b� � c � �a � c� � �b � c�
�a � b� � c � �a � c� � �b � c��

If we were to apply transformations that distribute one operation over the other� the size of
the DAG would be increased� The DAG could even grow to exponential size� if for example�
distributivity were applied to transform the formula into sum�of�products form� On the
other hand� we could attempt to recognize opportunities to factor expressions� However�
expressions such as �a�b���b�c���a�c� can be factored in more than one way� giving di�erent
degrees of simpli�cation� Thus� the manipulator ignores the distributive laws altogether�

The associativity transformation �step �� does not increase the number of nodes in the
DAG� and hence incurs no added complexity under a node cost model� where the complexity
of a DAG is expressed as the total number of nodes� However� it can create nodes with more
children than the number of arguments in the original list� For example� the evaluation
sequence

x � a � b

y � x � c

z � y � d

would create � nodes having 
� �� and 
 children� respectively� The binary cost model
expresses the DAG complexity as the sum of its node costs� where a node with n children
has cost n 
 �� This measure corresponds to the number of binary operations required to
evaluate the resulting expression� Under this cost model� the associativity transformation
can increase the complexity� The above example would yield a DAG of binary cost �� whereas
omitting the transformation would yield a DAG of cost ��
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The associativity transformation also interacts with the redundancy transformation �step
��� described in detail later� This transformation requires a search of the DAG for each
element of the list A� incurring a signi�cant computational e�ort� The associativity trans�
formation can expand this list and� consequently� the number of searches�

Of course� omitting this transformation causes the manipulator to overlook some useful
simpli�cations� It will fail to recognize the equivalence of some expressions� Furthermore�
it will fail to eliminate some redundancies that would otherwise be found� For example�
consider the DAG for the expression a � �c � �a � b�	� The associativity transformation
would create a list of arguments a� c� and a� b� The redundancy transformation would then
eliminate the third argument� yielding a simpli�ed expression a � c� On the other hand� no
simpli�cation would occur if the associativity transformation were omitted� because neither
the expression a nor c � �a � b� is redundant with respect to the other�

The choice of whether or not to apply the associativity transformation depends on the
nature of the formulas generated and the appropriate complexity measure for the DAG� Our
experimentswith a symbolicMOS circuit analyzer clearly indicate that� under the binary cost
model� the associativity transformation increases the DAG complexity by a factor of at least

 for almost all circuits� Furthermore� depending on the particular circuit� it can greatly
increase the amount of CPU time spent searching for redundancies� However� omitting
the transformation yields formulas with a noticeable number of redundant terms� Hence
the desirability of the transformation depends on the intended application of the symbolic
analyzer output�

��� Redundancy Testing

The redundancy test mentioned in step � has proved important when simplifying the formulas
arising during MOS circuit analysis� Due to the way the program analyzes a MOS network by
solving a series of switch networks� it would otherwise construct complex formulas containing
many redundancies� Methods for discovering redundancy range widely in their completeness
and e�ciency� On one extreme� a method that reliably detects any case where 
 formulas
are ordered x � y can solve the NP�hard equivalence problem� That is� two formulas are
equivalent if and only if both x � y and y � x� On the other extreme� simple graph
transformations can apply the simple absorption rule a � �a � b� � a� Simple approaches�
however� miss many opportunities for simpli�cation�

The method discussed below strikes a compromise between e�ciency and completeness�
It applies a search technique that attempts to prove that an argument is redundant but
applies tight controls to avoid combinatorial complexity�

Proposition 
 states that two Boolean formulas are ordered x � y if and only if no
assignment of ��s and ��s to the variables can cause x to evaluate to �� while y evaluates
to �� The redundancy test attempts to prove this property by contradiction� in a manner
reminiscent of an automatic theorem prover based on the Resolution Principle ���	� That is�
it assigns value � to x� � to y� and determines the logical consequences of these assignments�
If it reaches a contradiction� then the formulas are ordered� otherwise they are assumed
unordered� The manipulator applies this test to each argument x in the list A in an attempt
to drop the argument from the list� That is� for an � �respectively� �� operation� the
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� Forward Inference Rules for Redundancy Test� These rules change the
value of a node based on those of its children� Asterisks mark the values changed from X to
� or ��

test searches for a contradiction with x assigned value � �resp�� �� and all other arguments
assigned � �resp�� ���

