
Page 1

© R. Rutenbar 2001 CMU 18-760, Fall01 1

(Lec 17) Timing Analysis at the Logic Level(Lec 17) Timing Analysis at the Logic Level

What you know
A lot of logic synthesis: going from a spec to a gate-level design

How to simulate a design to verify what it does

What you don’t know
Verifying timing behavior of some synthesized object

Important example: Static Timing Analysis

I give you a gate-level netlist

I give you some “timing models” of the gates and maybe wires too

You tell me:
o When signals arrive at various points in the network, or …

o Longest and shortest delays through gate network, or …

o Does the netlist meet some timing requirement?

This is surprisingly complicated in the real world...

© R. Rutenbar 2001 CMU 18-760, Fall01 2

AcknowledgementsAcknowledgements

Early versions of this talk used material from Karem Sakallah
(U Michigan) and Tom Szymanski (Bell Labs)

Current version of the talk extensively modified/updated by
David Hathaway (IBM Essex Junction, VT)

Current version has also benefited from versions of 18-760 taught jointly
by John Cohn (IBM) and Dave Hathaway (IBM) at the University of
Vermont Dept of EE.

Many thanks to Karem, Tom, John, and especially Dave for all
the inputs on this material

Page 2

© R. Rutenbar 2001 CMU 18-760, Fall01 3

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

© R. Rutenbar 2001 CMU 18-760, Fall01 4

Where Are We?Where Are We?

After logic synthesis--how estimate delay of a netlist?

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

Page 3

© R. Rutenbar 2001 CMU 18-760, Fall01 5

ReadingsReadings

De Micheli
Chapter 8 on multilevel synthesis has a little bit about this.

Read 8.6 on ‘Algorithms for Delay Evaluation and Optimization’

© R. Rutenbar 2001 CMU 18-760, Fall01 6

Analyzing Design PerformanceAnalyzing Design Performance

Basic question
Does the design meet a given timing requirement, or

How fast can I run the design?

Assume we know the delays of blocks in the network

Why not just use ordinary gate-level delay simulation …?
Requires too many patterns

Exponential in the number of design inputs

Even worse if we consider sequences needed to initialize latches

So what do we do instead?
Separate function from time

Determine when transitions occur without worrying about how

Page 4

© R. Rutenbar 2001 CMU 18-760, Fall01 7

Analyzing Design PerformanceAnalyzing Design Performance

Assume design is synchronous
All storage is in explicit latch or flip-flop elements

All cycles cut by clocked storage elements

Combinational
Circuit

(No feedback
loops)L

A
T

C
H

E
S

L
A

T
C

H
E

S

Common
Clock

•
•
•

•
•
•

© R. Rutenbar 2001 CMU 18-760, Fall01 8

Analyzing Design PerformanceAnalyzing Design Performance

Consider an arbitrary signal in a clocked design
Takes on a value every cycle, sometimes one, sometimes zero

Changes occur at different times in each cycle

Specific time of change depends on pattern causing it

May not change at all in some cycles

May make multiple changes before settling to final value

Clock

Data

Page 5

© R. Rutenbar 2001 CMU 18-760, Fall01 9

Static Timing AnalysisStatic Timing Analysis
Basic idea of static timing analysis

Instead of considering an infinitely long simulation sequence

Fold all possible transitions back into a single clock cycle

Assume that signal becomes stable at latest possible time

Assume signal becomes unstable at the earliest possible time

If the design works at these extremes, we can guarantee it always will

“Static” part just means we aren’t doing simulation (dynamic)

© R. Rutenbar 2001 CMU 18-760, Fall01 10

Static Timing AnalysisStatic Timing Analysis
Look at our data signal again

Clock

Data

Clock

Data
Often consider rising and
falling times separately

All times considered relative
to some reference point in the
clock cycle (e.g., rising edge)

Page 6

© R. Rutenbar 2001 CMU 18-760, Fall01 11

Timing Analysis: Basic ModelTiming Analysis: Basic Model

So, the basic questions are:
Does data always reach a stable value at all latch inputs in time for the
clock to capture it?

