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(Lec 16) ASIC Layout:  Floorplanning (for Proj3)(Lec 16) ASIC Layout:  Floorplanning (for Proj3)
What you know...

Placement method for objects with “little” shape variation
…eg, placement methods which model objects as points

What you don’t know...
Methods to do placement for objects with widely varying shapes
Methods to deal with objects with different or malleable shape
Placement versus floorplanning applications
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Where Are We?Where Are We?
Physical design--how to wire the placed gates...?
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Dealing with ShapesDealing with Shapes
Big chips are not just lot of rows of standard cells

There can be large blocks (eg, memories, registers, predesigned IP)
Also, big chips are done hierarchically, so there can be regions of flat 
cells and regions with large blocks

RAM

ROM

Data
path

“Macro” blocks
that appear as

large rectangular
objects to place

Control logic
usually appears

as regions of std
cells laid out in rows
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Floorplan ExampleFloorplan Example
Rectangles on this chip are floorplanned regions

Some of these (the
grey ones) are pre-designed
blocks that we are just
placing on this chip…

Some of these (the
colored ones) are blocks with
standard cells placed inside.
In this example, the cells have
been allowed to “diffuse” out
of these regions to get a 
better overall placement

Floorplan pic
courtesy L. Pileggi,
Monterey Design
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New Placement Problem: Floorplanning New Placement Problem: Floorplanning 
Dealing with placements of arbitrary rectangular objects

One flavor of this is just like placement, but with large objects
Place components with known, fixed (possibly very large) shapes
Done in ASICs that mix std cells (random logic) and large functional 
blocks (memories, pre-designd IP)

One very important new twist:  object may have flexible shape
Place components with variable, maybe unknown shape

May have only an area estimate or lower bound for module
May have a range of allowable shape alternatives

Done early in design of very large ASICs and custom ICs, when shape of 
some modules (eg, a big region of std cells you have not designed yet) 
are still vague
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Basic Floorplanning PlacementBasic Floorplanning Placement
Layout scenario

You have a set of rectangular placeable objects
They have fixed, unvarying size
You want to place them to minimize wirelength and overall chip area

Approach 
We will use simulated annealing to do iterative improvement
But we need a much more powerful geometric representation to do all 
the stuff we really want to do here…
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It worked for netlists with many small objects…
Use your favorite method to partition a netlist to minimize the size of 
the cut;  repeat recursively to get the final relative placement
You could actually do that here, too;  problem is, you need to know 
more info about how to really pack the modules you get in each 
partition

Remember Recursive Bipartitioning Placement…Remember Recursive Bipartitioning Placement…
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Related Idea:   Slicing DecompositionRelated Idea:   Slicing Decomposition
New question

What layouts can you create by recursively dissecting a rectangle?
Dissecting means “a horizontal or vertical cut all the way across rect”
The resulting “rooms” are where you are allowed to put modules

Our starting
rectangle

First cut, 
called a “Slice”

2nd cut

3rd cut 4th cut

5th cut, and
we could
keep going…
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Slicing Decomp. Defines Rooms in a Floorplan Slicing Decomp. Defines Rooms in a Floorplan 
When done slicing, result is a set of floorplan “rooms”

The resulting “rooms” are where you are allowed to put modules

Slicing 
decomposition

1

2
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5

6

Resulting
rooms in floorplan

Placement assigns
modules to rooms
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Can You Represent All Floorplans Like This?Can You Represent All Floorplans Like This?
Can’t you get all possible layouts this way?

Surprisingly, NO
The canonical example of what you can’t get is called a spiral; it’s mirror 
image is also unrepresentable via slicing, and called an anti-spiral

b

d

c

e
a

b

d

c

e
a

spiral anti-spiral

Note – none of these cuts is a “slice” that goes all the
way across the entire rectangle.  These are  “non-slicing” layouts.
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Non-Slicing LayoutsNon-Slicing Layouts
A bigger example of something you cannot get via slicing
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Note, it has an anti-spiral in
it, though components in the
anti-spiral itself are layouts of
more than 1 rectangle

=
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Nevertheless, Slicing-style Layouts Very PopularNevertheless, Slicing-style Layouts Very Popular
A “slicing style” layout…

..is a subset of all possible floorplans/placements that you can create for 
a set of rectangles

Turns out you don’t lose all that much (a few % on area) if you restrict 
yourself to slicing-style layouts.
Turns out you gain a LOT – some very nice data structures and 
algorithms for placement and floorplanning

All possible layouts
of rectanglesSlicing style

layouts
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Efficient Data Structure:  Slicing TreesEfficient Data Structure:  Slicing Trees
Introduced by Ralph Otten for floorplanning tasks

You can represent this slicing decomposition with a single tree data 
structure:  slicing tree