The redundancy test requires augmenting the DAG data structure with an additional
value �eld for each node� set to either �� �� or X �indicating an unknown value�� Initially�
the nodes in argument list A are set to � or � specifying the proof goal� while the other nodes
are set to X� Each node also has a list of pointers to its parents in the DAG� The program
searches for a contradiction in a manner similar to the implication step of the D�algorithm
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used in test generation ��
	� A queue� initialized with the nodes in argument list A plus
their parents� holds nodes that are candidates for further inferences� Boolean values are
propagated through the DAG by repeatedly removing a vertex from the queue and applying
inference rules that may change the node value or that of one or more child� If a node
value changes the program adds either its children or parents to the queue as candidates for
further inferences� This process continues until either a contradictory labeling is encountered
�success�� or the queue becomes empty �failure��

Figure �� illustrates the set of contradictory labelings that cause the search to terminate
successfully� In this �gure� the label above the node indicates the value associated with the
node� while the labels below indicate the values associated with the children� Note that rules
C� and C
 require all children to have a particular value� while rules C� and C
 require only
a single child with the speci�ed value�

Figures �
 and �� present the set of inference rules by which Boolean values are propa�
gated through the DAG� For each rule� an asterisk indicates the value changed by the rule
from X to � or �� Figure �
 illustrates the set of forward inference rules� i�e�� those that
cause the value of a node to change based on the values of its children� For example� rule
F� indicates that if all children of an � node have value �� then it too must have value ��
Rule F� indicates that if an � node has any child with value �� then it must have value ��
Successful application of a forward inference rule to a node causes queueing of any parent
not already in the queue�

Figure �� illustrates the set of backward inference rules� i�e�� those that cause the value
of one or more child to change based on the value of the node and possibly the values of the
other children� For example� rule B� indicates that if an � node has value �� then every child
must have value �� Rule B� indicates that if an � node has value � and all but one child
have value �� the remaining child must have value �� Successful application of a backward
inference rule to a node causes queuing of any child whose value changes and is not already
on the queue� Any other parent of a child whose value changes is also queued� unless it is
already in the queue�

Figure �
 shows an example of how the redundancy test can prove that two formulas
x and y are ordered x � y� This example was adapted from one that can actually occur
during the symbolic analysis of a MOS circuit� demonstrating the need for a sophisticated
redundancy test� The �gure does not show the descendants of the nodes labeled with op�
eration op� as they are not required to prove redundancy� This example arises when a back
substitution step of Gaussian elimination requires an evaluation of the form y � x� y� As a
result of the successful redundancy test� formula y remains unchanged� yielding a signi�cant
simpli�cation� For purpose of discussion� each node is labeled with an identifying letter to
its left� The initial values assigned to the nodes are shown to their right� The queue initially
contains nodes a� d� and c� The search proceeds by the series of steps shown in Table �� It
terminates once a con icting labeling is found at node e�

The following analysis of the search algorithm shows that it has linear complexity� as
measured in the total number of branches in the DAG� The search only queues a node when
the value on the node� one of its parents� or one of its children changes fromX to � or �� Each
branch in the DAG can cause the nodes on either end to be queued at most once� Therefore�
the total number of queuing operations cannot exceed twice the number of branches in the
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Figure �
� Redundancy Search Example� The search proves that formula x is redundant
with respect to formula y� Nodes are labeled by their values at the start of search and by
letters for discussion in the text�

Step Node Rule Changed Nodes New Value Queued Nodes
�� a B� b� h � b� h

� d B
 e� f � e� f
�� c F� c �

� b B
 g � g

�� h none
�� e C�

Table �� Inference Sequence for Redundancy Search Example� The search �nds a
contradiction at node e�

DAG� The set of inference rules can be applied to a node in constant time� if counts are
maintained for each node specifying the number of children with value �� �� and X� Hence
the algorithm has time complexity linear in the DAG size� Furthermore� the constant of
proportionality is quite small�
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Figure ��� Example System of Equations�

However� since the search must be initiated once for each argument every time a Boolean
operation is performed� the total time spent searching for redundancies can become quite
large� Our implementation controls the time spent searching in 
 ways� First� the search
need only consider nodes that are descendants of the nodes in the argument list A� The
program avoids visiting extraneous nodes by keeping the value �elds of the nodes initialized
to a special value indicating �unreachable�� Before a search begins� the program traces
all descendants of the nodes in A and sets their values to X� The search then only visits
nodes with values X� �� or �� and upon termination resets all nodes to �unreachable�� This
constraint will not reduce the success rate of the search� Second� the search proceeds in
breadth��rst order �by using a �rst�in� �rst�out queueing discipline�� and can be constrained
to give up once it reaches a speci�ed depth� This constraint reduces the success rate of the
search� but eliminates cases requiring extensive search having little chance of success� With
appropriate constraint� experience indicates that this approach to redundancy testing yields
signi�cant simpli�cations for a reasonable computational e�ort�

It must be emphasized� however� that the redundancy test is not complete� For example�
it will recognize that a � �b � d� is redundant with respect to �a � b� � �a � d�� but not vice�
versa� even though the two expressions are equivalent� The algorithm could be extended
to one that detects all redundant cases by adding combinatorial search and backtracking�
However� this could greatly increase the computational e�ort� especially considering that in
most cases the redundancy test will fail�

� Symbolic Analysis Example

As with many algorithms designed for computer implementation� this analysis method
is very tedious to execute by hand� For systems of signi�cant size� the DAG becomes far
to large to draw� Small systems� on the other hand� lend well to exhaustive path analysis�
Hence it is hard to demonstrate the advantages of our method with an example� With these
limitations in mind� several useful insights can be gained from a simple example�
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Figure �� shows the graph corresponding to a bridge network with source terminal ��
In this example� the edge labeling is symmetric� A�u� v� � A�v� u�� and hence the system
structure can be represented by an undirected graph� The steps of Gaussian elimination
preserve this symmetry� and a straightforward modi�cation of the elimination code reduces
the number of operations by almost a factor of 
� Figure �� shows the sequence of labelings
produced by the successive elimination steps� For readability� the Boolean formulas were
simpli�ed by hand and are shown without � symbols� The back substitution steps yield�

x��� � b � ac � ade

x��� � a � bc � bde

x��� � ad � bcd � be � ace

x��� � �

Figure �� shows the complete DAG produced in analyzing this system� For readability�
the branches to nodes representing variables are indicated by the variable names� This
DAG looks very complex� and it is di�cult to verify that it correctly characterizes the
network� Observe� however� that this representation of the formulas involves only �� Boolean
operations� The formulas derived by hand simpli�cation appear much more readable� but
they require a total of �� Boolean operations� Furthermore� under the binary cost model� �a
better measure of the evaluation cost for a set of formulas�� the DAG has cost ��� whereas
a straightforward implementation of the hand�derived formulas has cost ��� Only with
considerable e�ort can the hand�derived formulas be transformed into ones involving a total
of �� binary operations� This example shows that our method produces results that are very
compact although di�cult for humans to read� Compactness counts more for results that
are used by other computer programs�

� Conclusion

This paper has shown that a careful choice of algorithm and data structures yields a far
more e�cient solution than does a naive approach� Furthermore� by casting the problem in
terms of systems of equations� the wealth of knowledge that has accumulated about solving
linear systems could be applied�
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Figure ��� DAG Produced in Analyzing Example Network� Although appearing
more complex than the formulas derived by hand� the DAG representation is actually more
compact�

The symbolic analysis technique described in this paper has a wide range of applications
beyond switch networks� Direct methods such as Gaussian elimination are examples of obliv�
ious algorithms� That is� the control sequence depends only on the graph structure of the
system to be solved and not on the data values�� In contrast� iterative methods perform
data�dependent branches when testing for convergence or when deciding which vertex to
update next� Any oblivious algorithm can be executed symbolically to yield some explicit

�Although data�dependent pivoting may be required when solving linear systems for numerical reasons
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representation �e�g�� a DAG� of the output generated by the program for all possible input
data� Such a preprocessing step can yield a signi�cant performance advantage in applica�
tions that must evaluate many systems sharing a common structure but di�ering in data
values� Furthermore� the representation generated by symbolic analysis can be executed by
hardware that supports only the operations of the underlying algebra� rather than general
purpose computation� Hardware that supports only restricted domains such as Boolean
operations can achieve very high performance at a reasonable cost� Problems that can be
solved by Gaussian elimination and hence are amenable to symbolic analysis include� lin�
ear systems� shortest path calculations� bottleneck  ow path calculations� and conversion of
�nite automata to regular expressions ���	�

Solving path problems by Gaussian elimination becomes especially attractive as com�
puters with parallel processing capabilities become available� The �greedy� pivot selection
rule presented here gives very good results in terms of the total size of the formulas� If the
results are to be executed on machines that support high degrees of parallelism� however� the
potential concurrency allowed by the formulas should be maximized as well� As the DAG
of Figure �� illustrates� greedy pivot selection tends to yield �long� skinny� formulas with�
out much potential for concurrent evaluation� On the other hand� pivot selection based on
nested dissection �
�� ��	 yields �short� fat� formulas� many terms of which could be evalu�
ated simultaneously� In particular� the family of GSP graphs satis�es a ��separator theorem�
meaning that it is always possible to �nd 
 vertices whose removal would split the graph into
two GSP graphs of roughly equal size� For such graphs� nested dissection yields formulas
with O�n� operations� although the constant of proportionality would be somewhat higher�
However� the formulas also have maximumdepth O�log n�� giving sublinear evaluation times
if su�cient resources are available� Various other graph classes lead to formulas with sub�
linear maximum depth� In contrast� no iterative method can give sublinear performance for
the graph structures of interest regardless of the processing hardware�

Symbolic analysis� as presented here� simply transforms one description of a Boolean
computation into another� that is from a switch network to a set of formulas� Some ap�
plications� such as proving two networks equivalent or that a network implements a given
function� require stronger results� These problems are NP�hard ���	� and many believe ef�
�cient algorithms for such tasks do not exist� However� several approaches yield practical
results in many instances� One approach uses a di�erent representation of Boolean functions
that makes equivalence testing more straightforward� The author ���	 has devised a repre�
sentation based on a di�erent type of directed acyclic graph that is canonical� i�e�� a given
function has a unique representation� Equivalence testing then becomes a simple matter of
testing whether two graphs match exactly� Furthermore� many of the functions encountered
in logic design applications are represented by reasonably small graphs� Symbolic analysis
could also be performed using these graphs as the underlying data structure for representing
Boolean functions� yielding a canonical description of the network function�
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A Proofs of Theorems

A�� Systems of Boolean Equations

Theorem � Any Boolean system �A� b	 has a unique solution x given by the limit to the

sequence xi� where x��v� � � for all v� and xi�v� is de�ned for all i � � and all v as�

xi�v� � b�v� �
�

�u�v��E

�xi���u� �A�u� v�	� �
�

Proof � First� we will show by induction on i that xi � xi��� The basis clearly holds� because
x��v� � � � x��v�� Assuming by induction that xi�u� � xi�u� � xi���u� for any vertex u�
expanding Equation 
 for xi�� and separating terms gives

xi���v� � b�v� �
�

�u�v��E

�
�xi�u� � xi���u�	 � A�u� v�

	

�

�
�b�v� �

�
�u�v��E

�xi�u� �A�u� v�	

�
� �

�
�b�v� �

�
�u�v��E

�xi���u� �A�u� v�	

�
�

� xi���v� � xi�v��

Thus� the sequence is nondecreasing� Since the domain B is �nite� there must be some value
k such that xk � xk���� From Equation 
 and by induction on i� it is easy to see that xk � xi

for all i � k� and consequently the sequence converges to a unique value� Furthermore� this
vertex labeling clearly satis�es the system �A� b	�

Now suppose that some other labeling y satis�es the system �A� b	� We will show by
induction on i that y � xi for all i� Clearly y�v� � � � x��v�� and hence the basis condition
holds� Now suppose that xi���u� � y�u� � y�u� for every vertex u� Then

y�v� � b�v� �
�

�u�v��E

�
�xi���u� � y�u�	 � A�u� v�

	

�

�
�b�v� �

�
�u�v��E

�xi���u� �A�u� v�	

�
� �

�
�b�v� �

�
�u�v��E

�y�u� �A�u� v�	

�
�

� xi�v� � y�v�

for every vertex v� indicating that y � xi� Hence any labeling that satis�es �A� b	 must be
greater than or equal to the limit of the sequence�

Theorem � If x�v� is de�ned for all v � V as

x�v� �
�
u�V

�
p�Pu�v

�
�b�u� �

�
�s�t��p

A�s� t�

�
� ���

�In fact� k must be less than n





�

then x is the solution of the system �A� b	�
Proof � First� we will show that x satis�es the system� Any path p � Pu�v must consist of
either a single vertex �only in the case where u � v�� or a path p� � Pu�w followed by the
edge �w� v�� Hence� Equation � can be expanded as

x�v� � b�v� �
�

�w�v��E



� �
u�V

�
p��Pu�w

�
�b�u� �

�
�s�t��p�

A�s� t�

�
� �A�w� v�

�
A

� b�v� �
�

�w�v��E

�x�w� �A�w� v�	�

Replacing w by u in the �nal summation gives

x�v� � b�v� �
�

�u�v��E

�x�u� �A�u� v�	

showing that x satis�es �A� b	�
Second� for any path p to vertex v containing i edges� and any vertex labeling y satisfying

