
Page 1

© R. Rutenbar 2001 CMU 18-760, Fall01 1

(Lec19) Geometric Data Structures for Layouts(Lec19) Geometric Data Structures for Layouts

What you know
Some basic ASIC placement (by annealing)

Some basic ASIC routing (global versus detailed, area routing by cost-
based maze routing)

Some timing analysis: logical and electrical

What you don’t know
Basic representation techniques for handling a lot of geometry

Standard “procedures” supported on these geometric data structures

Pros, cons comparative features of common geometric structures

© R. Rutenbar 2001 CMU 18-760, Fall01 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001 CMU 18-760, Fall01 3

Where Are We?Where Are We?

Geometric data structures for BIG layouts…

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001 CMU 18-760, Fall01 4

Nominal Deadlines…Nominal Deadlines…

…and, this is clearly a bit extreme for the last week of class
Open to suggestions for moving some deadlines BACK some…

…but need to be careful not to mess up people with finals, early travel
plans for break, etc

19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

13
14
15Dec

Thnxgive

10 11 12 13 14 16

HW5
6 PPT slide
paper review

Proj 3 demos

Last 760 lecture (probably…

17 18 19 20 21 Finals

Revisions:

Move HW5 and Paper3 to
17 Dec Monday, due 5pm
Lyz Knight’s office. Proj3 still
Due 14 Dec Friday.

Page 3

© R. Rutenbar 2001 CMU 18-760, Fall01 5

Data StructuresData Structures

A large IC layout represents a lot of data
10M to 100M devices

~10 to 20 pieces of geometry per device

0.1 to 1 billion rectangles--easily

How do we manage this large collection of data?
Depends on what you want to do with the layout.

1000s of cells. 10s of gates. 100s of rectangles.

Typical ASIC: Module or cell: Logic gate:

© R. Rutenbar 2001 CMU 18-760, Fall01 6

2 Basic Kinds of “Queries” on these Structures2 Basic Kinds of “Queries” on these Structures

A “pick” operation--
Given (x,y), tell me what
I touch....

A “region query” operation--
Given a box, tell me
everything inside the box

Page 4

© R. Rutenbar 2001 CMU 18-760, Fall01 7

Data Structures: QueriesData Structures: Queries

Data structure queries
Pick: Given an x,y location, tell me what lives there.

Region query: Given a bounding box, tell me what’s inside it.

Uses
Checking DRC-type layout interactions

Printing masks.

Extracting electrical circuits from layout.

Searching the neighborhood of a given device or circuit.

Note:
No inserting or deleting data is done -- just asking where things are.

© R. Rutenbar 2001 CMU 18-760, Fall01 8

Data Structures: Layout ModificationData Structures: Layout Modification

Adding & Deleting geometry
Inserting or removing rectangles from the data collection.

Uses
Interactive layout editing: Cadence Virtuoso or MAGIC.

Global and detailed routing.

Local rip-up and reroute.

Placement “legalization” = fine local adjustments.

Caveats
With some data structures, it is easy to add new geometry but difficult
to delete.

Need to be careful to match structure to the application

Page 5

© R. Rutenbar 2001 CMU 18-760, Fall01 9

Data Structures: Useful ReferencesData Structures: Useful References

Survey paper
J. Rosenberg, “Geographical data structures compared: a study of data
structures supporting region queries,” IEEE Trans. CAD, CAD-4, 1, Jan.
1985.

Old, but very useful. Actually has code (in a somewhat archaic looking
C now) for a lot of these data structures.

Tile plane paper
J. Ousterhout, “Corner stitching: a data structuring technique for VLSI
layout tools,” IEEE Trans. CAD, CAD-3, 1, Jan. 1984.

It’s the data structure underneath the Berkeley MAGIC layout editor

Yeah, the same Ousterhout who developed tcl/tk, and MAGIC.

