
18-760 Fall’01 VLSI CAD Paper Review 1 September 27, 2001 1

 18-760 Fall’01 VLSI CAD
Paper Review 1

Out: Thu Sept. 27, 2001. Due: Tue, Oct 9, 2001 in class

1.0 Intent

One of the goals of 18-760 is that you acquire enough about the “fundamental” ideas of
CAD algorithms to be able to read new papers and see where they borrow from known
techniques, and where they innovate. Even just this far through this class, you (should)
now know a lot about basic Boolean representation, manipulation, verification, etc.

The intent here is for you to write a short review (not to exceed 4 typed 8.5 X 11 pages, in
a reasonable font, including any figures and tables) analyzing the attached paper:

• Richard Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Diagrams,”
Proceedings ACM/IEEE International Conference on CAD, Nov 1993.

You already know that variable order is “a big deal” in BDDs. Turns out it is very hard to
do right. Rudell had a slick idea: let the BDD package itself incrementally re-order the
variables every time you call it to do something. The idea is that it tries to move a few vari-
ables around in the order to reduce the size of the BDD. The paper talks about the motiva-
tions for doing this, and the mechanics of doing it. It also talks about some more details of
a typical BDD package.

2.0 Objectives

We want you to summarize the paper, analyze what new ideas it is offering, connect it to
other ideas that are already well-understood (in this case, BDDs), and critique how well
the results presented actually measure up to the goals set forth by the author.

You can regard this as preparation for one of two scenarios:

• Your boss in some company has seen this paper and thinks it may offer a solution to a
pressing CAD problem. But your boss is a busy person; she’s got other stuff to do than
just read these things and figure out if they really work. So she asks you to write a sum-
mary evaluating whether this looks like a good idea.

• You actually have to write a program to solve a problem like the one being described
here. This paper offers a solution different than the one you know (say, Minato’s order-
ing scheme from lecture). To clarify your own thinking, you want to write up a sum-
mary for you and your fellow CAD hackers that tries to ferret out whether the
assumptions, proposed solution techniques, and experimental results, really make sense
and offer a viable solution strategy for this problem.

18-760 Fall’01 VLSI CAD Paper Review 1 September 27, 2001 2

3.0 Report Style

The scoring sheet at the end lists the various components of the write-up that we are
expecting to see. Here we enumerate a couple of “failure modes” to avoid:

• Repeating without Summarizing: We have the paper in front of us. We don’t need to
see whole paragraphs recopied and passed off as analysis. Do summarize very briefly
the background technical material of the paper in your report. Do provide a detailed
summary of what the paper is about technically, with the critical ideas explained. But,
don’t just copy it all down wholesale. We want you to summarize the interesting stuff,
to extract the essential ideas and write them in your own style. Repeat when you need
to put a chunk of results or assumptions from the paper into the summary, but not when
analyzing these results or decisions.

• Repeating without Clarifying: Some of the details are going to be messy in the paper.
It’s your job to read the text, figure out the “big ideas” of what’s going on, and summa-
rize these in your report. Remember, you are trying to explain this to someone (perhaps
someone who decides if you get a raise or a corner office with a window). This will
require some thinking (preferably before writing).

• Diagrams vs. Verbiage: Sometimes a small, clear picture is much easier to understand
than 1 full page full of contorted prose. On the other hand, sometimes a lucid little para-
graph beats a tortured figure (especially if the figure was inexplicable in the original
paper). The same goes for putting in equations: sometimes they help if done carefully.
It’s your judgement call about how to mix these up so that the result is maximally
understandable. Given that there are not a lot of pictures in the paper, probably drawing
a small example and carefully showing how the ideas in the paper would apply to it, to
illustrate exactly how the algorithm works, would be a good idea.

• Long versus short: It is in fact possible to do this in a fairly short (< 4 pages) report,
but it’s rather hard, especially if you don’t have a lot of experience writing these sorts
of summaries. If in doubt, go for clarity: use the 4 page limit. But, don’t go over 4
pages, or we knock off points. 4 pages means 4 pages, not 4.5, not 6, and certainly not
10+.

• Read the scoring criteria!! Every year a few people write a report that entirely misses
points we expected to see, because we listed them on the grading sheet on the following
page. Don’t let this happen to you. Read the directions.

