
CMU Fall 99 18-760 VLSI CAD September 20, 2001 1

CMU Fall’01 18-760 VLSI CAD
Project 1: Implementation of a Basic BDD Package. (Part I)

[120 pts] Out: Thu Sep 20, Due: Thu Oct 5 in class.

1. Overview
The goal is to write a Java program to implement the ITE operation on Binary Decision Diagrams.
You are going to end up with a YBDD (Your BDD) package with the following features:

• Sharing: Implemented as a Multi-rooted DAG.
• NO negation arcs: Though negation arcs do reduce memory requirements, they make the

BDD structure unreadable. So we do not require that you implement negation arcs.
Implementing YBDD with Java has a couple of advantages:

• Simple Code: Java already has Hash Tables and other useful data structures to simplify
this assignment.

• Nice Environment: it’s interpreted, catches errors, making a possibly simpler program-
ming task.

Your task is to concentrate on the implementation of the ITE operator. We provide a command line
interface to drive the BDD package. Here are step by step instructions of what you should be doing:

• All the files for this project exist in: /afs/ece/class/ee760/proj1
• Make a directory to work on this project from. Use fs la <directory_name> to see the ac-

cess permissions to that directory, then type:
fs sa <directory_name> <other_user_name> none
to protect it, where <other_user_name> are users other than yourself and the system ad-
ministrators. You are required to work alone on this project! Change into that directory.

• Run the command: source /afs/ece/class/ee760/bin/setup.script from that directory. This
will work fine if you are on a Solaris or AIX machine, otherwise take a look at the script
to see what it is doing (just linking and copying some files).

• There are now two files which you will be concerned with (the rest of the linked directo-
ries and files are for the command line interface.) These files are: bdd_node.java and
bdd_functs.java

• The file bdd_node.java contains our object to represent BDD nodes with. You don’t have
to change this file (although you can if you want). This file is discussed in Section 2.

• The file bdd_functs.java contains the functions necessary to implement YBDD. There are
a number of empty class methods here which you need to fill in. This file will be discussed
in more detail in Section 3.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 2

• After you are done making changes, simply type:
javac bdd.java bdd_node.java bdd_functs.java
This will rebuild all your classes.

• Then to run your BDD package type: java bdd. This will start the command line interface
to YBDD, which is described in more detail in Section 4.

• A set of test files will beplaced in /afs/ece/class/ee760/proj1/tests. These are source files
that can be sourced through the command line interface. Look at the README file in this
area.

• What you need to submit: the source code of file bdd_functs.java, results of all sourced
files in /afs/ece/class/ee760/proj1/tests and a word-processed report. The grading is ex-
plained in Section 6.

If you have any questions or concerns about any part of the project, please feel free to contact Amit
Singhee (asinghee@ece.cmu.edu) or Rob Rutenbar (rutenbar@ece.cmu.edu) and ask questions.

2. The BDD Data Structure
The BDD structure has been defined for you in bdd_node.java. Here is a brief description of each
field and method in the BDD object:
Instance Variables:

• marked: Used for traversing the BDD. Marks that you have visited a note, used for reur-
sive algorithms that do things like count the number of nodes. When you create a new
BDD node, set this field to FALSE.

• index: For non-terminal nodes, index defines the variable associated with a node. Vari-
ables are indexed 0 to n-1. The index therefore defines the global ordering. For terminal
nodes, index should be set to ZERO_INDEX or ONE_INDEX for the constant 0 and 1
nodes, respectively.

• label: A String representing the name of the node (redundant information if index is
present but useful for the methods described below)

• low, high: These are low and high pointers to BDD nodes.
Instance Methods:

• bdd_node(....): The constructor method, does instance variable initialization.
• public int getIndex(): Returns the index of that node.
• public bdd_node getLow(): Returns the ‘low’ BDD child node.
• public bdd_node getHigh(): Returns the ‘high’ BDD child node.
• public String getLabel(): Returns the label of the node.
• public int Size(): Recursively calculates the size of the BDD structure including the cur-

rent node and its children.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 3

• public void Print(....): Recursively prints the BDD node structure starting at the current
node, and working down to the children.

• public void cleanMarks(): Cleans up after Size or Print have been called.
• public static void total(): Counts total number of BDD nodes in your multi-rooted DAG,

and prints this number.
For more detailed information on any of these variables or methods, refer to comments in
bdd_node.java.