�A� b	� we will show by induction on i that the e�ect of this path is less than or equal to y�v��
That is� if p � Pu�v� then

b�u� �
�

�s�t��p

A�s� t� � y�v��

The basis case clearly holds� because a path to v containing � edges must originate at v� and
b�v� � y�v� by Proposition �� Now assume for i � � that the induction assumption holds
for any path with i
 � edges� A path from u to v containing i edges must consist of a path
p� from u to some vertex w containing i
 � edges followed by the edge �w� v�� Applying the
induction assumption to p�� rearranging terms� and applying Proposition �� gives

b�u� �
�

�s�t��p

A�s� t� �

�
�b�u� �

�
�s�t��p�

A�s� t�

�
��A�w� v�

� y�w� �A�w� v�

� b�v� �
�

�u�v��E

�y�u� �A�u� v�	

� y�v��

Since this result holds for all paths to v� Proposition 
 shows that it must hold for their sum�
Hence x is the minimum vertex labeling satisfying �A� b	�

Theorem � x is the solution of the system �A� b	 if and only if x is the solution of the dual

system �A� b	D�
Proof � DeMorgan�s Laws can be generalized to the following rule for complementing a
Boolean formula�
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Complement every variable� replace every � by �� every � by �� every � by
�� and every � by ��

From this rule� we can see that the conditions for a labeling y to satisfy system �A� b	 are
identical to those for y to satisfy the the dual system �A� b	D� Furthermore� if x � y for all
y in some set Y � then x � y for all y � Y � and vice�versa� Therefore� the minimum labeling
satisfying �A� b	 must equal the complement of the maximum labeling satisfying �A� b	D� and
vice�versa�

A�� Gaussian Elimination

Theorem � The Gaussian elimination algorithm of Figure � solves the system �A� b	�
Proof � The key idea of the proof is to show that each time a vertex vi is eliminated� a
modi�ed system �Ai� bi	 is created over �Vi� Ei� such that the solution of this system equals
the solution of the original for all v � Vi� Assume for simplicity that there are no edges of the
form �v� v� in E� It can easily be shown that removing such edges will not alter the system
solution� Furthermore� the elimination code does not add any such edges as �ll�in� We also
adopt the convention that A�u� v� � � whenever �u� v� �� E� and similarly that Ai�u� v� � �

whenever �u� v� �� Ei� Under these two conventions� Equation � can be written in two ways�

x�v� � b�v� �
�
u�V

�x�u� �A�u� v�	

� b�v� �
�

u�V�fvg

�x�u� � A�u� v�	�
���

De�ne the system �A�� b�	 over the graph �V�� E�� as A� � A and b� � b� For n � i � �
de�ne the system �Ai� bi	 over the graph �Vi� Ei� as

Ai�u� v� � Ai���u� v� � �Ai���u� vi� �Ai���vi� v�	 ���

and
bi�v� � bi���v� � �bi���vi� � Ai���vi� v�	� ���

Observe that the de�nition of Ai preserves the property that Ai�u� v� � � when �u� v� �� Ei�
because Ei is guaranteed to have an edge �u� v� if both �u� vi� and �vi� v� are in Ei���

For � � i � n� de�ne the labeling xi�� over the vertices of Vi�� as�

xi���v� �


�
�

bi���vi� �
�
u�Vi

�xi�u� �Ai���u� vi�	� v � vi

xi�v�� v � Vi

���

Note that Vn � �� and hence xn�� is well de�ned� It can also be seen that the labeling x
produced by the code of Figure � equals the labeling x� de�ned by Equation � for i � ��

We will show by induction on i �starting from n
� and working downward� that xi is the
solution of the system �Ai� bi	� Clearly xn�� is the solution of �An��� bn��	� because Equations



��

� and � both reduce to xn���vn� � bn���vn�� Assume that xi is the solution of the system
�Ai� bi	� We must show that xi�� satis�es the system �Ai��� bi��	� and that xi�� � y for any
other labeling y satisfying this system�

For v � Vi� given that xi satis�es �Ai� bi	� xi�v� can be expanded using Equation � as

xi�v� � bi�v� �
�
u�Vi

�xi�u� �Ai�u� v�	�

The de�nitions for bi�v� and Ai�u� v� can then be substituted to give

xi�v� � bi���v� � �bi���vi� �Ai���vi� v�	 �

�
u�Vi

h
xi�u� �

�
Ai���u� v� � �Ai���u� vi� �Ai���vi� v�	

	i
�

Rearranging terms gives

xi�v� � bi���v� �
�
u�Vi

�xi�u� �Ai���u� v�	 �

�
�


�bi���vi� �

�
u�Vi

�xi�u� � Ai���u� vi�	

�
A � Ai���vi� v�

�
�

Substituting the de�nition for xi�� gives

xi���v� � xi�v� � bi���v� �
�
u�Vi

�xi���u� �Ai���u� v�	 � �xi���vi� � Ai���vi� v�	

� bi���v� �
�

u�Vi��

�xi���u� �Ai���u� v�	

For v � vi� we can substitute xi���u� for xi�u� in Equation � giving

xi���vi� � bi���vi� �
�
u�Vi

�xi���u� �Ai���u� vi�	�

Combining these two cases we see that xi�� satis�es �Ai��� bi��	�
Now suppose that a vertex labeling y de�ned over Vi�� satis�es the system �Ai��� bi��	�

De�ne the labeling y� over Vi as y��v� � y�v� for all v � Vi� We will �rst show that y� satis�es
the system �Ai� bi	� and therefore by the induction assumption that xi���v� � xi�v� � y��v� �
y�v� for all v � Vi� Then we will show that xi���vi� � y�vi�� thereby completing the proof
that xi�� � y� For v �� vi� expanding y�v� using Equation � and substituting the de�nition
of y� gives

y��v� � y�v� � bi���v� � �y�vi� �Ai���vi� v�	 �
�
u�Vi

�y��u� � Ai���u� v�	�

Expanding y�vi� using Equation � gives

y��v� � bi���v� � �bi���vi� �Ai���vi� v�	 �

�
u�Vi

�y��u� �Ai���u� vi� � Ai���vi� v�	 �
�
u�Vi

�y��u� �Ai���u� v�	�
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Combining terms and substituting the de�nitions of bi and Ai gives

y��v� � bi�v� �
�
u�Vi

�y��u� �Ai�u� v�	�

Therefore y� satis�es the system �Ai� bi	� For v � vi� we can assume that xi���u��y�u� � y�u�
whenever Ai���u� vi� �� �� Hence� y�vi� can be expanded by Equation � as

y�vi� � bi���vi� �
�

u�Vi��

�
�xi���u� � y�u�	 � Ai���u� vi�

	

�

�
�bi���vi� �

�
u�Vi��

�xi���u� �Ai���u� vi�	

�
� �

�
�bi���vi� �

�
u�Vi��

�y�u� �Ai���u� vi�	

�
�

� xi���vi� � y�vi��

and hence xi���vi� � y�vi�� Thus we have shown that xi�� � y for any y satisfying the system
�Ai��� bi��	� completing the inductive proof that xi is the solution of the system �Ai� bi	� We
have therefore proved the correctness of the algorithm� because the systems �A� b	 and �A�� b�	
are identical� and the labeling x returned by the algorithm equals x��

Theorem � A system of equations de�ned on a graph can be solved by Gaussian elimination

such that no vertex has elimination degree greater than � if and only if the graph is general

series�parallel�

Proof � Assume the graph �V�E� is constructed by a sequence of productions obeying the
rules of Figure �� Suppose the �nal step involves adding vertex w and one or more edges
to the graph �V �� E�� and possibly deleting an edge� Then vertex w has degree less than or
equal to 
 in �V�E�� Furthermore� if w is selected as a pivot in Gaussian elimination� the
resulting elimination operations will yield the graph �V �� E��� This graph is also GSP� and
hence the process can be continued until all vertices are eliminated�

Conversely� suppose Gaussian elimination can be performed for a system de�ned on
the graph �V�E� such that no vertex has elimination degree greater than 
� Then with
the graph �Vn��� En��� as the basis� where Vn�� � fvng and En�� � �� we can construct
the graph �V�E� by a sequence of production rules� adding vertices in the reverse of their
elimination order� If vertex vi has a single neighbor v in �Vi��� Ei���� then graph �Vi��� Ei���
is constructed from �Vi� Ei� by applying the Acyclic Branch rule with w � vi� If vertex vi has
two neighbors u and v in �Vi��� Ei���� then graph �Vi��� Ei��� is constructed from �Vi� Ei� by
applying either the Series or the Parallel�Series rule with w � vi� depending on whether or
not �u� v� � Ei��� This process proceeds until it reaches �V�� E�� � �V�E��
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