Project 1 Part II: Metaproduct Primes

- What you know
- Basic BDD data structure and JAVA implementation
- A little bit about these things called "metaproducts"
- What you don't know
- All the tricks with metaproducts
- Using these to do Prime Implicants

Copyright Notice

© Rob A. Rutenbar, 2001

All rights reserved.

You may not make copies of this material in any form without my express permission.

About Metaproducts

V Notation was created to support applications where we need to preserve the structure of things like SOP expressions

- ...ie, if you really WANT to write $\mathrm{x}+\mathrm{x}$ '
- ...and you want to represent and manipulate it as a BDD, what to do?

\checkmark Metaproduct notation

- Replace each variable " x " with a pair ($r x, s x$)
- If you see x in a product, then you get (rx)(sx) in metaproduct
- If you see x^{\prime} in a product, then you get ($r x$)(sx') in metaproduct
- If you don't see any x or x^{\prime} at all, then you get ($r x^{\prime}$) in metaproduct

\checkmark In English

$\rightarrow r x$ is the occurrence variable $->r x==1$ says " x is here", $r x==0$ says " $n o x$ " - $s x$ is the sign variable $->~ s x==1$ says " x is positive", $s x==0$ "negative"

Metaproduct Example

∇ Suppose $F(x, y)=x+x y$ '

- This is really just $==x$, of course
- Its BDD would be simply

\checkmark As a metaproduct

- Assume var ordering was $x<y$
- Then new ordering is $\mathrm{x}<\mathrm{rx}<\mathrm{sx}<\mathrm{y}<\mathrm{rx}<\mathrm{sy}$
- x becomes (rx)(sx)(ry')
- $x y^{\prime}$ becomes (rx)(sx)(ry)(sy')

Metaproduct Example

V You interpret this by looking at "satisfying paths" to " 1 " node - There are $\mathbf{2}$ paths from root to " 1 ", each makes a product term

Result: x

Result: xy'

- Put the final products together for final answer: $x+x$ 'y

Metaproduct Example

- What happens if a variable is not present?
- We already saw this, but its worth noting
- In $F(x, y)=x+x y$ ', consider " x " term
- There's no " y " in there, but we still have to deal with " y "
- Rule is: if there's no variable in there, you still have to include the occurrence variables for the missing original vars, but you include them in the negative polarity to note their absence

So, term " x " becomes (rx)(sx)(ry')

Means "no y vars in here"

If this was $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\mathrm{x}$, what would happen?

- We'd get (rx)(sx)(ry')(rz')(rw')

Metaproduct Primes

- Turns out you can represent Prime Implicants with metaproduct notation

These are all Primes - biggest product terms you can circle in a Kmap for your function

These are NOT all Primes - not all biggest product terms you can Circle in this Kmap

Metaproduct Primes

- Like with Boolean functions, problem is SIZE
- A function can have many many primes - way too many enumerate one by one
- This is why representing them with something like a BDD is attractive, since its good at "compressing" Boolean functions
- But this is also why we need a special notation, since we DON'T want the BDD to CHANGE our function to its canonical form
- We need to represent it in some SOP form

Biq question: how do we find Primes using metaproducts

- Of course, it's gotta be something recursive, right...?

Metaproduct Primes

- There's another Shannon-style recursive decomposition
- You start with a BDD in your original variables
- You end up with a BDD in the (occurrence, sign) metaproduct variables
- Final BDD represents, as SOP form, ALL the primes

Basic decomposition

- Let $\mathbf{P}($ BDD root of F$)=$ metaproduct BDD for all PRIMES in function F

Metaproduct Primes

V ...why does that work?

- Roughly speaking -this is just the messy check for how to "reassemble" primes when they get split up during a Shannon decomposition

$$
f(x, y, z)=x^{\prime} y+y z \prime=2 \text { primes }
$$

$=y f_{y}+y^{\prime} f_{y^{\prime}}$
$=y\left(x^{\prime}+z^{\prime}\right)+y^{\prime}(0)$

When we factored on y, we "chopped up" the prime like this

$$
f(x, y, z)=x=I \text { prime }
$$

$$
=y f_{y}+y^{\prime} f_{y^{\prime}}
$$

$$
=y(x)+y^{\prime}(x)
$$

Metaproduct Primes

V"Reading" the decomposition

Metaproduct Primes

V Let's be a little more careful on the details of BDDs and ops

- Assumes you have AND and NOT (ie, "!") on BDDs
- Assumes P() calculated just like ITE, as a top-down recursion
- Assume var order is fixed: for varys x, y, \ldots, its: $x<r x<s x<y<r y<s y$

Metaproduct Primes: Termination

\checkmark So we know the recursion is:

∇...next question: what are the termination conditions for $P()$?