Slicing tree is just a tree, and it has 2 kinds of nodes
Leaf nodes == placeable modules
Internal nodes represent bipartition cuts == slicing cuts
2 kinds of internal nodes:  H cuts and V cuts

a b

cut

| “|” follows
direction of cut, says

children are horiz. 
adjacent

=

a b
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Slicing TreesSlicing Trees
Simplest example of slicing trees, for just 2 objects

a b

cut

| “|” follows
direction of cut, says

children are horizontally 
adjacent

=

a

b

cut
- “--” follows

direction of cut, says
children are vertically 
adjacent

=

Order matters now:
left=leftmost, right=rightmost

Order matters now:
left=topmost, right=bottommost

a b

a b

© R. Rutenbar 2001 CMU 18-760, Fall01   16

Slicing TreesSlicing Trees
Bigger example

Nice feature is you need just 1 structure to capture both H and V info

a

b c
d

e f

g h i

|

-
=

-
|

| -
| |a

b c d g

e f h i
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Draw It Incrementally, From Top Down Draw It Incrementally, From Top Down 

a

b c
d

e f

g h i

|

a
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g h i

|

- -
a
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Draw It Incrementally, From Top DownDraw It Incrementally, From Top Down

a

b c
d

e f

g h i
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- -
| | |a

e f h i

|

- -
|

| -
| |a

b c d g

e f h i

a

b c
d

e f

g h i
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Slicing TreesSlicing Trees
Same example, again

Problem: not unique (yet); here is another legal tree for this same layout
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b c
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Slicing Trees: Non-uniquenessSlicing Trees: Non-uniqueness
Why does this happen?

Basically, with a binary tree, many ways to represent parallel cuts at the 
same level of hierarchy

a b c

|

|

|

|a

b c

c

a b
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Slicing Trees: Non-uniquenessSlicing Trees: Non-uniqueness
Solution 1: 

Don’t restrict to binary trees
Parallel cuts at same level go in tree at the same level
(This is sort of a pain – much nicer if we keep it just a binary tree…)

a b c

|

Order still matters: 
leftmost (or topmost) child goes first

a b c
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Slicing Trees: NonuniquenessSlicing Trees: Nonuniqueness
Solution 2

Keep binary trees, agree on ORDER of cuts when building tree

Examples

| -
First child is
leftmost object

First child is
topmost object

a b c

|

|

b

c

d

a
|

-
-a

b c

a a

a

b

c d



Page 12

© R. Rutenbar 2001 CMU 18-760, Fall01   23

Slicing Trees: Canonical Binary FormSlicing Trees: Canonical Binary Form
So, our tree should look like this in canonical form

a

b c
d

e f

g h i

|

-
=

-
|

|

-

| |a

b

c

d g

e f h i

Leftmost child first
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Using Slicing Trees for PlacementUsing Slicing Trees for Placement
Now what?

So, how do we do placement using these as the core data struct?
You can anneal the tree very efficiently

Annealing on a slicing tree:  what do we need?
State representation:  it’s just the slicing tree itself
Move set:  what do we perturb?  What changes?
Cost function:   what do we measure for “goodness”?
Cooling schedule: usual, standard stuff will work fine

Most of the “action” is in the move set and cost function…
New, very important idea:  topological placement
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First:  Need to Actually Get Module LocationsFirst:  Need to Actually Get Module Locations
Note:  you don’t have them yet

Slicing tree only stores a relative placement of the objects
“Relative” means that we know “relationships” between objects, 
like “is left of” and “is above”.  We don’t know real coordinates
This is also called a topological representation, as distinct from an 
absolute representation of the placement geometry

Need to transform from relative to absolute representation

1

2

3

4

1

2

3

4

(x1,y1) (x3,y3)

(x4,y4)

(x2,y2)
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Sizing a Slicing TreeSizing a Slicing Tree
“Sizing” means “getting real coordinates”

It’s a recursive algorithm (…are you surprised?)
2 pass algorithm, top-down recursive on tree root

First pass:  compute (width, height) of each subtree
Easy, once you know (width, height) of your children

cut
Width = what?
Height = what?

Lo
subtree

Hi
subtree

Width=Wlo
Height=Hlo

Width=Whi
Height=Hhi
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Sizing Tree Nodes Based on Children…Sizing Tree Nodes Based on Children…
Easy if your children are leaf modules with fixed sizes

a b

cut

|
=

a b
Wa

Ha

Wb

Hb

Width = Wb+Wb
Height = max(Ha, Hb)

a

b

cut

-
=

a b

Wa

Ha

Wb

Hb

Width = max(Wb,Wb)
Height = Ha + Hb

a b

Note—shapes may
not “fill” whole space

a

b

Note—ditto
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Sizing Tree Nodes Based on Children…Sizing Tree Nodes Based on Children…
SAME if children are subtrees with known (width, height)

So, you compute (width, height) of your children first, recursively

cut

|
=

Wa

Ha

Wb

Hb

Width = Wb+Wb
Height = max(Ha, Hb)

cut

-
=

Wa

Ha

Wb

Hb

Width = max(Wb,Wb)
Height = Ha + Hb

a b

a b

a b

a

b
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Sizing a Slicing Tree:  First PassSizing a Slicing Tree:  First Pass
Algorithm 

Size( slicing tree node T) {
// if node T is a leaf node in slicing tree
if(T.type == leaf node ) {
T.width = width of leaf module;
T.height = height of leaf module;

}

// size this subtree node T depending on cut type
else if(T.type ==   a “|” cut) {
// compute size, label T “|” cut node
T.width=lochild(T).width + hichild(T).width;  
T.height=max( lochild(T).height, hichild(T).height);

}
else  {

// it’s a “-” cut;    compute size, label T “-” cut node
T.width=max( lochild(T).width,  hichild(T).width);  
T.height=lochild(T).height + hichild(T).height;

// that’s it
}

char  type
int width
int height

tree 
*lochild

tree 
*hichild

Minimal slicing
tree node type
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Sizing a Slicing Tree: Second PassSizing a Slicing Tree: Second Pass
Now what?