18-760 Fall’01 VLSI CAD Paper 1: Dynamic Variable Ordering [100 pts]September 27, 2001 3

18-760 Fall’01 VLSI CAD
Paper 1: Dynamic Variable Ordering [100 pts]

NAME:

Problem Goals and Motives [20 pts]: What is the paper trying to solve? What assump-
tions are they making that determine the style of their solution?

Contrast with Static Ordering [20 pts]: You already know about static before-the-fact
ordering of BDDs from lecture. Obviously, this paper uses a different approach. What are
the central differences?

Solution Strategies [20 pts]: How do they actually solve their formulation of the problem?
What are the extensions to known prior approaches? What are the new ideas they offer?
How well do they actually describe these strategies? Are there any holes or vague parts?

Experimental Plan and Results [20 pts]: What sort of experiments do they do to suggest
that their ideas really work? Are the benchmarks, measured results, etc., convincing? Are
there any holes or suspicious decisions here? Does anything really not work the way they
advertised it should?

Writing Style (Yours, not Theirs) [20 pts]: Professional, neat, word-processed, coherent,
grammatically clean, etc. Good diagrams or equations where/if they make sense. Does
your prose convince us of the correctness of your opinions about the ideas in the paper?
Would we read this and give you raise, or an office in the basement?

Dynamic Variable Ordering for

Ordered Binary Decision Diagrams

Richard Rudell

Synopsys, Inc.

700 E. Middlefield Road

Mountain View, California 94043

Abstract
The Ordered Binary Decision Diagram OBDI)) has

Aproven useful in many applications as an e cient data
structure for reprtxenting and manipulating Boolean
functions. A serious drawback of OBDD’s is the need
for application-specijic heuristic algorithms to order
the variables before processing. Further, for many
problem instances in logic synthesis, the heum”stic or-
dering algorithms which have been proposed are insuf-
ficient to allow OBDD operations to complete within a

limited amount of memory. In this paper, I propose a
solution to these problems based on having the OBDD

package itself determine and maintain the variable or-
der. This is done by periodically applying a minimiza-

tion algorithm to reorder the variables of the OBDD to
reduce its size. A new OBDD minimization algorithm,
called the sifting algorithm, is proposed and appears
especially eflective in reducing the size of the OBDD.
Experiments with dynamic variable ordering on the
problem of forming the OEIDD’s for the primary outputs

of a combinational circuit show that many computa-
tions comp!ete using dynamic variable ordering when

the same computation fails otherwise.

1 Introduction
Boolean function manipulation is an important

component of many logic synthesis algorithms includ-

ing logic optimization and logic verification of com-
binational and sequential circuits. The Ordered Bi-
nary Decision Diagram (OBDD) has proven useful in
these applications as an efficient data structure for the
represent ation and manipulation of Boolean functions.

However, a serious drawback of OBDD’S is the need to
order the variables.

When an order is found which keeps the OBDD size
manageable (e.g., less than 100,000 nodes), OBDD-
based techniques perform very well. However, it is
usually necessary to devise heuristics to order the vari-

ables for each OBDD application. Besides the bur-
den this places on the programmer trying to apply
OBDD’s in a particular setting, there is the problem
that in many instances the heuristic algorithms which
have been proposed are unable to find a variable or-
der which keeps the OBDD’s small. This implies that

many OBDD applications give-up (space-out) before an
operation can be completed.

Many OBDD applications in logic synthesis begin by

forming the OBDD for each primary output in a combi-
national circuit (in terms of the primary inputs to the

circuit). For many problem instances, choosing a ran-
dom order for the variables leads to OBDD’s which are
too large. For example, it is not possible to form the
OBDD’S for 23 of 35 large circuits from the IWLS ’91
benchmark set when using a random variable order.
Heuristic ordering algorithms, such as the depth-first

heuristic algorithm and its variations ([10, 5, 11] , are
)a significant improvement over random variab e or-

dering. However, it is still not possible to form the

OBDD’s for 11 of 35 large circuits from the IWLS’91
benchmark set when using this heuristic order. It haa

remained an open problem whether this is a limitation

of the variable ordering algorithms or simply the in-
herent exponential worst case complexity of the OBDD
represent ation.

This paper describes a general paradigm to improve
the robustness of any OBDD package by using auto-
matic variable re-ordering. First I review the neces-

sary details of an OBDD package and then describe the

dynamic variable ordering strategy. Two OBDD mini-

mization algorithms are presented, including a new al-

gorithm called the sifting algorithm. Experimental re-
sults are given for these algorithms which demonstrate

the utility of dynamic variable ordering when applied
to the problem of forming OBDD’s for the primary

outputs in a combinational logic network. The last
section provides directions for future improvements of
this technique.