Determine this by looking at late mode timing, or longest path

Does data always stay stable at all latch inputs long enough after the
clock to get stored?

Determine this by looking at early mode timing, or shortest path

What do we need to answer this?
First thing we need are “delay models” of the logic network

Surprising variety of options here

Depends on accuracy you need vs. computation you can afford

© R. Rutenbar 2001 CMU 18-760, Fall01 12

Delay ModelsDelay Models

Example gate network
3 primary inputs (PIs) and 1 primary output (PO)

Simplest model: unit delay
The delay through a gate -- ANY gate -- is equal to 1 time unit. Period.

Longest path is...
∆ = 1

∆ = 1

2

Page 7

© R. Rutenbar 2001 CMU 18-760, Fall01 13

Delay ModelsDelay Models

Better model: Arbitrary but fixed delay per gate
Each gate is allowed to have its own fixed delay

This delay is constant -- doesn’t depend on circuit netlist

Why isn’t this enough?
Unfortunately, real circuits are made from gates made out of
transistors, and a lot of other circuit effects are present...

∆=3
∆=2 Longest path is...

5

© R. Rutenbar 2001 CMU 18-760, Fall01 14

Delay ModelsDelay Models

The gate “loading” matters for delay
Gates with more fanout are slower than gates with less fanout

Look at the the AND gate on left and right

In real circuit, the loading presented by the connecting wires is actually
the dominant contribution to the delay.

Gate’s delay model will usually depend on load of driven wires & gates

Delay through wires can be longer than delays through gates!

∆=
∆=2

∆=2∆=
∆=2

3
3.2

Gate output has to electrically drive all
the fanout gates. More fanout means

more load ==> slower.

Page 8

© R. Rutenbar 2001 CMU 18-760, Fall01 15

Delay ModelsDelay Models

The waveforms of the signals actually matter for delay
Rising signal versus falling signal matters. Delays may be asymmetric

Slope of the waveform seriously affects delay (RC circuit stuff)

∆=3
∆=2

∆=3
1

∆=3

Sharp slope, fast rise

in

out

∆=3
1

∆=3 !

Poor slope, slow rise

in

out

© R. Rutenbar 2001 CMU 18-760, Fall01 16

Delay ModelsDelay Models

Not all pins are created equal
Delay is not really “through” a gate

Delay is from each individual pin to gate output(s); all can be different

∆=3
∆=2

5 V = logic “1”

0 V = logic “0”

nand(A,B)
A

A

B

B

Why? Different transistor-level
circuit paths input to output
Simple ex: NAND

∆=3 ∆=3.2

Page 9

© R. Rutenbar 2001 CMU 18-760, Fall01 17

Delay ModelsDelay Models

Not all transitions are created equal
Separate transistors are used to drive a gate output to high/low values

Transistors may be different sizes, P & N devices have different
mobilities, and topology of pull-up and pulll-down paths differ

… So delay can be different

More complicated for non-monotonic functions

∆(output falling)=3.1

∆(output rising)=3.5

∆(input falling, output falling)=3.1

∆(input falling, output rising) =3.5

∆(input rising, output falling) =3.6

∆(input rising, output rising) =3.8

© R. Rutenbar 2001 CMU 18-760, Fall01 18

Delay ModelsDelay Models

Delays may not even be scalars; may be a distribution
Simplest is [min, max] which tries to quantify reasonable extremes on
the manufacturing process

In most elaborate case, it’s a real probability distribution that gives you
a real probability of the signal arriving with a given delay...

...and this distribution can still be a function of ALL these factors:
waveform slope, output loading, different delay per pin, etc.

Messy! Complicated!

∆=3
∆=2

delay
3

∆ = max delay
δ = min delay

Page 10

© R. Rutenbar 2001 CMU 18-760, Fall01 19

Timing Analysis: Topological vs. LogicalTiming Analysis: Topological vs. Logical

Another problem: Do we worry about gate “function”?
Logical timing analysis: YES, we care what the gates actually do

Topological timing analysis: NO, we don’t care what gates do

What’s the difference? Try an example...
Topological analysis means we only worry about the delay through the
paths through the graph shown below, not the logical function of the
modules (which we hide here!)