You know the (width, height) of each subtree of the slicing tree
At the top, this defines a bounding rectangle for the overall layout
Pick a coord system for this known rectangle, compute absolute coords
Then pass abs coords for the bounding rectangle of each CHILD down

1

2

3

4

Width=100

Height
=100

1

2

3

4

(0,0)

(100,100)
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Sizing a Slicing Tree:  Second PassSizing a Slicing Tree:  Second Pass

1

2

3

4

(0,0)

(100,100)

|
=

W=60
H = 80

lo hi

W=40
H = 100

1

2

3

4

(0,0)

(60,100) (100,100)

(60,0)

Compute
bounding
rectangle
for each
child

1

2

(0,0)

(60,100)(0,100)

(60,0)

3

4

(100,0)

(60,100) (100,100)

(60,0)

This is
bounding
rectangle
for lo
child

This is
bounding
rectangle
for hi
child
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Sizing a Slicing Tree:  Second PassSizing a Slicing Tree:  Second Pass

|
=

hi

W=60
H = 30

1

2

(0,0)

(60,100)(0,100)

(60,0)

Continue,
recursively
down tree

--

1 2

W=60
H = 70

1

2

(0,0)

(60,100)(0,100)

(60,0)

(60,70)(0,70)

1

(60,100)(0,100)

(60,70)(0,70)
2

(0,0) (60,0)

(60,70)(0,70)Lo child
bounding 
rect

Hi child
bounding 
rect
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Sizing a Slicing Tree:  Second PassSizing a Slicing Tree:  Second Pass

|
=

--

1 2

3

4

(100,0)

(60,100) (100,100)

(60,0)

Recurse…

W=40
H = 80

3 4

W=40
H = 20

--
3

4

(100,0)

(60,100) (100,100)

(60,0)

(100,20)(0,20)

3

(60,100) (100,100)

(100,20)(0,20)

4

(100,0)(60,0)

(100,20)(0,20) Hi child
bounding 
rect

Lo child
bounding 
rect
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Sizing a Slicing Tree:  Second PassSizing a Slicing Tree:  Second Pass
So, what do we get as a final result here?

Absolute coords of the ROOM in the floorplan for each placed object
Note – you now have a new (easy) problem:  where to put the module 
inside the room, since the room can be bigger than the mod.  Usually, 
just center it.

3

(60,100) (100,100)

(100,20)(0,20)

4

(100,0)(60,0)

(100,20)(0,20)

1

(60,100)(0,100)

(60,70)(0,70)

2

(0,0) (60,0)

(60,70)(0,70)
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Sizing a Slicing Tree:  Second PassSizing a Slicing Tree:  Second Pass
Pseudo code is basically like the first pass

Now, each tree node stores it floorplan bounding room rectangle 
SizeRoom( tree node T, bounding rectangle R=[left, right, top, bot] ) {

// label the node with the room rectangle
T.room = R;
// if this is a leaf node, we’re done
if( T.type == leaf node) {

// center the module in room, and return
}
else if (T.type == “|” cut) {

// compute bounding room rects for left, right children
leftRect =    [R.left, R.left+lochild(T).width, R.top, R.bot];
rightRect = [R.left+lochild(T).width, R.right, R.top, R.bot];
// push the bounding room rects down the slicing tree
SizeRoom(lochild(T),  leftRect);
SizeRoom(hichild(T),  rightRect);

}
else if (T.type == “-” cut) {

// compute bounding room rects for top, bottom children
topRect = [R.left, R.right, R.top, R.top, R.top – lochild(T).height]
botRect = [R.left, R,right, R.right, R.top – lochild(T).height, R.bot];
// push the bounding room rects down the slicing tree
SizeRoom(lochild(T), topRect);
SizeRoom(hichild(T), botRect);

}
}
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Slicing Trees: Annealing the PlacementSlicing Trees: Annealing the Placement
Where are we?