2 OBDD Implementation Review

I assume that the reader is familiar with Ordered
Binary Decision Diagrams as introduced by Bryant [3].

In the paper by Brace, Rudell and Bryant [2], details
for an efficient implementation of a OBDD package were
outlined. I review here some details necessary for the
remainder of the paper.

A multi-rooted (shared) directed acyclic graph
(DAG) is used to represent a set of Boolean functions.
Each node in the DAG represents a Boolean function
F and has an associated variable xi and pointers to
two other nodes (functions) in the DAG. The node F
is written as the tuple (xi, G, H) where xi is called the

top variable of the function F, G is the positive cofac-
tor of F with respect to Zi (G = Fc,), and His the neg-

ative cofactor of F with respect to Zi (H = Fzi). The

1063-6757/93 $03.00 @ 1993 IEEE
42

node F thus represents the function F = xiG + %iH.
G is also known as the THEN node and H is also known
as the ELSE node. The sink nodes represent the con-
stant functions O and 1.

Ordered BDD’S have a total order imposed on the
variables; i.e:, an order is assigned to each variable,

and the variables must appear in ascending order
along every path in the OBDD. Because the BDD is

ordered, the DAG can be levelized with all nodes with
a particular top variable at a given level. Level i refers
to all nodes with a top variable Zi.

A global hash table, called the unique table, allows

a node of the DAG, (~i, G, H), to be found in con-
st ant time. A hash function is computed on the tu-
ple (xi, G, H) which provides an index into an array
of bins which store the first DAG node for that hash
value. All of the nodes with the same hash value (i.e.,
collisions) are stored in a linked list. Each node of the

DAG occupies 4 words: the variable index plus other

flags, a pointer to the THEN node, a pointer to the ELSE

node, and a pointer to the next node on the collision
chain for the unique table.

A global cache, called the computed table, is used as

a memory function for the recursive algorithms which

operate on the DAG. This table, irriplemented as a

hash-based cache, stores the results of recursive op-
erations such as ITE, but overwrites an entry when a
collision occurs, rat her than using a link-chain to re-
solve collisions. Each hash-based cache entry occupies
4 words: 3 words which form the key for the operation
(e.g., ITE(F,G,H) uses F, G, and H as the key) and a

single word which is the operation result. A ratio of
one cache entry is maintained for every four unique

table entries so that the total memory usage of the
package, including all overhead, is approximately 24

bytes per DAG node on a 32-bit machine.

The OBDD package uses garbage collection to recy-

cle memory. A reference count is maintained for each

node in the DAG, and a count of the number of dead

(i.e., unreferenced) nodes in the DAG is maintained
as nodes are created and freed. Dead nodes cannot
be freed immediately because an entry from the com-
puted table may point to the node; these references

are not included in the reference count because the
computed table entries are never deleted. During a

recursive operation such as XTE, a jind or add opera-
tion is performed to either find a node in the DAG or

to create a new node if the given node does not ex-
ist. If a new node is created causing the unique table

to become too full, then either a garbage collection is
performed if there are enough dead nodes in the DAG

to make it worthwhile, or the unique table array is
increased in size by a factor of two.

The key drawback to this package, which this paper
addresses, is that the ordering of the variables is spec-
ified in advance by the user. No assistance is offered

to help order the variables, and the order cannot be
subsequently changed.

3 Dynamic Variable Ordering
In this paper, I propose a general paradigm for

maintaining variable orders in an OBDD. The idea is

to have the OEJDD package determine and maintain

the variable order of the OBDD. This variaLble order
is changed automatically by the OBDD package, trans-
parently to the user, as operations axe performed. Be-
cause the variable order within the OBDD is no longer

static, this technique is referred to as dynamic vari-
able ordering.

Dynamic variable ordering differs from tlhe typical

use of OBDD’s where the variables are ordered once
when the OBDD is created and the order is maintained

throughout all subsequent processing. lt also differs

slightly from other proposed variable ordering schemes

in that the re-ordering is not performed at the explicit

request of the user. Instead, the package determines
appropriate points at which to stop processing, choose
a new order? and then resume processing.

When using dynamic variable ordering, a total or-
der is defined for all variables before and after each
package operation; however, the order is periodically

adjusted by the OBDD package, as a consequence of
an operation, to find a better order. Logically, the

variable order changes in-bet ween package operations.
Thus, we maintain all advantages provided by the or-

dered BDD data structure, such as canonicity and effi-
cient recursive algorithms.