© R. Rutenbar 2001 CMU 18-760, Fall01 10

Data Structures: Survey of TypesData Structures: Survey of Types

Linked List
Simple but slow

Bins
Straightforward - commonly used

Quad Trees
Very widely used

k-d Trees
Good complexity but limited

Corner Stitched Tile Planes
Good for layout editing, fine-grain local manipulation of shapes

Page 6

© R. Rutenbar 2001 CMU 18-760, Fall01 11

Data Structures: Linked ListsData Structures: Linked Lists

OK for grouping small amounts of data
But as soon as you have lots of rectangles & complex queries, this is bad

Complexity (assume you have N rectangles)
Time:

Find O(N)

Insert O(N) (O(1) if not sorted)

Delete O(N)

Memory:

O(N) - one link for each data item.

obj

prev next

data

obj

prev next

data

obj

prev next

data

. . . NULL
NULL

List ptr

© R. Rutenbar 2001 CMU 18-760, Fall01 12

Practical Issues: Linked ListsPractical Issues: Linked Lists

Lousy complexity, but widely used…
…when you only have a “a few” objects to represent

More sophisticated structures will get presented after this…

…but, they all come with some overhead; nothing is free

If you have a small # of rectangles to handle, a linked list is the right way

Where the breakpoint is between doing it like this (“flat”) and using a
smart structure is something you have to determine empirically

Page 7

© R. Rutenbar 2001 CMU 18-760, Fall01 13

Data Structures: BinsData Structures: Bins

Bin idea
Divide up surface of the chip into rectangular bins (also called buckets)

Inside each bin, you have a linked list of all the rectangles you touch.

Data organized by a 2D array
of geometric bins, each of which

holds all local rectangles in a
linked lists.

© R. Rutenbar 2001 CMU 18-760, Fall01 14

Data Structure: BinsData Structure: Bins

Queries
Pick: go to the bin with the (x,y) you want, look at all the rectangles

Region query: go to all the bins that touch the region, look at all the
rectangles

Pick
(x, y)

Region
query

Page 8

© R. Rutenbar 2001 CMU 18-760, Fall01 15

Data Structures: BinsData Structures: Bins

How does it really work
Need a pointer to a “rectangle object” from every bin it touches.

May have to walk thru lots of bins to insert/delete a big rectangle

Impacts the granularity of the grid you pick...

Eight bins point to this one object.

© R. Rutenbar 2001 CMU 18-760, Fall01 16

Data Structures: BinsData Structures: Bins
How big should the bins be?

Let, Ao = average object size and Ab = bin size.

If you have many, small bins...
Memory use is large, insert and delete times are long.
But “pick” operations are really fast (few objects per bin)
Need to be careful to tune bin granularity to problem

Ao << Ab Ao ≈ Ab Ao >> Ab

1 4 many...#bins / object:

Page 9

© R. Rutenbar 2001 CMU 18-760, Fall01 17

Data Structures: BinsData Structures: Bins

Summary
Good for evenly distributed objects of similar size.

Complexity
Time:

Find O(1)

Insert O(1)

Delete O(1)

Memory:

O(N) - if number of bins is < number of objects

- small linked list per bin

But this assumes a lot of empirical tuning, and is pretty much a
best-case estimate. BAD things can happen if your geometry
isn’t “evenly distributed”....

© R. Rutenbar 2001 CMU 18-760, Fall01 18

Data Structures: Quad TreesData Structures: Quad Trees

Problem with bins:
What if data is not uniformly distributed?

If one small region of the chip is very dense, the search in that region is
slow since the bin size is fixed and the linked lists for each bin are long.

We want to divide up space in a more dynamic fashion - only subdivide
region where the “action” is.

Few objects in
this region.

Lots of detail
here.

Page 10

© R. Rutenbar 2001 CMU 18-760, Fall01 19

Data Structures: Quad TreesData Structures: Quad Trees

Tree data structure with four children:

UL

LL LR

UR

UL UR LL LR

Given a region (called a quad),
subdivide it into four equal parts:

List of geometry
that hits a bisector line

Each child is another quad tree.

Rules:
• If an object overlaps any of these bisector (center) lines in this quad,

put it in the list for this quad.
• Else if it is totally within a single quadrant,

pass the object to the appropriate child tree.

© R. Rutenbar 2001 CMU 18-760, Fall01 20

Quad Tree ConstructionQuad Tree Construction

Objects that hit either of the bisector lines…
These cannot be entirely inside the UL, UR, LL, LR regions

So, they go on the ‘bisector list” at the top.

UL

LL LR

UR

UL UR LL LR

Each child is another quad tree.