Given a slicing tree, we can SIZE the tree so we can translate the 
relative topological placement into a real, absolute placement

Next problem:  how to we change the floorplan layout?
Powerful idea: anneal the slicing tree itself
Each annealing move perturbs the topology of the whole tree
So, a small move can relocate ALL modules in layout, quickly
And, the layout is always legal (no overlaps, like in HW4)

What are the right “moves” for a slicing tree?
Turns out we need a few different types
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Slicing Trees:  3 Basic Annealing MovesSlicing Trees:  3 Basic Annealing Moves
Move:  subtree swap

Pick 2 random nodes in tree, swap them
Be careful that the subtrees these node define are independent, ie, don’t 
pick node S that is a child of node T’s subtree
Note – can also just swap 2 leaf nodes, it’s the same thing

Move:  node cut inversion
Pick a connected chain of internal cut nodes (random length chain, 
starting at a random node), then flip the direction on each one.
This just means change “|” to “-” and vice versa

Move:  leaf node change
Rotate or reflect a leaf node  (if its not a square node)
If the leaf node is available in different shapes, choose a different 
random shape for that node
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Swapping 2 SubTrees:  Simple ExampleSwapping 2 SubTrees:  Simple Example

a

b c
d

e f

g h i
=

|

- -
|

|

-

| |a

b

c

d g

e f h i

a

b c
d

e fg

h i

=

|

- -
|

|

-

| |a

b

c

d g

h i e f
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Swapping 2 SubTrees:  Bigger Move ExampleSwapping 2 SubTrees:  Bigger Move Example

a

b c
d

e f

g h i
=

|

- -
|

|

-

| |a

b

c

d g

e f h i

|

- -
| |

-|

|a

b c

d ge f

h i

a

b

c
d

e f

g

h i

=
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Node Cut Chain Inversion:   1-Node ExampleNode Cut Chain Inversion:   1-Node Example

a

b c
d

e f

g h i
=

|

- -
|

|

-

| |a

b

c

d g

e f h i

a b c
d e f

g
h i

=

|
| -
|

|

-

| |a

b

c

d g

e f h i
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Node Cut Chain Inversion:   3-Node ExampleNode Cut Chain Inversion:   3-Node Example

a

b c
d

e f

g h i
=

|

- -
|

|

-

| |a

b

c

d g

e f h i

a

b

c

d

e f

g

h i

=

|

- -
-

-
|

| |a

b

c

d g

e f h i
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Rotating Leaf Node Ex:  Rotate Module “a”Rotating Leaf Node Ex:  Rotate Module “a”

a b c
d e f

g
h i

=

|
| -
|

|

-

| |a

b

c

d g

e f h i

a b c
d e f

g
h i

=

|
| -
|

|

-

| |a

b

c

d g

e f h i

rotated
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Annealing a Slicing TreeAnnealing a Slicing Tree
Mechanically, do this in the annealing inner-loop

Pick one of 3 random move types:  swap, invert, leaf change
Pick random node(s) to do the move on
Do the move on the tree
So the sizing operation to get an absolute location for each module
This tells where all the pins are on the modules, and any pins around the 
outside of the layout
Now, calculate the total wirelength of this perturbed floorplan
Evaluate the cost function
Decide to accept or reject the move
If you reject it, you have to “undo” this change in the tree

Note
Not very incremental, on the move evaluation for wirelength
That’s just the way it works for slicing trees.
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Annealing Cost Function for Slicing TreeAnnealing Cost Function for Slicing Tree
Can be pretty simple

(Area of layout) + weight* ( Σ wirelengths)

You need to pick the weight to normalize the relative contribution of 
area (in units of length2) and wirelen (in units of length)

This is enough to do a pretty good job of floorplanning…
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..But Wait—There’s More..But Wait—There’s More
What if the individual modules you want to place have flexible 
or malleable shapes?  How do we know which shape to pick?

a

b c
d

e f

g h i

What if module f can be in any of these shapes?

Or, what if f doesn’t have a shape yet, just some
general constraints, like

Area ~ 100
Height < 50
Width  < 50

f f f
f

f=???
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Choosing Optimal Shape: Stockmeyer AlgorithmChoosing Optimal Shape: Stockmeyer Algorithm
Amazingly enough, for slicing trees, there is an exact solution

Stockmeyer algorithm (originally developed by Stockmeyer and 
extended by Otten) can do this
Solution is optimal with respect to area, obtainable in polynomial time 
in number of placed modules

Big idea
Set of allowable shapes for each placed module is captured in a data 
structure called a shape function
In a slicing tree, shape functions for the children of a node can be 
efficiently combined to make the shape function for the parent node
Can start with shapes for the leaf node modules in the tree, and can 
“walk” up the tree to get a shape function for the entire floorplan
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Choosing Optimal Shape: Stockmeyer AlgorithmChoosing Optimal Shape: Stockmeyer Algorithm
Informally

|

a

b

- -
|

- |

| |

c d g

e f h i
1. Shape functions for all
the leaf nodes that each
represent one module...

2. …are composed up the tree,
so each internal node gets a shape
function...