3. BDD Basics: CoreManipulation Routines
We have provided you with a set of stubs in file bdd_functs.java, i.e., empty routines that need to be
filled in. Do not change these routine names since they are used in the command line interface. You
need to fill in the following stubs:

• public static bdd_node Zero(), public static bdd_node One(): Routines to create the
constant 0 and 1 BDD nodes. Remember that these have to be inserted in the unique_table.

• public static bdd_node NewVar(String label): Create a new BDD variable.
• public static bdd_node ITE(I, T, E): This is the main ITE routine.
• bdd_node NOT(f), bdd_node AND(f, g), bdd_node OR(f, g), bdd_node XOR(f, g):

These should be defined in terms of the ITE operator.
These are the only methods which you must code in order to create a working BDD package. There
are a number of other methods which you may wish to change in order to implement ‘something
cool’. For more about ‘something cool’ see section 5.

4. Command Line Interface
A command line interface is linked in with the program bdd. Executing java bdd will bring up the
command line interface. The package will respond with a prompt:

YBDD>

At this point the user can issue one of the following commands:
boolean list-of-var-names eval dest expr source filename
bdd funct size funct total
quit

The following describes what each command does.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 4

boolean: The command boolean defines a list of variables. The order of the variables is the order
in which they are defined. Example: boolean a b c d command defines variables a, b, c, d with
indices 0, 1, 2, 3 respectively.

eval: The command eval evaluates the expression and assigns it to the destination. Expressions can
have the following operators: ! (complement), & (AND), + (OR) and ^(XOR). Only one oper-
ator per eval command can be used. Example: eval f a & b evaluates the Boolean expression
(ab) and creates the corresponding BDD with the function name f, i.e., it does f = ab.

bdd: The command bdd prints the BDD representation for the function. The BDD representation
for a&b + c and its corresponding pictorial representation are shown below:

size: The command size returns the number of BDD nodes in the function. For example size will
return 5 for the above function.

total: The command total returns the total number of BDD nodes created.
source: All the commands can be placed in a file and then the file can be sourced via the command

source. An example source file (for the function: f = a&b + b&c + a&c) is:

boolean a b c
eval t1 a & b
eval t2 b & c
eval t3 c & a
eval t4 t1 + t2
eval f t4 + t3
size f
bdd f

a

c

b

Address=268579008

Address=268578880

Address=268577280

0 1

a:268579008 node
c:268577280low child

[0]
[1]

b:268578880high child
c:268577280
[1]

CMU Fall 99 18-760 VLSI CAD September 20, 2001 5

5. BDD Extension: Primes
We are also going to ask you to add one rather unusual feature: the ability to build a BDD that rep-
resents the prime implicants in a logic function, using metaproduct notation (like on HW1). It turns
out that you can this in a way very similar to an ITE implementation.
First, a little review--what exactly are “prime implicants”? Informally, they are what you try to cir-
cle in any Karnaugh map. An implicant is just any cube or product term in a function. But a prime-
implicant is as big as it can be, considered geometrically, as a cube. You cannot draw the Kmap
“circle” any bigger for a prime. For example

It turns out that a function, even a “small” function with only a few variables, can have many many
primes. So, trying to find them with Kmaps, and enumerate them all, is hopeless. But, nicely
enough, you can find them and represent them all with a BDD, if you use the metaproduct notation
from the HW1, and you use an appropriate recursive strategy.
The recursive strategy is a bit tricky, but it uses BDD operations itself, and looks like another ITE
routine that builds up the new BDD as the recursion “returns” up to the root. Part II will describe
the mechanics for doing this, in detail. Roughly speaking you’re going to do this:

• We want to implement a new routine called PRIME(). PRIME takes a pointer to a function
F represented in an MRDAG, and return a pointer to a node in the MRDAG, just like ITE.

• Assume your variables are x1, x2, x3, ..., xn, ordered like this. In the final metaproduct re-
sult, your new variables will be r1,s1, r2, s2, r3, s3, ... rn, sn -- in this exact order. This
means if you have N variables in your function, to build the prime representation, you need
to allocate another 2N variables for the occurence vars rk, and the sign vars sk.