A well-designed interface to an OBDD package hides
all details of the OBDD data structure. The program-
mer simply creates the variables and then uses pack-
age operations such as AND, OR, and NOT tc~ form new
functions. This allows dynamic variable ordering to be
applied transparently to the user of the OBD D package.

There are two goals we hope to achieve with dy-
namic variable ordering. The first goal is to allow

OBDD operation sequences which fail when using a
fixed heuristic variable order to succeed when a new

order is chosen mid-stream. The second goal is to re-

duce the need for the heuristic ordering algorithms -

i.e., problems which complete with a heuristic variable
order should also complete when starting from a ran-

dom variable order. If we can deliver on these goals,

the advantage of dynamic variable ordering to the user
of the OBDD package is clear.

One implementation of dynamic variable ordering is
as follows. At each garbage collection within the OBDD

package, which is triggered based on the growth of
the number of nodes in the DAG, a variable-reordering
algorithm is applied to the OBDD to reduce the OBDD

size. Any variable ordering algorithm can be applied
at this step, but the algorithms which are used must
be efficient because they will be applied repeatedly as

OBDD processing proceeds. Of course, the algorithms
must also be effective in finding a better variable order

for the OBDD.
Dynamic variable ordering motivates the expl~

ration of algorithms for OBDD minimization; i.e., re-
ducing the size of all functions simultanecmsly repre-

sented by a multi-rooted OBDD by changing the vari-
able order. Two algorithms for OBDD minimization

are considered in the next section.

4 Variable Reordering Algorithms
Many people, including Brace 1], Fujita et al. [6],

kand Ishiura et al. [7] have made t e observation that
swapping the order of two adjacent variables in an

43

OBDD affects only the DAG nodes at the two levels;
all other nodes remain unchanged. In this section? I

describe how to implement this operation so that Its
complexity is proportional to the number of nodes at
the particular level of the DAG and independent of the
size of the entire DAG. This efficient adjacent variable
swap forms the core for many OBDD minimization al-
gorithms. I then describe the window permutation al-

gorithm and the sifting algorithm for minimizing the
size of the OBDD.

4.1 Efficient Variable Swap
There are two problems with making the variable

swap of Zi and Zi+l have local complexity. The first

is that we need to find all nodes at level i without
walking the entire DAG starting from the roots. The

second is that each node in the DAG must represent
the same function before and after the variable swap
to avoid patching any references to that node.

A memory-efficient scheme to find all nodes at
level i replaces the single unique table with an array
of hash tables, one per level of the DAG. The variable
index is used to locate the hash table which stores all
nodes for that level of the DAG. The hash table has an

array of bins which store the first node for each hash
value for this level. Hence, all nodes at a given level

can be visited by walking the collision chain which

starts at each hash table array position.

A node F at level i can be pointed to by other
nodes above it in the DAG, and by functions which have

already been returned to the user. To reduce memory,
back-pointers are not maintained. Hence, there is no
way to reach all references to node F without walking
the entire DAG. Therefore, to perform a local variable
swap, it is necessary to maintain an identical logical
function at each node. This is done by overwriting the
node representing F with the new node which results
from the modification to the variable order. This is

done as follows.

Let F = (xi, Fl, Fo) be a node at level i. Let F1l

be the cofactor of F1 with respect to Zj+l. Computing
this cofactor is trivial: the result is either the THEN

&

node pointed to by F1 if z~+l is the top variable of
Fl) or F’l (otherwise). imilarly, let Flo be the neg-

ative cofactor of F1, and let FOI, FOO be the two co-
factors of F.. Node F is overwritten with the tuple

f(ZX+I, G, Fll, Fol), (zi, ~lo, Foo)). Expansion of this
ormula shows that It preserves the function of node

F and inspection ensures that the new variable or-

der (i.e., Zi+l is above xi) is established for all paths

through F.

The new nodes required at level i (i.e., (xi, Fll, I’ol)
and (z;, Flo, Foo)) may be degenerate nodes (e:g., in

the case that F1 ~ = FO1), or may already exist m the
DAG as required to implement other functions. When
F is re-expressed as a result of the variable swap, the
DAG’s rooted at F1 and F. can be freed. Note, how-
ever, that the nodes Foo, FO1, FIO, F1l all have ref-
erences after the variable swap, so that only the root
nodes PI and F. can be freed as a result of the swap.