3. …until ultimately the entire 
layout itself gets a shape function.
Can use this function, walking back
down the tree, to choose shape of each
module at the leaf nodes of slicing tree
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Shape FunctionsShape Functions
Definition

Start with a shape relation = set of specified (x,y) pairs
Shape relation is

RM = { (x,y) |  module M would “fit” in an x by y rectangle}

Examples
Module M not allowed to rotate

Module M, allowed to rotate

Mh

w

RM = { (x,y) | x>=w  and  y>=h }

Mh

w

RM = { (x,y) |    x>=w  and  y>=h   OR
x >= h and y>=w  }

M

h
w
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Shape FunctionsShape Functions
Shape relations are easiest to see if we graph them

Module, no rotation

Module with rotation

Mh

w

Mh

w

M

h
w

x

y

x=w

y=h

x

y

x=w   x=h

y=h

y=w

Means (x,y)
in shaded region
is large enough to
“fit” M

Means (x,y)
in shaded region
is large enough to
“fit” M
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Shape FunctionsShape Functions
Can be as complex as you like/want

Module, has     Area > A,  x > W,  y > H

Area > Ay>H

x>W x

y

x=W

y=H

Means (x,y)
in shaded region
is large enough to
“fit” M

Hyperbola x•y = A
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Shape FunctionsShape Functions
Big idea

The relation RM is very complex
But, you can represent it entirely by just representing its lower 
boundary, ie, the line that separates the “space too small” (x,y) pairs 
from the “space big enough to fit” (x,y) pairs
In practice, people represent these things using piece-wise linear 
approximations, for efficiency in space

Example

x

y

x=W

y=H
Hyperbola 
x•y = A

x

y

x=W

y=H
Approximate
as 1 straight line 
segment
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∞
∞∞∞∞ ∞

Shape Functions Shape Functions 
For us, its OK to be really simple if you want implement it

This is not at all efficient, but for a first cut, its much easier to code

x

y

∞

x

y

An array, one slot for 
each x value, store the
corresponding y value
of the shape function

Another array, one slot for 
each y value, store the
corresponding x value
of the shape function
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Composing Shape FunctionsComposing Shape Functions
Goal

Suppose we have shape functions for all the individual modules, the leaf 
nodes in our slicing tree
How do we get a shape function for the entire, overall layout itself?
Given structure of a slicing tree, turns into 2 basic composition questions

a b

cut

|

a b

=

a

b

cut
-

a b

=

???? ????
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Composing Shape FunctionsComposing Shape Functions
It’s surprisingly easy:  you just add them “graphically”

a b

cut

|

a b

=

????

x

y

w

h

x

y

x=w   x=h

+

x

y

x=2w

h

w

Shape func a Shape func b Shape func
for  a | bh

w
=
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Composing Shape FunctionsComposing Shape Functions
Ditto for vertical adjacency

a

b

cut
-

a b

=

????

x=w

x

y

 w

     h

x

y

x=w   x=h

+

x

y

          x=h

h

w

Shape func a

2h

h+w

= Shape func
for  a left-of b

Shape func b
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Using Shape FunctionsUsing Shape Functions
Methodology

Obtain slicing tree (however you like…)
Build shape functions for each leaf node (each module)
Compose UP the tree, building shape functions for EACH internal node 
of the slicing tree
Stop when you have the shape function for the root; this is the set of 
allowable shapes for the whole layout

New problem
From a shape function for the whole layout, how do we “invert”the 
functions and pick shapes for the individual modules?
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Shape Function InversionShape Function Inversion
Task

Pick a desirable “final shape” for the whole layout, by selecting a point 
on the root shape function.  
“Invert” the functions down the tree to get a selected shape for each 
leaf module

a

b

c

d
-

a b

-
c d

| X0

Y0
You choose shape X0 by Y0
for overall layout...

???? ???? ???? ????
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Shape Function InversionShape Function Inversion
Task

Remember, you have a shape function for EACH internal node...  
“Invert” the functions down the tree to get a selected shape for each 
leaf module

a

b

c

d

- -

|

X0

You choose 
shape X0 by Y0

Y0

X0

a

b

c

d X1 

Y0

Y0

X1’ 

Y0

Vertical cut
fixes Y0 dimension
on child, so lookup 
the X on shape func
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Shape Function InversionShape Function Inversion
Continue this idea

X1

Y0
Horizontal cut
fixes X dimension
on child, so lookup 
the Y on shape func

-
c d

|

c

d

X1 

X1X1

YdYc
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Shape Function InversionShape Function Inversion
Result

Inverting down tree selects the right X x Y shape for each leaf module
In this example, we only did right side

a

b

c

d
-

a b

-
c d

| X0

Y0
You choose shape X0 by Y0
for overall layout...

X1

Yd

X1

Yc

Yc

X1

Yd

X1
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Shape Function InversionShape Function Inversion
Why does this work?

Individual module shape functions specify size of “holes” big enough for 
the individual modules
Composing shape functions adds the sizes of the hole left-right and top-
bottom
At top, shape function applies to whole layout.  An X x Y you pick is 
guaranteed to be realizable
The shape function at each “|” or “--” cut node specifies that one 
dimension is fixed, and the other varies
The individual shape functions are used to translate the one fixed coord 
of the “hole” into the other dimension we need
…and down the tree we go

Result
Individual leaf modules can be fixed, or have a finite set of shapes, or 
have a continuum of shapes, and we can represent slicing layout
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Placing with Shape FunctionsPlacing with Shape Functions
How do we actually place these modules

ie, we know how to represent a slicing tree and solve for right module 
shape, given we pick a point on root shape function
How do we create the slicing tree in the first place?