Page 11

© R. Rutenbar 2001 CMU 18-760, Fall01 21

Quad Tree ConstructionQuad Tree Construction

Objects that don’t hit either of bisector lines
These live entirely inside one of the UL, UR, LL, LR regions

So, they get passed down to me quad tree for that region

Just repeat this recursion

UL

LL

LR

UR

UL UR LL

LR

UL UR LL LR

© R. Rutenbar 2001 CMU 18-760, Fall01 22

Data Structures: Quad Tree ExampleData Structures: Quad Tree Example

1 2

3 4 7

5 6 8

9

10

11

UL LL

UL LL LR UL LL

11

1,2 3,4 7

9, 10

8

UL UR

65

Page 12

© R. Rutenbar 2001 CMU 18-760, Fall01 23

Quad Tree Query: PickQuad Tree Query: Pick

Just walk down the tree...
Going into the region that holds your x,y, till the tree ends

Look at the rectangles you find

1 2

3 4 7

5 6 8

9

10

11

UL LL

UL LL LR UL LL

11

1,2 3,4 7

9, 10

8

UL UR

65

© R. Rutenbar 2001 CMU 18-760, Fall01 24

Quad Trees: Region QueryQuad Trees: Region Query

Assume your region box hits a bisector
Look on bisector list first for all rectangles there

Then, chop up region box into (at most 4 pieces) and pass 4 new regions
down tree, ie, recursively call region query 4 times on child trees

UL

LL LR

UR

UL UR LL LR

UL UR

LL UR

Page 13

© R. Rutenbar 2001 CMU 18-760, Fall01 25

Quad Trees QueriesQuad Trees Queries

1 2

3 4 7

5 6 8

9

10

11 UL

UL LL LR

11

1,2 3,4 7

Objects we need to check:
11, 1, 2, 3, 4, 7

Region query Looking for objects near 2.

© R. Rutenbar 2001 CMU 18-760, Fall01 26

Data Structures: Quad TreesData Structures: Quad Trees

Insert and delete

UL LL

UL LL LR UL LL

11

1,2 3,4 7

9, 10

8

UL UR

65

Delete

Remove object
from the list and
child from tree if
necessary.

Insert

Walk down tree to
find appropriate quad.
Create child if needed.

Page 14

© R. Rutenbar 2001 CMU 18-760, Fall01 27

Data Structures: Quad TreesData Structures: Quad Trees

Lots of variants and parameters
In particular, you can be more clever about bisector list structure

How many rectangles per leaf node of tree?
One. Called perfect quad tree.

Easy search but huge tree. (Not realistic…)

Not less than K. Called an adaptive quad tree.
Smaller trees but with longer lists/node.
Everybody does something like this now…

How small can a quad in tree be?
Not less than area A. We do no quad division if region is too small;

use linked list of objects at leaves.
Another adaptive sort of a tree.
Smaller trees but lists may be long.

Use these ideas to tune the tree to the problem

© R. Rutenbar 2001 CMU 18-760, Fall01 28

Data Structures: Quad TreesData Structures: Quad Trees

Summary
Good for non-uniformly distributed data.

Not a balanced tree.

Complexity:
Time:

Find O(log N)

Insert O(log N)

Delete O(log N)

Memory:

O(N) - worst case, 4N tree nodes (perfect quad tree)

Page 15

© R. Rutenbar 2001 CMU 18-760, Fall01 29

Data Structures: k-d TreesData Structures: k-d Trees

Problems with basic Quad Trees
Quad trees do the right thing in that they cut up the layout
area into fine bins only where needed.

However, if there are a few spots of fine detail those areas
suffer from the same slow search problems as with bins.

Lots of geometry.
Many linked lists.

Lots of
detail.

© R. Rutenbar 2001 CMU 18-760, Fall01 30

Data Structures: k-d TreesData Structures: k-d Trees

k-d tree is multidimensional binary tree
k = number of keys used in comparison, hence “k dimensional”

Probably most familiar with 1-d tree:

10

5

3

15

7

4

16

Only one key.

X

All objects
less than X

(<=)

All objects
greater than X.

(>)

Page 16

© R. Rutenbar 2001 CMU 18-760, Fall01 31

Data Structures: k-d TreesData Structures: k-d Trees

Consider a 2-d tree.
2 keys in each data item (k1, k2)

This is a decision tree in which you look at a different key at each
level of the tree.

10, 8

5, 17

3, 4

15, 2

7, 21

4, 9

16, 3

X2,Y2

All objects
< X1,
< Y2.

All objects
< X1,
> Y2.

X3,Y3

All objects
> X1,
< Y3.