To be specific, node F1 can be freed if the only refer-
ence to F1 previously came from node F.

We can make use of this observation to perform in-

crement al garbage collection during the variable swap.
Before OBDD minimization is applied, a garbage col-

lection is performed and the computed t able is cleared.
Thereafter, nodes at level i + 1 can be deleted incre-
ment ally if they have no other reference beside the
reference from level i.

Attributed ed es have been proposed by, among

fothers, Karplus 8], Madre and Billon [9], and Mi-
nato et al. [11]. The edges in the OBDD are tagged
to indicate a modification of the referenced function.

This reduces the size of the DAG by allowing a sin-
gle node to represent several different functions. The

most popular and useful attribute is the negate-output
edge, although other attributes, such as negate-input

I
edge [11 and negate-else edge [4] have been proposed.
The inc usion of attributed edges is usually transpar-

ent to the algorithms which operate on the OBDD. In
particular, the complexity of an adjacent variable swap
is unaffected by the inclusion of negate-output edges.
However, inclusion of either negate-input or negate-
else edges appears to destroy the local complexity of
a variable swap by requiring pointers to a modified
node to be changed. (More details can be found in
[12].) One impact of dynamic variable ordering, then,

is that these last two edge attributes cannot be used.

4.2 Window Permutation Algorithm
Fujita et al. [6] and Ishiura et al. [71 presented sim-

ilar heuristic algorithms for minimizing the size of a

OBDD using adjacent variable exchange. I refer to this
al~orithm as the window permutation alaorithm.

“The window permuta~ion algorithm” proceeds by
choosing a level i in the DAG and exhaustively search-

ing all k! permutations of the ii adjacent variables
starting at level i. This is done using k! – 1 pair-
wise exchanges followed by up to k (k – 1)/2 pairwise
exchanges to restore the best permutation seen. This

is then repeated starting from each level until no im-
provement in the DAG size is seen. Figure 1 shows

the variable permutations which are explored when
applying a window of size lc = 3 starting at variable

Z2. Six permutations are explored with 5 adjacent
variable swaps, and then 3 additional variable swaps

(worst case) are used to restore the best permutation.

m
Figure 1: Window Permutation Example.

Marking can be used to record when a variable ex-
change at a given level may be profitable. A level is
marked after the permutation at the level is known op-
timal. This mark is reset when a new permutation is

determined for any of the preceding k – 1 levels; when

44

all levels in the DAG are marked, the window permut w
tion algorithm cannot further Improve the DAG size).

Because the swap of two adjacent variables is ef-
ficien~, the window permutation algorithm remains

practical for values of k ae large as 4 or 5. However, re-
sults presented in Section 5.2 and Section 5.2 indicate

that the window permutation algorithm is limited in
its ability to find good variable orders.

4.3 Sifting Algorithm
I propose a new OBDD minimization algorithm in

this paper which I call the sij%ng algorithm. This al-

gorithm is based on finding the optimum position for
a variable, assuming all other variables remain fixed.
If there are n variables in the DAG (excluding the con-
st ant level which is always at the bottom), then there
are n potential positions for a variable, including its

current position. Among these n positions, the sub-
goal employed by the sifting algorithm is to find the
spot which minimizes the size of the DAG.

Ideally, we could find the best position for a vari-
able assuming all other variables remain fixed with a

low-complexity analysis of the OBDD. However, this
does not appear possible. Therefore, the optimum po-
sition for a variable is determined by brute-force enu-
meration as follows. The variable is exchanged with
its successor variable until the variable becomes the
next to last variable in the DAG; i.e., the variable is

sifted down to the bottom of the DAG. Then the vari-
able is exchanged with its predecessor variable until

the variable becomes the top variable in the DAG; i.e.,
the variable is sifted up to the top of the DAG. The

best DAG size seen during this search is remembered

and the position of the variable is restored by moving

the variable from the top position down to its opti-
mum position. Figure 2 shows the variable permu-
t ations which are explored when applying the sifting
algorithm to variable X4. The 7 positions for variable
X4 are explored using 9 adjacent swaps, and the opti-
mum position is restored with an additional 6 swaps
(worst-caze).