Just a tweak on annealing-based floorplanning
Still iteratively improve (perturb) a slicing tree in the same way
And, after each perturbation, we propagate shape functions up tree to 
build root shape function
Then, we pick a min area layout, and invert functions down tree to get 
module locations  -- this is the “sizing” step
Then given all the room locations, we compute the wirelengths
Then, we can again evaluate a cost function with Area+Wirelength
Turns out you can do this all really fast for a few hundred blocks
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Slicing Tree + Shape FunctionsSlicing Tree + Shape Functions
Summary

Pro
Very convenient subclass of layouts
Easy to get placements via annealing ideas
Can represent as one tree, can solve fast for optimal shapes for
individual objects in the placement, even with malleable shapes

Con
Cannot represent every possible layout you could draw
Example:  spirals and anti-spirals
Turns out there are a lot of other, more recent topological representations 
that can let us do these layouts.  We don’t have time to do any of these.
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(Project3) Slicing-Tree Floorplanning(Project3) Slicing-Tree Floorplanning
Input

A netlist of malleable rectangular blocks, and nets connecting them…
…and, if you choose to handle these:  “timing arcs” for block delay

Output
A placed floorplan for the blocks, and info about overall area, netlength,
…and, if you choose to handle this:  critical path timing

Strategy
Slicing tree annealing placement ideas 
…and, if you choose to do this:  combine with static timing ideas

Logistics
You can work in groups of 2
No paper writeup:  web-page required
Demo to TAs also required

Due:  last week of class
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Our Block Model for FloorplansOur Block Model for Floorplans
Simple rectangles, but with variable shape

Blocks numbered consecutively: 1,2,3, … ,B
Blocks have a finite number (eg, a few) alternative shapes
Each shape is a rectangle

Input file:
Block  id  #shapes   x1 y1  x2 y2 … xn yn

…
block 7  3   10 10   8 12   15 7
… Block 7

X=10
Y=10

Block 7
X=8
Y=12

Block 7
X=15
Y=7

Block #7 has
3 rectangular
shapes, shown

at right
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Our Block Model for FloorplansOur Block Model for Floorplans
Blocks have pin sites at which nets connect

Pin sites are an abstraction of the real locations of the pins--a 
simplification to a small set of fixed “sites”
Pins are always at the 8 compass points:  n, s, e, w, ne, se, nw, sw
We name pins and refer to them in the netlist input file using these 
1char & 2char lower case names

Block 7
X=10
Y=10

Block 7
X=8
Y=12

Block 7
X=15
Y=7

n nenw

w

sw s se

e

This pin is referred to as the pair <blockID, pintype>
which is  “7  se” for this pin, in the input file
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Our Block Model for FloorplansOur Block Model for Floorplans
Blocks can be placed anywhere on chip

Blocks have integer width (x) and height (x) for all shapes
Floorplan itself is an integer grid
Blocks can be rotated in increments of 90 degrees:  we name the 
rotations:  0,  90,  180,  270
Blocks CANNOT be reflected (about x or y axes)

This just makes life a little simpler….

Specifying a block in a layout: location & rotation & shape
To specify the location of a placed block, we use the CENTER coords of 
the block (note, they will be ints, or int+1/2, write them out as floats
To specify rotation of a placed block, we use one of {0, 90, 180, 270}, ie, 
write this out as an int
To specify the shape of  a placed blocks, we use the order in which 
shapes were listed in input netlist:  1, 2, 3, …   

A block with 1 fixed shape gets a “1”
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Our Block Model for FloorplansOur Block Model for Floorplans
Example: 

Assume this block has just one shape
This block placed at constant center, but all in 4 different orientations

Block 3
X=8,Y=12

R

B
lock 3

X
=8,Y

=12

R

Block 3
X=8,Y=12

R

B
lo

ck
 3

X
=8

,Y
=1

2

Rcy

cx
Block is:

(cx,cy,0,1)

cx
Block is:

(cx,cy,90,1)

cx
Block is:

(cx,cy,180,1)

cx
Block is:

(cx,cy,270,1)

cy cy cy
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Our Block Model for FloorplansOur Block Model for Floorplans
How does pin naming work for rotations? 

Pins rotate too:  you have to remember to figure out where the pin 
ends up (pinX, pinY) when block rotates
This block placed at constant center, but all in 4 different orientations

Block 3
X=8,Y=12

R

B
lock 3

X
=8,Y

=12

R

Block 3
X=8,Y=12

R

B
lo

ck
 3

X
=8

,Y
=1

2

R

90 180 270n

n

n

n

Here is north pin

Now north is here

Now north is here

Now north is here
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Our Block Model for FloorplansOur Block Model for Floorplans
What if there are more shapes?