- So, when can we quit, and return a known BDD node answer?
- Easy case: $\quad P(0)=0$
- Harder case: $\mathrm{P}(\mathrm{I})=$ a little messy...

Metaproduct Primes: Termination

- Suppose vars are: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$, and we have this recursion

Primes Example

Apply recursion at root of $f()$

Primes Example

Applying recursion at root of $f()$

Primes Example

Do the obvious simplifications now (just to simplify for this manual example)

This was just $\mathbf{P}(\mathbf{f o o}) *!\mathbf{P}(\mathrm{foo})=\mathbf{0}$

Prime Example

- OK, we need to do this one next

Prime Example

\Again, do obvious simplifications (just for this manual ex)

Prime Example

- We have to do this one next - and its easy...

Prime Example

- We have to do this one next - and its easy...
 Since $s z$ is the LAST var in the order, the rule is: this is just " I "

Prime Example

- Return results up recursive call tree...

Note - I'm leaving in all the separate " 0 " and " I " nodes just to simplify the drawing it's a REAL BDD, there's only a single " I " and a single " 0 "...

Prime Example

V Return results up recursive call tree...

Prime Example

- This one is next to recurse on

Since we know $\mathbf{P}(1)=$ product of complements of vars below $s x$ in the order, this is supposed to be: (ry')(rz'), so we get...

...which is just ordinary BDD ops

Prime Example

- BDD ops give this

Prime Example

Return results up recursive call tree...

.and, that's the Final Metaproduct for Prime()

V Look for paths from root to "1"

Final Primes

- More paths

Final Primes

V ...hey, there's another one...?

An unfortunate fact about metaproducts: they can be redundant about primes. You don't get the wrong ones - but you can get right ones several times.

Metaproduct Primes

So what did we do?

.back to 18-760 Project 1 Part 2

\checkmark What do we want?

- We want you to add P(BDD for function f) as an operator to your JAVA BDD package
- Do it exactly like we showed here
\triangleright Just like ITE: you descend the starting BDD for f, and you recursively "trace out" the BDD for $P(f)$
\triangleright Assume you have all the vars defined in the right initial order. This means if the real vars are x, y, YOU have $x, r x, s x, y, r y, s y$ in order
- You have 2 basic goals
\triangleright To be able to transform a BDD for function finto Prime(f)
\triangleright To print out some interesting "info" about these primes

Prime() Details

Things to be careful about

- Before doing anything, you probably want to build the function: (rx')(ry')(rz')...(rlast') for ALL your vars. And make an array of pointers to the nodes, so that when you need $P(I)=$ product of complemented occurrence nodes below me - you can just look it up
- You still need to call FindOrCreateNode()on the 2 new nodes you make. You want to build sx and its children first, call FindOrCreatNode(sx), then finish the recursion on rx, then call FindOrCreatNode(sx).
- Do you want to do something like a different OPS table for the Prime computation? (It's not required...but think about it)
- You will want to write a "printprime" routine that walks the paths to the " I " node, and prints out sensible product terms. DO NOT worry about the redundancy issue - not your problem.
- You also want to build a "numprimes" routine that just prints out the number of paths to the " 1 " node. Think about it - you don't have to walk them all to do this, it's a very simple recursion if you know numprimes(hichild) and numprimes(lochild), and numprimes $(1)=I$ and numprimes $(0)=0$

Metaproduct Primes: Summary

V Interesting, sort of funky BDD application

- Twists the usual interpretation of "canonical BDD form" around a lot
- Works fine, a bit arcane
\triangleright (This is a simplification of how people really do it. There are a bunch of other optimizations to get rid of those redundancies that make it a lot faster. Not worth the grief to go thru them all...they violate a lot of BDD rules.)

- For Project 1

- Implement Prime(f)
- Look on the /afs/ece/class/ee760/projl directory for more details, and for some info about benchmarks to run
- Ask TA and Prof questions if there are any issues at all on this one