• Computing PRIME(F) is again based on a recusive attack. If you can compute PRIME(F)
directly, you do it and return a result. If no, you cofactor using the variable at the top of
the BDD DAG you are invoked with, and recursively call PRIME() on some appropriate
pieces of the function, then “glue” the answers back together.

ab
cd 00 01 11 10

00
01
11

10

1 1
1
1

1
1

1
1

These are all PRIMEs,
cannot make any of these
cubes any bigger

ab
cd 00 01 11 10

00
01
11

10

1 1
1
1

1
1

1
1

None of these are PRIMEs,
can make all of these bigger

CMU Fall 99 18-760 VLSI CAD September 20, 2001 6

6. Something Cool
The BDD package that you will create if you simply fill in the stubs described in Section 3 is a work-
ing, if rather limited, BDD package. It is not optimal in a number of ways. Since this is a 700-level
class, and presumably you are interested in doing something more than making the worlds biggest-
and-slowest BDD package, we want you to think about doing something more...
To be precise: we would like you to do something to this package to impress us.
Since this is a bit vague, included below are a list of a few ideas for making the YBDD package a
little cooler and more interesting. Please feel free to come up with your own ideas on how to change
it. Feel free to come by and discuss your ideas anytime.
Some ways to impress:

• The smallest code ever: Use as many Java functions and efficient programming ideas as
possible to implement this with as few lines of code as possible. Yeah, we know this code
is going to be really, really slow. That’s OK.

• Make it faster: Using a lot of preprogrammed Java features is not always the fastest way
to go. Writing your own Hash routines, instead of using Java’s may speed up your pro-
gram. Find your favorite algorithm to speed up the program. And, we know this will prob-
ably add more code. That’s OK.

• Better command line options: Right now it’s just 2-operand Booleans, and a few other
queries and miscellaneous utilities (like source). Handling n-operand Booleans would be
very convenient. Handling real arithmetic, like: ((a&b)+c)&!(a+b) directly on the com-
mand would be extremely cool, and also lots more convenient than the way we do it now.

• Negation edges: put them back, save 2X in BDD node count. Need to worry about the
canonical reductions, and some pointer plumbing.

• Make it use less memory: The bdd_node object we’ve given you is rather big and clunky,
especially compared to any real BDD package. Make it as small as possible and you can
make bigger BDDs, and it might even run faster. A way to test this is to make a simple
function like a0&b0 + a1&b1 +a2&b2 + a3&b3... + an&bn and use what you know to
be the worst variable order: a0 < a1 < a2 ... < an < b0 < b1 < b2 < ... < bn. You know this
makes an exponential size BDD. How big can you make n here if you focus on trying to
make the BDD nodes small?

• Garbage collect: note that while Java is itself garbage collected, it can only collect unused
nodes when it understands that nothing is pointing to them, i.e., they are not in use. In our
current simple data structure, we don’t ever free up any nodes in a way that Java can un-
derstand. So, your BDD node pool just grows and grows. To overcome this, you at least
have to add a reference_count field to each BDD node, and increment it whenever you add a
new pointer to that node, and decrement it whenever somebody stops pointing to that
node. You can decide then if you want to get clever and maintain your own BDD node

CMU Fall 99 18-760 VLSI CAD September 20, 2001 7

pool, i.e., recycling freed nodes to your own pool and reusing them (overloading the con-
structor to use a recycled node when this pool is not empty, rather than just creating a new
one). Lots of possibilities here.

• Graphical Output: Instead of the simple text representation of BDDs that we have given
you, figure out how to draw a BDD on the screen. It doesn’t have to look really slick, any-
thing would be really impressive. For example, you know that each variable represents a
level in the BDD tree, so each node gets drawn on a horizontal line. You could just evenly
space the nodes on the line, and represent each node with a text string that is the variable
name. Then draw red and green lines that connect the nodes. What is really hard is getting
an aesthetically pleasing ordering where none of the edges cross each other. Don’t worry
about this kind of stuff. Anything at all graphical would impress us.

• Added BDD functionality: Add a cool boolean operation we don’t have: Satisfy() for ex-
ample, to actually print out all, or at least one, satisfying assignments. Or actually imple-
ment a real Restrict() operator (look in the DeMicheli book).

• Variable Ordering: Implement one of the variable ordering techniques discussed in class
(The especially impressive thing to implement is dynamic variable ordering; we’ll talk
about that later).