Block 7
X=10
Y=10

B
lo

ck 7
X

=8
Y

=12 Block 7
X=15
Y=7

Block is:
(cx,cy,0,1)

Block is:
(cx,cy,90,2)

Block is:
(cx,cy,180,3)

Shape 1 Shape 2 Shape 3

…
block 7  3   10 10   8 12   15 7
…

3 different shapes for block 7

90
180
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Our Block Model for FloorplansOur Block Model for Floorplans
Implementation hint:  rotations

Make a table for each block, for each shape
Entries for each of the 4 rotations:  0, 90, 180, 270
Save the ∆X and ∆Y values you need to add to the (centerX,centerY) 
location of the block to compute location of pin
These (∆X , ∆Y) values are constant, independent of the block location, 
only depending on the block, the shape of the block.
This saves you the grief of computing these every time a block move; 
you only do it once, at start of the program
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Our Chip Model for FloorplansOur Chip Model for Floorplans
The “chip” itself is treated as a “special” block -- block 0

It has flexible shape--we don’t know what it is until we are done with the 
slicing floorplan.
It has pins just like an ordinary block:  n, s, e, w, ne, se, nw, sw
It is defined to be the min bounding box of all placed blocks, ie, the 
shape for the final floorplan at the root of the slicing tree

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Chip == ??

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Chip area =
min bounding box

of whole placement

Chip referred to
as ‘Block 0’, it has

8 pins like any block

For example
this pin is
“0 e”
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Our Chip Model for Floorplans Our Chip Model for Floorplans 
What is the coordinate system?

Origin for chip is at lower left;  all (x,y) coord positive numbers
All placed objects specified by their center coords in this frame
Center coords will be ints or 1/2 ints, eg (45, 64),  (45.5, 52), (57.5, 88)…
But you only have to print this out at the end of the placement

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

(x=0, y=0)

(maxX, maxY)

(x3,y3)
(x2,y2)

(x1,y1)

© R. Rutenbar 2001 CMU 18-760, Fall01   74

Our Net Model for FloorplansOur Net Model for Floorplans
A net is just a set of 2 or more pins

Nets numbered consecutively from 1:  1,2,3, …, N
Pins specified as “blockID pinSide”; pins on whole chip are “0 pinSide”
First pin listed is the driver (eg, gate output), next ones listed are inputs

You need to know this direction stuff for timing

Input file:
Net  id  #pins block pin …. block pin

…
net  6     3   3 se  2 sw 1 n 
…

Net #6 has
3 pins on the
blocks, shown

at right

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7
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Our Net Model for FloorplansOur Net Model for Floorplans
Examples

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Simple 2 pt net:
net i 2 3 e 2 w 

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Another 2 pt net:
Nets can have all their

pins on one (real) block:
net i 2 3 ne 3 e

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

A 5 pt net:
This one goes to a chip pin
and to 4 other block pins;
chip outline drawn bigger

here for clarity:
net i 5  0 n  3 n 3 ne 1 nw s sw 
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Our Net Model for FloorplansOur Net Model for Floorplans
What do we care about for the nets?

Length:  we want a placement of blocks to make them short
Timing:  we will also have a detailing timing model, so we can work 
directly on the critical path itself

Netlength model
Simple:  1/2 perimeter metric for each net

Total netlength =  add them all up = Σ(all nets i) (net length i)

Pins are modeled as a single dimensionless point:   a pair of ints
Find leftX, rightX, topY, bottomY for all pins on your net #i
1/2 perimeter length metric is just:  | rightX - leftX | + |topY - bottomY|
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Our Net Model for FloorplansOur Net Model for Floorplans
Net length examples

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Length for this 2pt
net is box ∆X + ∆Y

Length for this 2pt
net is also box ∆X + ∆Y,
But = 0 + ∆Y in this case

Length for this 5pt
net is also box ∆X + ∆Y.
It’s a much bigger box now,
And remember that the
chip pin is on the top,
at X center, Y top coord
of the layout bounding box
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Floorplan Goals:  SimplifiedFloorplan Goals:  Simplified
So, what do we want the floorplanner tool to do?

Let’s first ignore the timing issues

Goals
Place all blocks:  determine (Xcenter, Ycenter, rotation, shape) for each
Pick good shape for each block from among variants listed in netlist
Make chip area small
Make total netlength small

How?
Represent as a slicing tree, annealing the slicing tree
Work out the sizing issues so you can get an absolute placement of each 
block, and use this to figure out where the pins went, so you can do 
wirelength
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Annealing FormulationAnnealing Formulation
Suggested cost function

Wn empirically chosen weight to balance terms in cost

Cost =     [Area] + Wn*[Netlength]  

Objective:
Make area of

whole chip
(block #0)

=small

Objective:
Make 

Σ netlen’s
=small
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Basic Floorplanning:  Implementation HintsBasic Floorplanning:  Implementation Hints
How do I know what random move to pick?  