All objects
> X1,
> Y3.

X1,Y1
Relevant
key is
underlined

© R. Rutenbar 2001 CMU 18-760, Fall01 32

Data Structure: k-d TreesData Structure: k-d Trees

Key-comparison alternates, repeats down tree
Level 1: look at k1. Level 2: look at k2. Level 3: k1 again. Level 4: k2

At level n you look at key n mod 2

10, 8

5, 17

3, 4

15, 2

7, 21

4, 9

16, 3

Page 17

© R. Rutenbar 2001 CMU 18-760, Fall01 33

Data Structures: k-d TreesData Structures: k-d Trees

We’ll use 4-d trees to organize rectangles:

Keys are:
k1 = left edge (x min)

k2 = bottom edge (y min)

k3 = right edge (x max)

k4 = top edge (y max)

Tree structure
Builds a binary tree, but at level i mod 4, we look at key k(i mod 4) to
decide which child to pass the rectangle to.

New idea
Partitions space in a way that is dynamically dependent on the data.

Each new rectangle inserted in tree defines a new bisector-type cut
thru the chip surface.

© R. Rutenbar 2001 CMU 18-760, Fall01 34

Example: Building k-d TreeExample: Building k-d Tree

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1 2

3 4 7

5 6 8

9

10

11

1-left 2-bottom 3-right

4-top 5-left 6-bottom …

Page 18

© R. Rutenbar 2001 CMU 18-760, Fall01 35

Data Structures: k-d TreesData Structures: k-d Trees

Building a 4-d tree:

1 2

3 4 7

5 6 8

9

10

11

1 - L

3 - R

2 - B

4 - T

5 - L

6 -B

7 -L

11 -B

8 -R9 - R

10 -T

© R. Rutenbar 2001 CMU 18-760, Fall01 36

k-d Tree Ideask-d Tree Ideas

Space still chopped up like quad tree
But the partition is not static like a quad tree

It depends on the data

Each new rectangle defines another cut line

Pro
You get finer partition where you need it

Cuts adapt to data

Con
Cuts depend entirely on the insertion order of the data

If you insert things in a bad order, you can still get lousy partition

Can insert easily, cannot delete easily...

Page 19

© R. Rutenbar 2001 CMU 18-760, Fall01 37

Data Structures: k-d TreesData Structures: k-d Trees

Insert and delete

1 - L

3 - R

2 - B

- T

5 - L

6 -B

7 -L

11 -B

8 -R9 - R

10 -T

Insert

Walk down tree and
add a child.

new

Delete

Cannot. Rest of
tree depends on
this key! Keep the
keys and just mark
object pointer
as void.
Basically, you have
to garbage collect
and rebuild tree
later

© R. Rutenbar 2001 CMU 18-760, Fall01 38

Data Structures: k-d TreesData Structures: k-d Trees
Summary

Useful if data is pretty static and you want to mostly do queries
Bad for highly dynamic data (lots of insertions and deletions).

Historically
Theoretically hot in the 80s, today not used as much anymore
Recent variants of quadtrees that allow each rectangle to be
redundantly stored in several places in the tree do very well here;
they’ve basically displaced k-d trees today

Complexity
Time:

Find O(log N)
Insert O(log N)
Delete O(log N)

Memory:
O(N) - exactly one node per object.

Page 20

© R. Rutenbar 2001 CMU 18-760, Fall01 39

Data Structures: Corner StitchingData Structures: Corner Stitching

Very different alternative
Not a tree or a bin

Big ideas
All space, both occupied & empty space, is explicitly represented.

All layout area is tiled with nonoverlapping rectangles:

object space = object tiles

empty space = empty tiles

Tiles are stitched together at the corners.

New: Canonical representation
Given a layout of objects, there is only one space tile representation

Makes searching & editing easier: you know how things must be organized

© R. Rutenbar 2001 CMU 18-760, Fall01 40

Data Structures: Corner StitchingData Structures: Corner Stitching

The rules:
2 tile types: space=empty, solid=“something there”

Maximal horizontal strips: every space tile must be as wide as possible

No space tile can have another space tile to the left or right of it

Each space tile is as tall as it can be without violating above rules.

Solid tile

Empty space tile:
as wide as possible,
never horiz. adjacent to
another empty space tile,
as tall as possible.