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

Longest delay is

PI

PI

PI

PO

8+2+8+2 = 20

© R. Rutenbar 2001 CMU 18-760, Fall01 20

Topological vs. Logical Timing AnalysisTopological vs. Logical Timing Analysis

Topological (again)

Logical--we tell what gates are

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

Delay = 20

0

0 0

1
conflict

Page 11

© R. Rutenbar 2001 CMU 18-760, Fall01 21

False Paths and Path SensitizationFalse Paths and Path Sensitization

Oops. We got a false path
It is not possible to apply a set of inputs that will cause a logic signal to
propagate down this supposed “longest” path from PI to PO

This path we found by topological analysis is called a FALSE PATH

We got this because we didn’t care what the gates did

Sensitization
A path is said to be sensitized when it allows a logic signal to propagate
along it. In this example, there is no way to sensitize this path

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

X

1/0

X

© R. Rutenbar 2001 CMU 18-760, Fall01 22

SensitizationSensitization

Definitions
Controlling value for a gate is a single input value to a gate that
uniquely forces the output to a known constant, independent of the
other inputs to the gate.

A gate is sensitized so a logic signal can propagate through it from one
particular input to the output if the other inputs have stable
noncontrolling values

controlling
value is_____

controlling
value is_____

1
1

0

output output
0 0 1 1

Page 12

© R. Rutenbar 2001 CMU 18-760, Fall01 23

SensitizationSensitization

Definitions
A path is a set of connected gates and wires that starts with some PI and
ends with some PO. Path is defined by 1 input and 1 output per gate

Side inputs on a path are the “other” inputs to these gates on the path.

Combinational
network

PI

PO

Stuff connected
to the side inputs

Side inputs

© R. Rutenbar 2001 CMU 18-760, Fall01 24

Static SensitizationStatic Sensitization

Static sensitization
A path is statically sensitizable when...

Combinational
network

PI

PO

Side
inputs

Stuff connected
to the side inputs

There is an input vector which generates stable
noncontrolling values to all side inputs on the path

Input vector

-
-
-
-

1
0

1
1

1

Page 13

© R. Rutenbar 2001 CMU 18-760, Fall01 25

Static SensitizationStatic Sensitization

NOT statically sensitizable

Statically sensitizable

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

∆=8

∆=1

∆=2

∆=8

∆=1

∆=2

∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux
0

1

0

1

X

1/0

X

0

© R. Rutenbar 2001 CMU 18-760, Fall01 26

SensitizationSensitization

How hard is it really to do this?
In general, very hard, though there are many good heuristics

As hard as Boolean satisfiability (find a pattern of inputs to make an
arbitrary Boolean function == 1), which is NP hard

New example below: delay = 20 if F==1 else delay = 6 if F==0.

∆=8

∆=1

∆=2

∆=1

∆=8

∆=2

∆=1

PI

PI

PIs

PO

2:1 mux 2:1 mux
0

1

0

1

arbitrary
Boolean
function F

Page 14

© R. Rutenbar 2001 CMU 18-760, Fall01 27

Aside: Related to Testing for Gate-Level CircuitsAside: Related to Testing for Gate-Level Circuits

What’s testing about?
Find inputs to a gate network that force a particular value on a
particular input of a particular gate...

...and that also allow the output of that gate to propagate to some
output.

Combinational network

PO

test pattern
input vector

control this value
observe this value by propagating
something to a PO

need to force the right side inputs

© R. Rutenbar 2001 CMU 18-760, Fall01 28

Beyond Static Sensitization...?Beyond Static Sensitization...?

Dynamic sensitization
Try to find vectors to apply at different times so that the right
noncontrolling value appears at each side input when the propagating
signal gets to that particular gate

Messy, hard to do.

People are still working on various practical simplifications of this.

Combinational
network

PI

PO

Side
inputs

Stuff connected
to the side inputs

Combinational
network

PI

PO

Side
inputs

Stuff connected
to the side inputs

at time t2 need
a 1 on this AND...

at time t0 need
a 1 on this AND...