• Other: Any other cool idea you can think of.
Remember: there are 3 main things necessary to impress us.

1. Explanation: explain what you wanted to try to accomplish.
2. Implementation: show how you implemented these features.
3. Documentation: show some examples of what you can do with this cool stuff.

The “cool” points on a 760 project are always awarded competitively -- we look at what the range
of “cool” ideas was, and then use our judgement about “how cool” your addition was to award
points. That being said, the threshold for “...a little but cool” is pretty low. Anything interesting will
get you some fraction of the points. But to get all the points is rare, and goes to those with the most
interesting extensions.

7. Grading--What you have to hand in to get credit
On the following pages we describe all the stuff you have to do for this assignment. Read it care-
fully, pay attention to the details. We are asking for you to several tests on the BDD code and for
some analysis of what happens when you run these tests. You must not only write the code and tell
us about it, but do these experiments and analyses as well.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 8

Grading: 18-760 Fall’01 Project1:
YBDD Software Package

NAME: [120 points total]

Description of Approach [8 pts]
Briefly describe the approach. What were your goals and how did you figure out if you met them?

Code and Code Quality [20 pts]
Turn in the source code that you modified or created. Use a marker to highlight only the lines that
you added. (Or, just print with the added stuff in color, if you have access to a color printer.) Does
the code look nice? Would you show it to your Mom if she were a programmer? Does it have com-
ments, white space, indentation?

Implementation of Simple Functions [4 pts]
Using the YBDD package, build the BDDs for the following functions, and compare the answers
with manually drawn ones:

XOR of 3 variables;
XNOR of 3 variables;
The function of 4 variables that gives a 0 if exactly 3 of the variables are 1, and gives a
1 otherwise.
The function of 4 variables that gives a 1 if exactly 3 of the variables are 1, and gives a
0 otherwise.

Implementation of Something Cool [20 pts]
Tell us what you did that was interesting (if you did) and why it should impress us. Show how you
compared the package with your cool thing, to the package without.

Results of Test Cases [60 pts]
Test YBDD on all the tests in /afs/ece/class/ee760/proj1/tests and turn in the results. Specifically we
are looking for the following:

and.src, abc.src [1pt] - These are sanity tests. Just report the BDD structures printed by
YBDD.
tautology.src [1pt] - Is the function a tautology? If so it should be the constant 1 node.
identity.src [1pt] - Are the two functions the same in each of the cases? How do you tell?

CMU Fall 99 18-760 VLSI CAD September 20, 2001 9

addr4.src, addr8.src, addr16.src, addr64.src, addw4.src, addw8.src, addw16.src,
addw64.src [16 pts] - Set of adders. 4,8,16 and 64 bit adders with two different variable
orderings. Report sizes of BDDs. Also see if you can draw conclusions as to which is a
better variable ordering and why? Again, can you specify how the BDD size grows with
increasing adder size? Can you derive the exact formula for the BDD size? Do some
analysis. NOTE: addw16.src and addw64.src might not be able to finish in any reason-
able amount of time on your machines. That’s fine. Just report that they did not finish.
mplr2.src, mplr3.src, mplr4.src, mplr5.src, mplr6.src, mplw2.src, mplw3.src,
mplw4.src, mplw5.src, mplw6.src [16 pts] - Set of multipliers (2x2bit, 3x3bit, 4x4bit,
5x5bit, 6x6bit) with two different variable orderings. Report the total size of BDDs. Also
tell if any one of the variable orderings is drastically better than the other and why? Again
can you specify (even approximately) how the BDD size grows with increasing multipier
size? NOTE: mplr6.src and mplw6.src might not be able to finish on your machine.
That’s still fine. Just report it.
Primes calculation - - more detail on thisone later. [20 pts]
An interesting test case of your own choosing [5 pts].

Comparisons with KBDD [4 pts]
Run the source files compare.src and muxw2.src on KBDD. Compare the BDDs reported by YBDD
and KBDD. Remember KBDD has negated pointers. Comment on the differences.

Time Allocation [4 pts]
How much time did you spend on each of the major tasks? What did you think was most difficult
about the project? What debugging techniques did you use?