Page 21

© R. Rutenbar 2001 CMU 18-760, Fall01 41

Aside: About Canonical FormAside: About Canonical Form

Tile planes represent empty space in a canonical way
But, as originally presented, they don’t represent “solid” canonically

Legal tile plane Also a legal tile plane;
Note only space tiles

are same here…

© R. Rutenbar 2001 CMU 18-760, Fall01 42

Aside: About Canonical FormAside: About Canonical Form

Actual tiles may depend on order of insertion of solid tiles
In the original version, you “chop up” the new solid tile into pieces that
only overlap space tiles in the layout, then insert each of these pieces

This is how Ousterhout does it in the paper…

Starting tile plane After insertion

insertedInsert…
???

Page 22

© R. Rutenbar 2001 CMU 18-760, Fall01 43

Aside: About Canonical FormAside: About Canonical Form

Can also insist on canonical form for the solid tiles
Just like space tiles: they are maximally wide, never have same-color
tiles at left or right, and after satisfying this, they are maximally tall

If solids use same rules
as space tiles, only

this is legal

Illegal tile plane:
solids not max wide

X

© R. Rutenbar 2001 CMU 18-760, Fall01 44

Repairing Violations of Canonical FormRepairing Violations of Canonical Form

Always same pattern: split the bad tiles, re-merge them correctly

Find adjacent
empty space tile
violations and
split tiles.

Merge adjacent
empty space
tiles for max
height.

X
X

X

split split

split split

split

split

split split split

split split

split split

merged

merged

merged

Page 23

© R. Rutenbar 2001 CMU 18-760, Fall01 45

Corner Stitched Tile PlanesCorner Stitched Tile Planes

Ideas
Canonical representation for “one layer” of stuff on an IC

Example: metal2, or polysilicon

Just like BDDs: all algorithms that manipulate a tile plane are required
to keep it -- at least space tiles -- in canonical form after the processing

Manipulations
Insert a new tile

Delete a tile

Point search

Region search

© R. Rutenbar 2001 CMU 18-760, Fall01 46

Corner Stitching Tile Plane: ImplementationCorner Stitching Tile Plane: Implementation

Stitches at 2 corners of each tile
Can put stitches at all 4 corners; but only need them at 2 corners

Corners are stitched
together with pointers:

Only know about other tiles
that are near the upper right
and lower left corners.

Only know some of your
adjacent neighbors directly

Page 24

© R. Rutenbar 2001 CMU 18-760, Fall01 47

Tile Planes: Point SearchTile Planes: Point Search

Point Search
Given x,y

Search horizontally to find a
tile the bounds the x coord.

(Bounds means “overlaps”)

Search vertically to find a
tile that bounds the y coord.

Repeat till you hit a tile the
contains that point

Looking for this point.

Start here.

© R. Rutenbar 2001 CMU 18-760, Fall01 48

Tile Planes: Region QueryTile Planes: Region Query

Region search
Ousterhout gives a neat recursive enumeration algorithm

Basic idea
Visit tiles in region top to bottom, left to right (sort of...)

Each tile is “owned” by just other tile, which calls the recursive
“enumerate” algorithm on that tile.

If your neighbor tile’s lower left corner touches “you”, you
“own” that tile and recursively call the enumerate algorithm
on that tile

Or, if you and your neighbor tile are both at the bottom of the
region, you “own” him and call enumerate on him

Each tile visited many times, but enumerated just once.

Page 25

© R. Rutenbar 2001 CMU 18-760, Fall01 49

Outerhout’s AlgorithmOuterhout’s Algorithm

R = region
Find all tiles on left edge of the region R
for (each of these tiles T on left edge of R)

enumerate(tile T)

enumerate(tile T)
{

Put tile T on list.
If (right edge of T out of region R)

return.