XI,@,c3,~4,~5)~6>~7 mltlal

ZIjS2)~3,~5,~4,~6)~7 swap (z4, z5)

~1,~2,~3,~5>~6,~4,~7

[1

swap x4, x6

~l)~2)~3,x5j~61z71x4 swap x4, x7

Xl, x2>~3, x5)~6>~4)x7

[1

swap z7, Z4

~l,~2,~3,~5)x4,Z6>x7 swap x6, X4

Xl,x2,Z3,~4,~5,~6,~7 swap (x5, z4)
XI, ~Z, X4, X3, X5jx6>x7

[1

swap x3, x4

Xl,X4,~2,~3,~5,~6,~7 swap X2, x4

Z4, xl, x2, x3, x5, x6jx7 swap 21, x4

xl, $4, X2, x3, x5, ~6, x7 swap z4, q

Zl, X2, X4, ~3, x5, x6!x7

[1

swap x4, x2

xl, x2,x3,x4,x5,x6,x7 swap x4, x3

Xl, x2, X3, x5, x4, x6}x7

~]

swap x4, x5

Xl, X2, ~3, X5, *6, x4Jx7 swap x4j x6

XI, x2, x3, x5, x6, *7j~4 swap 24, x7

Figure 2: Sifting Algorithm Example.

The sifting algorithm proceeds as follows. The vari-
ables are sor<ed ~nto decr~asing size based on the num-

ber of nodes at each level of the DAG. Then each vari-
able is moved to its locally optimum position assuming
that all other variables remain fixed. Each variable is
moved only once in this process, although the algo-

rithm could be iterated to convergence.

The sift algorithm has the advantage that a vari-
able can move a long dist ante in the ordering. Note

that the DAG-size can increase significantly after the
first few variable swaps, and then eventually reduce

below the starting point. This allows a Qpe of up-
hill move to be taken – the acceptance of the entire
sequence of pairwise swaps is based on the best posi-
tion seen regardless of any increase in the intermedi-
ate DAG size. A limitation of the window permutation
algorithm appeam to be that several moves can be
required to move a variable a long distance and these
moves can be blocked by an intermediate up-hill move.

The sift algorithm requires 0(n2) swaps of adjacent
levels in the DAG, and each of these variable swaps

has complexity proportional to the width c}f the DAG.

To control the worst-case complexity, the search in a
particular direction is terminated if the DAG size grows
to twice its original size.

5 Experimental Results
The lWLS ’91 benchmark set includes a directory of

76 combinational circuits (cmlexamples) and 40 se-
quential circuits (smlexamples). This includes the
IS CAS’85 and lSCAS ’89 benchmarks. Because most
of these circuits are trivially small, I focus here on

the 35 largest multiple-level examples. All DAG-sizes
are given in thousands of nodes, and the run-times

are measured on a Sun Microsystems SparcStation-10

Model 41.

Due to space limitations, only summary results are
presented in this paper. Complete tables of results
appear in [12].

5.1 Random Orders vs. Heuristic Orders
The first experiment was to form the OBDD’S for all

primary outputs. The same variable order was used
for all of the primary outputs. The variable order was

first determined with a single random trial, and then
using the depth-first heuristic ordering algorithm.

When the maximum DAG size was set to 100,000
nodes (2.4 mB memory), it was not possilble to form

the OBDD’s for 23 of the 35 circuits when using a ran-
dom variable order, and it was not possible to form
the OBDD’S for 11 of the 35 circuits when using the

depth-first heuristic ordering algorithm. The 11 cir-
cuits which failed when using a depth-first ordering

were c2670, c954 O, c6288, c 7552, z1O, mm9a, mm9b,
mm30a, s923d.1, s15850.1, and s38417.

When the maximum DAG size was increased to

1,000,000 nodes (24 mB memory), the random order
failed for 13 of the 35 circuits and the heuristic order
failed for 7 of the 35 circuits. The 4 additional cir-
cuits which completed when given more memory were
c3540, z1O, s9234.1, and s15850. I.

5.2 OBDD Minimization Comparison
The next experiment compares the window permu-

tation algorithm against the sift algorithm for OBDD

minimization. The OBDD’s for 24 of the 3,5 examples

45

can be formed using the heuristic ordering algorithm

and a 100,000 node limit. These 24 circuits were min-

imized after the OBDD’s had been formed with the
window permutation algorithm for k = 2,3,4,5 and
the sifting algorithm. The relative DAG-size and CPU
rat ios for each minimization algorithm is given in Ta-
ble 1.