Page 15

© R. Rutenbar 2001 CMU 18-760, Fall01 29

So, What Are We Doing Here?So, What Are We Doing Here?

Simple fixed delay gate model
No slopes, etc. Any loading effects are “bundled” back into the gate
delay number itself.

Topological path analysis
We don’t worry about what the gates do

We only look at paths through the connected gates

Aside: means we assume all paths statically sensitizable.

We know we will get false paths -- too bad.

This is usually a pessimistic timing model -- delay numbers too big since
we find false paths first that are usually overly long

∆=3.2 ∆=3

© R. Rutenbar 2001 CMU 18-760, Fall01 30

Topological Path AnalysisTopological Path Analysis

Generally what people mean by static timing analysis

PRO

CON

Fast (pattern independent)
Bounds true worst path delay

Can be pessimistic (includes false paths)

Page 16

© R. Rutenbar 2001 CMU 18-760, Fall01 31

Representation: Delay GraphRepresentation: Delay Graph
How do we model gate network? Delay Graph

Gates = edges, 1 edge per input pin.
Numbers on edges = delay through gates
Wires (signals) = vertices. 1 per gate output

Also 1 for each PI, PO
Leave latches out for now

Predecessor: pred(n) = any node p where there is an edge from p->n
Successor: succ(n) = any node s where there is an edge from n->s
Note: this ends up as a directed, acyclic graph, a DAG

∆=2 ∆=3

a

b
c

d
e

a

d

c

b

e

2

3

3

2

© R. Rutenbar 2001 CMU 18-760, Fall01 32

Representation: Delay GraphRepresentation: Delay Graph
What about interconnect delay?

Can use delay graph with node for each pin instead of each net

Gate and net delays interact - can have delay edge from input to input

We’ll stick with one node per net for simplicity

a
b

c
d

e
x
y

w
z

o

a

d

c

b

e

x

o

w

zy

a

db

x

o

w

zy

Page 17

© R. Rutenbar 2001 CMU 18-760, Fall01 33

Delay GraphDelay Graph
Source / Sink nodes (pure combinational logic)

Often add 1 “source” node that has a 0-weight edge to each PI

..and 1 “sink” node with 0-weight edge from each PO

Now network has 1 clear “entry” node, and 1 clear “exit” node

Even timers that don’t explicitly add these nodes do something similar

Loop through all PIs (POs) ⇔ loop through fanout (fanin) of source
(sink) node

∆=2 ∆=3

a

b
c

d
e

a

d

c

b

eSrc Sink

2

2
3

30

0

0

0

Non-zero values on Src/Sink
edges can be used to represent
different timing constraints on
different PIs and POs

Like HLS scheduling graph

© R. Rutenbar 2001 CMU 18-760, Fall01 34

Operations on Delay Graph Operations on Delay Graph

So how do we use this graph to do timing analysis
Simple approach: path enumeration = list all paths, in some order

Easy to do this in a naive way

OK, it works. What’s wrong with this?

search (path P, delay d) {
n = last node in P;
if (there are no successor nodes to n)

Output path P, delay d; /* All paths end at sink */
else {

foreach (node s in succ(n)) {
search (P+s, d+delay(n,s));

}
}

}
search (source);

Add one more node
to the end of the path

and recurse

Page 18

© R. Rutenbar 2001 CMU 18-760, Fall01 35

Path EnumerationPath Enumeration

Problem is number of paths
Can be exponential in length of paths

Our “search” algorithm doesn’t visit paths in any useful order

Some timing analyzers do this anyway

May use pruning methods to control exponential behavior

0 1 2 3 n• • •

How many paths from node 0 to node n in here? 2n

© R. Rutenbar 2001 CMU 18-760, Fall01 36

Operations on Delay Graph Operations on Delay Graph

Instead we’ll use what’s been called block-oriented analysis
Don’t look for paths to the sink (primary outputs)