...and, that’s it. Like we said: we’re asking you to run a lot of test cases, and do a bunch of basic
analysis. Don’t put this off to the very last minute, and do pay attention to doing the things we ask.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 10

Appendix: More Notes on the KBDD Package
You will use this BDD package both for homeworks and as a point of comparison in this project.
This BDD package has multi-rooted DAGs with automatic garbage collection and negation arcs.
Karl Brace got a PhD here in ECE for implementing this package (KBDD = Karl’s BDD). The com-
mand line interface for KBDD is much more sophisticated than the one in YBDD. Now an eval
command allows multiple operations. We can also quantify, find the satisfying set, define adders
and muxes in a short hand notation and much more.

Executable: /afs/ece/class/ee760/bin/kbdd
Detailed man page: /afs/ece/class/ee760/man/man1/kbdd.1
Some other KBDD documentation (including a lab/workshop): /afs/ece/class/ee760/doc
To view the man page:
cd /afs/ece/class/ee760/man
man kbdd
To run KBDD in interactive mode:

• Type /afs/ece/class/ee760/bin/kbdd
• KBDD will return with a KBDD prompt. Enter one KBDD command per line.

To run KBDD in batch mode:
• Create a source file of KBDD commands (assume foo.src).
• Type /afs/ece/class/ee760/bin/kbdd foo.src

1. Several KBDD Examples
The source files for these examples can be found in /afs/ece/class/ee760/proj1/ex.kbdd

EXAMPLE 1:
Note that in KBDD, an eval expression allows multiple operations. Comments begin with the ‘#’
sign. Following is the script file for a homework problem:

This is the “fix the adder with quantification” problem from homework 1.
Define Boolean variables.
a,b,Cin - function inputs.
d0,d1,d2,d3 - Mux data inputs.
boolean a b Cin d0 d1 d2 d3
Desired function.
eval fd a&b + (a+b)&Cin
Function with MUX.
eval t a&b&d3 + a&!b&d2 + !a&b&d1 + !a&!b&d0
eval fm a&b + t&Cin

CMU Fall 99 18-760 VLSI CAD September 20, 2001 11

Generate the Z function which is the XNOR of both.
eval Z !(fd^fm)
Generate a new function Z1 which is
the consensus of Z wrt a, b, Cin
quantify u Z1 Z a b Cin
Find the satisfying set for Z1.
satisfy Z1
quit

To run this file type:
/afs/ece/class/ee760/bin/kbdd /afs/ece/class/ee760/proj1/ex.kbdd/hw1.prob7.src
KBDD will print the following:

KBDD: # This is the “fix the adder with quantification” problem from homework 1.
KBDD: # Define Boolean variables.
KBDD: # a,b,Cin - function inputs.
KBDD: # d0,d1,d2,d3 - Mux data inputs.
KBDD: boolean a b Cin d0 d1 d2 d3
KBDD: # Desired function.
KBDD: eval fd a&b + (a+b)&Cin
fd: a&b + (a+b)&Cin
KBDD: # Function with MUX.
KBDD: eval t a&b&d3 + a&!b&d2 + !a&b&d1 + !a&!b&d0
t: a&b&d3 + a&!b&d2 + !a&b&d1 + !a&!b&d0
KBDD: eval fm a&b + t&Cin
fm: a&b + t&Cin
KBDD: # Generate the Z function which is the XNOR of both.
KBDD: eval Z !(fd^fm)
Z: !(fd^fm)
KBDD: # Generate a new function Z1 which is
KBDD: # the consensus of Z wrt a, b, Cin
KBDD: quantify u Z1 Z a b Cin
KBDD: # Find the satisfying set for Z1.
KBDD: satisfy Z1
Variables: d0 d1 d2
011
KBDD: quit

Note that the satisfying set is 011-, thus defining both an OR and an XOR gate.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 12

EXAMPLE 2:
Here is an example of the extended naming notation. The notation has been used to define two dif-
ferent variable orderings for an adder. Subsequently both 4 and 8 bit adders have been defined with
each ordering.