The sift algorithm results in OBDD’s which are 45%1
smaller than the heuristic order, while the window
permutation algorithm with k = 4 produces OBDD’S
which are only 30% smaller. The sift algorithm pro-

duces OBDD’s which are 20% smaller than the window
permutation algorithm (k = 4) at the cost of an addi-

tional 40% in run-time.

5.3 Dynamic Variable Ordering
The next experiment compares the window per-

mutation algorithm and the sifting algorithm in the
context of dynamic variable ordering. For this experi-
ment, I focused on the 11 examples which cannot com-

plete with the heuristic order. Dynamic variable or-
dering was performed by applying the corresponding

OBDD minimization algorithms at each garbage collec-

tion, and the measurement criteria was to see if the

examples could complete. The results are given in

Table 2 where FAIL refers to the number of primary

outputs which failed to have their OBDD formed.

Dynamic variable ordering using the window per-
mutation algorithm (k=4) was able to complete 3 of
the 11 failed examples (,mm9u, mm9b, and s15850.1).
Dynamic variable ordering using the sifting algorithm
was able to complete 9 of the 11 failed examples.
Only c6288 and s38117 still fail with the 100,000 node
limit. Even for these two failed examples, fewer out-

puts failed when the sifting algorithm was used.

5.4 Performance Impact

The last experiment compares the run-time for the

35 largest circuits without dynamic variable ordering,
with dynamic variable starting from the heuristic vari-

able order, and wit h dynamic variable ordering start-

ing from a randomly generated variable order. The
results are summarized in Table 3. The sift algorithm
was used when performing dynamic variable ordering.

For the 24 examples which complete both with and
without dynamic variable ordering, the run-time was

increased an average of 6.8 when using dynamic vari-
able ordering starting from the heuristic order. The

average OBDD size for these 24 examples was reduced
by a factor of 1.8 (45%) when dynamic variable order-

ing was used.

Table 3 also compares dynamic variable ordering
starting from the heuristic order (DVO/heuristic) to

dynamic variable orderin starting from a randomly

tgenerated variable order DVO/random). The sifting

algorithm was still able to complete for all but 3 ex-
amples (c6288, mm30a, and s3841 7). Interestingly,
the DAG sizes starting from the random order were
only slightly larger than the DAG sizes when starting
from the heuristic order while the run-time increased
by almost a factor of 2.

1 Averages for the benchmark set are computed as the arith-

metic mean of the ratio computed for each example.

5.5 Summary
The sift algorithm is superior to the window permu-

tation algorithm, both as a static OBDD minimization

algorithm and in the application of dynamic variable
ordering. The sift algorithm consistently produces
smaller OBDD’s than the window permutation algc
rithm, although it has run-times which are longer.

The application of the sift algorithm in conjunction
with dynamic variable ordering allows 9 of the 11 com-
binational circuits which could not complete using a

static variable order to complete.

When a random variable order was used as the

starting point rather than the heuristic variable order,

OBDD processing was still able to complete for 32 of

the 35 largest examples, including 8 of the 11 difficult
examples. While some improvement still exists when

starting from the heuristic order, for most examples a
random order does not affect the ability of the OB DD

processing to complete.

These results indicate that the goals of completing
more computations and reducing the dependence on

the need for’ heuristic ordering algorithms have been

achieved for this application.

6 Conclusions
This paper proposes a modification to an OBDD

package whereby the OBDD package owns and main-
tains the order of the variables. At each garbage col-
lection, an algorithm is applied on the OBDD to reorder
the variables so as to reduce the number of nodes in
the OBDD. Two OBDD minimization algorithms were
tried: the window permutation algorithm and the sift-
ing algorithm. Little benefit was seen from the appli-

cation of the window permut at ion algorithm for k = 4.
Dynamic variable ordering using the sifting algorithm
was able to complete several OBDD operations which

were not able to complete without dynamic variable

ordering, and the resulting OBDD tended to be signif-

icantly smaller. In almost all cases, dynamic variable

ordering was able to complete the OBDD operation se-

quences even when starting from a random variable
order rather than a heuristically determined variable
order. The drawback of dynamic variable ordering is
that the runtime for the OBDD operations increases
significantly.

7 Future Directions
One direction for this work is to investigate dy-

namic variable ordering when applied to other OBDD
problems. For example, the fixed-point algorithm
found in sequential verification has the problem that
determining a good variable order a priori for both the
transition relation OBDD and the state space OBDD is

difficult. It would be interesting to see if dynamic
variable ordering could improve the efficiency and ap-
plication of these algorithms.