Instead find for each node the worst delay to the node along any path

Need to define some terms …

Page 19

© R. Rutenbar 2001 CMU 18-760, Fall01 37

Values on Nodes in Delay Graph Values on Nodes in Delay Graph

Arrival Times at a node (ATs)
ATE(n) = Earliest signal can become unstable at node n

Determined by shortest path from source

ATL(n) = Latest time signal can become stable at node n

Determined by longest path from source

Sometimes called “delays to node”

src sink

n

other paths

ATs

© R. Rutenbar 2001 CMU 18-760, Fall01 38

Values on Nodes in Delay Graph Values on Nodes in Delay Graph

Required Arrival Times at a node (RATs)
RATE(n) = Earliest that signal is allowed to become unstable at node n

Determined by shortest path to sink

RATL(n) = Latest time signal is allowed to become stable at node n

Determined by longest path to sink

Related to what is sometimes called “delay from node”

src sink

n

other paths

RATs

Page 20

© R. Rutenbar 2001 CMU 18-760, Fall01 39

Values on Nodes in Delay Graph Values on Nodes in Delay Graph

Slacks at a node
SlackE(n) = ATE(n) - RATE(n)

Amount of margin in time signal goes unstable

Determined by shortest path through node

Amount by which a signal can be sped up at a node and not decrease
the length of the shortest path through the network

SlackL(n) = RATL(n) - ATL(n)

Amount of margin in time signal becomes stable

Determined by longest path through node

Amount by which a signal can be delayed at a node and not increase
the length of the longest path through the network

Can increase delay at a node (to minimize power, circuit area) with
positive late mode slack and not degrade overall performance

Defined so negative slack always indicates a timing problem

Measures “sensitivity” of network to this node’s delay

© R. Rutenbar 2001 CMU 18-760, Fall01 40

How To Compute...?How To Compute...?

Recursively.
In terms of (assumed) known values of the desired quantities for either
the successor or predecessor nodes, as shown above.

Let’s try it...

src sink
n

pred(n)

-

p

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

Page 21

© R. Rutenbar 2001 CMU 18-760, Fall01 41

Arrival Times for a Node nArrival Times for a Node n

src sink
n

pred(n)

-

p

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

AT E(n) = min delay to n =

ATL(n) = max delay to n =

0 if n == src

Min {AT E(p) + δ (p,n) }
p = pred(n)

0 if n == src

Max { ATL(p) + ∆ (p,n) }
p = pred(n)

© R. Rutenbar 2001 CMU 18-760, Fall01 42

Aside: Quick Concrete ExampleAside: Quick Concrete Example

Big idea
If a particular path to node n has min (max) delay from source...

...then if we take node n off the end of the path, the shorter partial path
(to node r, here) is the min (max) delay path from source to node r

This is why the recursion idea works

n

p

q

r

7

1

5

src

• • •

• • •

• • •

AT E =5

AT E =10

AT E =5

AT E =?

AT E(n) = Min {AT E(x) + δ (x,n) }
x∈{p, q, r}

= Min(5+7, 10+1, 5+5)

= 10

Page 22

© R. Rutenbar 2001 CMU 18-760, Fall01 43

Required Arrival Times for a Node nRequired Arrival Times for a Node n

src sink
n

pred(n)

-

p

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

RATE(n) =

RATL(n) =

0 if n == sink

Max {RATE(s) - δ(n,s) }
s = succ(n)

Cycle time if n == sink

Min {RATL(s) - ∆(n,s) }
s = succ(n)

Note reversal of min and max
for early and late modes; this is
because we’re subtracting delays
instead of adding them

© R. Rutenbar 2001 CMU 18-760, Fall01 44

ExampleExample
B D

F

EC

A

3

5

6

159

11

4

ATE(E) =

ATL(E) =

RATE(B) =

RATL(B) =

SlackE(B) =

SlackL(B) =

src sink

4+9 = 13

3+11 = 14

0-6-5 = -11

30-11-15 = 4

3-(-11) = 14

4-3 = 1

For simplicity, assume
delays on edges are both
min and max values

Cycle time = 30

Page 23

© R. Rutenbar 2001 CMU 18-760, Fall01 45

Computational StrategyComputational Strategy

OK, we can define them, but can we compute them?
Actually, all pretty easy.