Find all tiles touching right side of tile T
For (each of these neighbor tiles S)

call enumerate(neighbor tile S)
return

}

© R. Rutenbar 2001 CMU 18-760, Fall01 50

Ousterhout’s ExampleOusterhout’s Example

1

2

3 4

5
6

7

8
9

10

Query
region

Tiles.
This algorithm does not
actually care whether a tile
is “space” or “solid”

Page 26

© R. Rutenbar 2001 CMU 18-760, Fall01 51

Find tiles on left side of region R
Find top tile, call it “1”
Call enumerate (tile 1)

Ousterhout’s AlgorithmOusterhout’s Algorithm

1

© R. Rutenbar 2001 CMU 18-760, Fall01 52

Ousterhout’s AlgorithmOusterhout’s Algorithm

enumerate(tile 1)
you (tile 1) own tile 2.

tile 2 does not own its right neighbor, so quit

1

2

own

In this recursion, a parent
tile “owns” an adjacent
neighbor tile if the lower-left
corner touches parent. If so,
parent recursively call enum
on this neighbor; process continues

Page 27

© R. Rutenbar 2001 CMU 18-760, Fall01 53

Ousterhout’s AlgorithmOusterhout’s Algorithm
Back up to tile 1, down to new tile 3

3 owns 4. call enumerate(4)
4 owns 5. call enumerate(5)

5 owns 6. call enumerate(6)

3 owns 7. enumerate(7)
Continue…

1
2

3 4
own

own

5
own

6

7own

© R. Rutenbar 2001 CMU 18-760, Fall01 54

Ousterhout’s AlgorithmOusterhout’s Algorithm

Recursively touches tiles in this order
Can return these tiles to the region query as the relevant ones

1

2

3 4

5
6

7

8
9

10

Page 28

© R. Rutenbar 2001 CMU 18-760, Fall01 55

Tile Plane QueriesTile Plane Queries

Region search

1 2

3 4 7

5 6 8

9

10

11

1 2

Objects Found

© R. Rutenbar 2001 CMU 18-760, Fall01 56

Tile Planes: Tile InsertionTile Planes: Tile Insertion
Insertion is complex; simplest case is solid tile
touching only space tiles

New tile split space tiles

Use point search to find the
existing tiles in the location

of the new tile.

Split space tiles containing the top
and bottom edges of the new tile.

Page 29

© R. Rutenbar 2001 CMU 18-760, Fall01 57

Tile InsertionTile Insertion

Insertion

Walk the left and right edges,
splitting tiles into left, inside,

and right tiles as needed.
(Stripes tiles are all the ones
you will touch as you split)

Merge like-space tiles vertically
wherever possible.

(Stripes tiles show space tiles
that result from this

vertical merging)

left inside right

© R. Rutenbar 2001 CMU 18-760, Fall01 58

Tile DeletionTile Deletion

It is even messier...
Have to find all the appropriate neighbors

Have to merge all the appropriate neighbors to maintain canonical
structure of tile plane

See the Ousterhout paper

Roughly speaking
You find all the tiles in the region you want to delete

You split ALL the tiles you find on ALL the possible edges of ALL tiles

You then “glue” back together all these little chopped up pieces to
reassemble the tile plane

Page 30

© R. Rutenbar 2001 CMU 18-760, Fall01 59

Practical Usage: Multi-Layer Tile PlanePractical Usage: Multi-Layer Tile Plane

You usually want more than just “solid” and “empty” tiles
Imagine you want in one tile plane all the layers in, say, a FET: poly,
diffusion, well, metal1, contact-cut

The way to do this is to “multiply-fracture” the tile plane

Idea is each tile gets a unique “stack” of material types

Can label each tile with a bit vector, bit Bi =1 is layer i is present

This tile
has both
red layer
and
striped
blue layer
in it

© R. Rutenbar 2001 CMU 18-760, Fall01 60

Data Structures: Corner Stitched Tile PlanesData Structures: Corner Stitched Tile Planes

Summary
Easy to do local modifications.

Adapts to sparse and dense layout sections.

Manhattan geometry mainly (you can do 45-degrees using trapezoids).

Can either have parallel tile planes to handle multiple layers, or do
“multi-layer tile plane” directly (a more complex implementation)

Complexity
Time:

Find O(sqrt(N))

Insert O(1)

Delete O(1)

worst case for all O(N)

Memory:

O(N) - upper bound on empty space tiles is 3N + 1

Page 31

© R. Rutenbar 2001 CMU 18-760, Fall01 61

SummarySummary

Many different structures to handle geometry
Bin: simple, static, nonhierarchical decomposition of space

Quad tree: static hierarchical decomposition of space

k-d tree: dynamic hierarchical decomposition of space

Tile plane: dynamic, local, canonical nontree decomp. of space

All support basic operations, with different tradeoffs
Pick: find me objects that touch x,y

Region query: find me all objects that touch this box

Insert: add a new rectangle or polygon to structure

Delete: remove geometry (or a whole region) from structure