The utility of dynamically determining the variable

order for the OBDD haa been demonstrated; however,
the run-time impact is very large. One idea to improve
the sifting algorithm would be to devise a more effi-
cient algorithm to determine the optimum position for

a variable (assuming all other variables remain fixed).

46

Another idea would be to explore exact bounding tech-
niques that determine when a search in a particular di-

rection can be terminated. Also, exploring completely
different algorithms for OBDD minimization is a possi-

bility.
Finally, it would be interesting to determine bounds

on the growth of the OBDD as a single variable is moved
*Ic positions.

Acknowledgements

Discussions with Karl Brace in 1989 led to the ob-
servation that only local operations were needed to ex-
change two variables in the OBDD and that all nodes
at a given level of the OBDD could be reached effi-

cient ly at no cost. I would like to thank Jerry Burch
and David Long for several discussions on the man-

ual techniques they use to find good variable orders.
Their suggestions motivated the sifting algorithm.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

K. Brace. Personal Communication, June 1989.

K. Brace, R. Bryant, and R. Rudell. Efficient Im-

plementation of a BDD Package. In Proceedings .Z7th

Design Automation Conference, June 1990.

R. E. Bryant. Graph-based Algorithms for Boolean

Function Manipulation. IEEE ~raras. Comp., C-

35(8):677–691, August 1986.

J. Burch. Personal Communication, June 1992.

M. Fujit a, H. Fujisawa, and N. Kawato. Evaluation

and Improvements of Boolean Comparison Method

Based on Binary Decision Diagrams. In Proceedings

International Conference on Computer-Aided Design,

pages 2–5, November 1988.

M. Fujita, Y. Matsunaga, and T. Kakuda. On Vari-

able Ordering of Binary Decision Diagrams for the

Application of Multi-level Logic Synthesis. In Pro-

ceedings European Design Automation Conference,

pages 50-54, March 1991.

N. Ishiura, H. Sawada, and S. Yajima. Minimization

of Binary Decision Diagrams Based on Exchanges of

Variables. In Proceedings International Conference

on Computer.A ided Design, pages 472–475, Novem-

ber 1991.

K. Karplus. Representing Boolean Functions with

If-Then-Else DAGs. Computer Engineering UCSC-

CRL-88-28, UC Santa Cruz, December 1988.

J.-C. Madre and J.-P. Billon. Proving Circuit Cor-

rectness using Formal Comparison Between Expected

and Extracted Behavior. In Proceedings .25th Design

Automation Conference, pages 205-210, June 1988.

S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-

Vincentelli. Logic Verification Using Binary Deci-

sion Diagrams in a Logic Synthesis Environment. In

[11]

[12]

Proceedings International Conference on Computer-

Aided Design, pages 6-9, November 1988.

S. Minato, N. Ishiura, and S. Yajima. Shared Binary

Decision Diagram with Attributed Edges for Efficient

Boolean Function Manipulation. In Proceedings .27th

Design Automation Conference, June 1990.

R. Rudell. Dynamic Variable Ordering for Ordered

Binary Decision Diagrams. Technical Report, Synop-

sys, Inc., 700 E. Middlefield Road, Mountain View,

CA’ 94043, January 1993.

Algorithm I size Cpu

No minimization 1.00 1.00

Window, k=2 0.81 1.19

Window, k=3 0.72 1.49

Window, k=4 0.70 2.83

Window, k=5 0.67 9.19

Sift 0.55 3.84

Table 1: Minimization Comparison.

Example

C2670

C3540

C6288

C7552

i10

mm9a

mm9b

mm30a

s9234.1

s15850.1

s38417

No

Dynamic

Ordering

SIZE FAIL

>100 2

>100 2

>100 22

>100 4

>100 7

>100 7

>100 7

>100 60

>100 7

>100 8

>100 532

Window

Algorithm
k=4

SIZE FAIL

>100 2

>100 7

>100 22

>100 4

>100 6

4.4 0

5.2 0

>100 60

>100 6

54.0 0

>100 414

—
Sift

Algorithm

?IZE FAIL

_O.6 o

27.2 0

>100 21

8.2 0

41.2 0

2.0 0

2.5 0

17.6 0

4.5 0

17.5 0

>:100 203

Table 2: Results for 11 Hard Examples.

Algorithm size Cpu

No minimization 1.00 1.00

DVO/Heuristic 0.56 6.80 I
DVO/Random I 0.58 11.80 j

Table 3: Performance Results.

47