Essential idea: topological sorting of a DAG
Sorting of the vertices in the DAG into a total linear ordering...

...i.e., a single ordered list of vertices in the DAG

Essential property of sort: if there is an edge from p->s in the DAG,
then p comes before s in the sorted order. True for ALL edges

B D

F

EC

A

3

5

6

159

11

4

Legal Topological Sort
Orders

A,B,D,C,E,F
A,B,C,D,E,F
A,B,C,E,D,F
A,C,B,D,E,F
A,C,B,E,D,F

© R. Rutenbar 2001 CMU 18-760, Fall01 46

Topological SortingTopological Sorting

Pretty easy application of depth-first-search (DFS)

topsort(node n) {
for each s in succ(n) {

if s has not been visited {
topsort(s);
push n on stack ;
mark n as visited;

}
}

}

topsort(SRC);

Page 24

© R. Rutenbar 2001 CMU 18-760, Fall01 47

Topological SortingTopological Sorting

Apply to our example
B D

F

EC

A

3
5

6

159

11

4

stack

topsort(A)

topsort(B) topsort(C)

topsort(D)

topsort(F)

topsort(E)

A

T
o

po
lo

gi
ca

l o
rd

er

C
B
E
D
F

© R. Rutenbar 2001 CMU 18-760, Fall01 48

Computing ATsComputing ATs

Assume we now have the topological sort order

get_ATs() {
ATE(src) = 0; ATL(src) = 0;
for each n in topsort order {

ATE(n) = ∞; ATL(n) = - ∞;
for each p in pred(n) {

ATE(n) = min(ATE(n), ATE(p) + δ(p,n));
ATL(n) = max(ATL(n), ATL(p) + ∆(p,n));

}
}

}

src sink
n

pred(n)

-

p

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

Alternatively, we can omit
the topological sort and
compute ATE and ATL for
node n on return from
recursion (when values for
all pred(n) have been
computed) during DFS
backward from n.

This is called demand-driven
computation.

Page 25

© R. Rutenbar 2001 CMU 18-760, Fall01 49

Computing RATsComputing RATs
Again, assume we have topological sort order

RATs same as the ATs would be if you reversed all arrows and start
from sink (now=source) and go to source (which is now the sink)!

get_RATs() {
RATE(sink) = 0; RATL(sink) = cycle_time;
for each n in reverse topsort order {

RATE(n) = - ∞; RATL(n) = ∞;
for each s in succ(n) {

RATE(n) = max(RATE(n), RATE(s) - δ(n,s));
RATL(n) = min(RATL(n), RATL(s) - ∆(n,s));

}
}

}

SINK SRC
n

pred(n)

-

p

-

-

s

-

succ(n)

•
•
•

•
•
•

predecessor

paths
successor paths

∆(p,n) ∆(n,s)

© R. Rutenbar 2001 CMU 18-760, Fall01 50

SlackSlack
Interesting slack property

All nodes on a critical (longest) path have same slack
Consider a late mode analysis:

Allow us to report worst paths, even though we didn’t trace them all

B D

F

EC

A

3

5

6

159

11

4

Cycle time = 29

Slack=23-8=15

Slack=5-4=1

Slack=0

Slack=0

Slack=0

Slack=0

RAT=5 RAT=14

RAT=29

RAT=23RAT=3

RAT=0

AT=3 AT=8

AT=4 AT=14

AT=29

AT=0

Page 26

© R. Rutenbar 2001 CMU 18-760, Fall01 51

Path ReportingPath Reporting
Find N worst paths

Keep priority queue (heap) of unfinished partial paths
Sort so path with worst slack endpoint is always on top
Initially contains only the source node

Algorithm:
Pull partial path off the heap (will be start of next most critical path)
Until path is finished:

o Add worst slack successor to current path
o Add other successors to path and put them on the queue