Using extended naming notation to describe
various variable orderings for adders.
###
Short form for a_7 ... a_0 b_7 ... b_0 cin
boolean a_[7..0] b_[7..0] cin
Define a 4 bit adder
adder 4 s4_[4..0] a_[3..0] b_[3..0] cin
size s4_[4..0]
Define an 8 bit adder
adder 8 s8_[8..0] a_[7..0] b_[7..0] cin
size s8_[8..0]
###
Short form for aa_7 bb_7 ... aa_0 bb_0 ccin
boolean {aa,bb}_[7..0] ccin
Define a 4 bit adder
adder 4 ss4_[4..0] aa_[3..0] bb_[3..0] ccin
size ss4_[4..0]
Define an 8 bit adder
adder 8 ss8_[8..0] aa_[7..0] bb_[7..0] ccin
size ss8_[8..0]
quit

To run this file type: /afs/ece/class/ee760/bin/kbdd /afs/ece/class/ee760/proj1/ex.kbdd/adder.src
KBDD will print the following:

KBDD: # Using extended naming notation to describe
KBDD: # various variable orderings for adders.
KBDD: ###
KBDD: # Short form for a_7 ... a_0 b_7 ... b_0 cin
KBDD: boolean a_[7..0] b_[7..0] cin
KBDD: # Define a 4 bit adder
KBDD: adder 4 s4_[4..0] a_[3..0] b_[3..0] cin
KBDD: size s4_[4..0]
size [s4_4 s4_3 s4_2 s4_1 s4_0]
76
KBDD: # Define an 8 bit adder
KBDD: adder 8 s8_[8..0] a_[7..0] b_[7..0] cin
KBDD: size s8_[8..0]
size [s8_8 s8_7 s8_6 s8_5 s8_4 s8_3 s8_2 s8_1 s8_0]

CMU Fall 99 18-760 VLSI CAD September 20, 2001 13

1276
KBDD: ###
KBDD: # Short form for aa_7 bb_7 ... aa_0 bb_0 ccin
KBDD: boolean {aa,bb}_[7..0] ccin
KBDD: # Define a 4 bit adder
KBDD: adder 4 ss4_[4..0] aa_[3..0] bb_[3..0] ccin
KBDD: size ss4_[4..0]
size [ss4_4 ss4_3 ss4_2 ss4_1 ss4_0]
21
KBDD: # Define an 8 bit adder
KBDD: adder 8 ss8_[8..0] aa_[7..0] bb_[7..0] ccin
KBDD: size ss8_[8..0]
size [ss8_8 ss8_7 ss8_6 ss8_5 ss8_4 ss8_3 ss8_2 ss8_1 ss8_0]
41
KBDD: quit

Note the exponential and linear growth in the BDD size for the two different orderings.

CMU Fall 99 18-760 VLSI CAD September 20, 2001 14

KBDD Quick Reference

boolean var … Declare variables and variable ordering
Extended naming
var[m .. n] Numeric range (ascending or descending)
{s1,s2,…} Enumeration

evaluate dest expr dest := bdd for boolean expression expr
Operations (decreasing precedence)

! Complement
^ Exclusive-Or
& And
+ Or

bdd funct Print BDD DAG as lisp-like representation
sop funct Print sum-of-products representation of funct
satisfy funct Print all satisfying variable assignments of funct
verify f1 f2 Verify that two functions f1 f2 are equivalent
size funct … Compute total BDD nodes for set of functions
replace dest funct var replace Functional composition: dest := funct with

 variable var replaced by replace function output
quantify [u|e] dest funct var … dest := Quantification of function funct over

variables var ...
e Existential quantification is done
u Universal quantification is done

adder n Cout Sums As Bs Cin Compute functions for n -bit adder
n Word size
Cout Carry output
Sums Destinations for sum outputs: Sum.n … Sum.0
As A inputs: A.n-1 … A.2 A.1 A.0
Bs B inputs: B.n-1 … B.2 B.1 B.0
Cin Carry input

alu181 Cout Fs M Ss Cin As Bs Compute functions for ‘181 TTL ALU
Cout Destination for carry output
Fs Destinations for function outputs: F.3 F.2 F.1 F.0
M Mode input

 Ss Operation inputs: S.3 S.2 S.1 S.0
Cin Carry input function
As A inputs: A.3 A.2 A.1 A.0
Bs B inputs: B.3 B.2 B.1 B.0

mux n Out Sels Ins Compute functions for 2n-bit multiplexor
n Word size
Out Destination for output function
Sels Control inputs: Sel.n-1 … Sel.1 Sel.0
Ins Data inputs: In.2n – 1 … In.1 In.0

quit Exit KBDD