Repeat until N paths have been reported

First trace path A,B,E,F

So visit A,C next, expand to
A,C,E,F

Worst path is A,B,E,F

B D

F

EC

A

3

5

6

159

11

4

Partial paths: A,B,D, slack = 15
A,C, slack = 1

Finally visit A,B,D, expand to
A,B,D,F

© R. Rutenbar 2001 CMU 18-760, Fall01 52

Beyond Combinational LogicBeyond Combinational Logic

So far we’ve assumed only combinational logic
All path requirements are same

No feedback paths or backward interaction in delay graph

Consider a network containing flip-flops
We treated it as a PO of our combinational logic

OK if all clocks are ideal and arrive at the same time … but they don’t

So we add test edges to the delay graph

Edge-triggered FF

C

D

Latch output can
only change here

clock

D

C

Hold

Setup

Page 27

© R. Rutenbar 2001 CMU 18-760, Fall01 53

Beyond Combinational LogicBeyond Combinational Logic

How are tests used?
Hold test says late clock must precede early data by some amount

Setup test says late data must precede early clock by some amount

Complication - adjusts
Remember that many cycles of activity were “folded” into one cycle

So data arriving at latch is really for next cycle

Need to add/subtract clock cycles so we’re comparing the right times

Need to know which cycle data should be latched in
o Generally assume data is captured by first possible edge of the ideal clock following

the one that launched it

o Exceptions must be asserted by user, e.g., multi-cycle paths

Ideal clock

Early clock

Late clock
X

ATE (ATL) at one end of test edge
imposes RATL (RATE) at other end

© R. Rutenbar 2001 CMU 18-760, Fall01 54

Beyond Combinational LogicBeyond Combinational Logic

Gets even more complicated with multiple clock frequencies
Use greatest common divisor (GCD) of clock periods to determine
smallest possible separation between launch & capture edges

Example:

Clock 1
(period 2)

Clock 2
(period 3)

Sometimes we have 1.5 units of time

Sometimes we only have 0.5 units of time

Page 28

© R. Rutenbar 2001 CMU 18-760, Fall01 55

Slack StealingSlack Stealing

So far we’ve assumed edge-triggered flip-flops
Time that data changes at latch output is determined only by clock

Consider transparent latches

Edge-triggered FF

C

D

Latch output can
only change here

clock

Transparent latch

C

D

clock

Latch output can
change anywhere in here

Data AT on input can
affect AT on output!

© R. Rutenbar 2001 CMU 18-760, Fall01 56

Slack StealingSlack Stealing

But this means the arrival at the end of one path affects the
arrival at the beginning of another path

Violates acyclic assumption

How can we handle this?
Break all cycles

Assume a launch time at each latch

Start with clock leading edge

Add a test to require the capture time to meet this assumption

Perform a static timing analysis

Adjust your assumptions to equalize slack at latch inputs & outputs

Move the launch time with the clock active window

Repeat until convergence or you run out of time

Page 29

© R. Rutenbar 2001 CMU 18-760, Fall01 57

Incremental Timing AnalysisIncremental Timing Analysis

How do I update timing after making changes?
Incremental timing allows efficient update of only changed information
after changes to design

Compute level numbers when computing original ATs, RATs

All changes can be viewed as change to delay edges
o Add an edge

o Delete an edge

o Change the delay on an edge

Keep track of frontiers of timing changes
o Keep sorted by level number

When a value is requested on a node at level x
o Recompute, by level, all frontier values <= than level

o If value changes, add its fanout to the frontier

AT frontier
Change

here X
Query

X here

Effects of propagated slew
changes on delay make RAT

case more complicated

© R. Rutenbar 2001 CMU 18-760, Fall01 58

Timing Analysis SummaryTiming Analysis Summary

Gate-level delay models
Can be very complex if you deal with all the effects

Load, slope, pin, etc., all really matter

Simplification is just a fixed delay per gate (or per input pin, same thing)

Logical != Topological path analysis
Logical = we worry about false paths, what the gates really do. This is
still pretty hard, and a lot of computational work.

Topological = we don’t worry about logic function of nodes in our delay
graph. This is conservative, can overestimates longest delay.

Topological analysis = Depth first search
Make delay graph

Can compute ATs, RATs, and Slacks for each node