Implement so you can easily pick, up front, fraction Fi of total moves 
that will go to moves of type-i
Suppose we have these moves:

Swap 2 subtrees
Invert cut chain
Reshape or rotate a block

We want 3 fractions Fswap, Finvert Fshape that sum to =1
We want to guarantee that if we do N moves at this temp, that:

~ N* Fswap block swaps get tried
~ N* Finvert    block rotates get tried
~ N* Fshape block reshapes get tried
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Basic Floorplanning:  Implementation HintsBasic Floorplanning:  Implementation Hints
Easy trick

Suppose you want: Fswap =50% Finvert=30% Fshape =20%
Make an array with 100 entries
In the first 50 entries, put a marker that says “do swap”
In next 20 entries, put a marker for “do invert”
Ditto remaining entries:  last 20 = “do shape”

0
1
2

R

99

Generate random
num R uniform

on [0,1]
R = (int)floor(100.0*R)

Use R
as index
into this
array

Do whatever move
you marked in
this R’th slot;
Probabilities
guaranteed to be
approx. right
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Optional (Cool, Advanced, Harder) Parts of Proj3Optional (Cool, Advanced, Harder) Parts of Proj3
Do shape functions

Note – you don’t HAVE to do this
You can just do simple moves that change shape of your leaf cells
But, its more interesting to do it with shape functions, and more work

Handle our timing model
Again – it’s optional, you don’t HAVE to do it
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Floorplanning -> TimingFloorplanning -> Timing
Project goals

First goal is to be able to get a decent floorplan:  
Packed, small area, small wirelength, no overlap 
(or, not much overlap--hard to make it 0 without more fancy stuff)

Next (optional) goal:  good timing

We also have a timing model
Each block has a timing model:  timing arcs
Each net has a timing model:  length-based delay
You get to build, maintain, update timing graph
As placement evolves, blocks move, so nets change, so net delay 
changes, so critical path changes, so timing changes
You get to track all this…
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Our Timing Model for FloorplanningOur Timing Model for Floorplanning
Big assumption: simple, edge-triggered, synchronous clock

Every block, internally, looks like this

2 sources of delay: thru logic inside a block, thru wires that connect blocks

logic logic

la
tc

h

clock

logic
logicla

tc
h

clock

logic logic

la
tc

h

clock

wire
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Our Timing Model for FloorplanningOur Timing Model for Floorplanning
3 components of timing model

Delays thru a block
Pin to pin delay
Pin to clock delay
Clock to pin delay

Delays thru a net that connects blocks
Length-based delay for a net

Delay thru a net that connects to a chip pin
Length-based clock to pin delay (input pin)
Length-based pin to clock delay (output pin)
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Delays Thru a BlockDelays Thru a Block
How fast can the chip go?

Depends on maximum delay from latch to latch
If we ignore wire delay (for now), where do these delays come from?

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

A 
clock-to-pin

delay

A 
pin-to-pin

delay

A 
pin-to-pin

delay

A 
pin-to-clock

delay
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Delays Thru a BlockDelays Thru a Block
How do we model these 3 delays

Pretend the “latch” is like a pin;  call it the “clock” pin
We give a delay edge from a pin to a pin (clock counts here)
Edge gives direction (which way signal goes) and delay number
Standard name for these:  timing arcs

logic
logicla

tc
h

clock

clock
5

11 7

19

Timing
model

Each arc always has one “from” pin,
one “to” pin, and a delay number.

Arcs legal between any pair of pins,
including the “clock” pin, inside a block

Note: 
“5” is pin-to-pin
“11” is pin-to-clock
“19”, “7” are clock-to-pin
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Delays Thru a BlockDelays Thru a Block
Specifying these in input file

We give all arcs with each block
We number arcs globally, consecutively, across all blocks: 1, 2, … T
Shape doesn’t affect timing arcs in our model:  constant per block
Format:  arc  arcID fromPin toPin delay

Input file:
…
block 7  3   10 10   8 12   15 7
timing  4
arc  21   n w 5
arc  22   sw c 11
arc  23   c se 7
arc  24   c ne 19
block 8 …..
timing ….
arc …   

Block #7 has 4 arcs:  
#21, #22, #23, #24,
and there is one line
per arc in input file

clock
5

11 7

19

n nenw

w

sw s se

e
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Delays Thru a WireDelays Thru a Wire
Longer wires have longer delay

How do we model this?  
Crudest possible model:  delay = 1/2 perimeter wire length
(This is a lousy model in reality--but we want to keep it simple here)
Note  that which pin is driver, which are receives matters for timing

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Delay = L
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Delays Thru a WireDelays Thru a Wire
Multipoint nets…?

How do we model this?  As multiple timing arcs from driver to receivers
Which pin is driver, which are receives matters for timing

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L
Delay = L for all 3 arcs

4 point net, 
driver at left Timing model has

4-1 = 3 arcs
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Delay Thru Wires to Chip PinsDelay Thru Wires to Chip Pins
New problem:  how to model wires to chip IOs?

Question is:  where is the “clock” for these external signals
Turns out there is a standard assumption:  external signals use same clk
Model it explicitly

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Chip to pin wire

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Delay = L

Timing model:
Pretend this chip pin
is a “clock” pin, so this is
like a block clock-to-pin delay

c
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Delay Thru Wires to Chip PinsDelay Thru Wires to Chip Pins
Ditto for block-pin to chip

Note: to make life easy, these nets are always 2 point nets

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Chip to pin wire

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7
Y=12

Block 2
X=7
Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Delay = L

Timing model:
Pretend again this chip pin
is a “clock” pin, so this is
like a block pin-to-clock delay

c
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Handling Critical PathsHandling Critical Paths
Why are we doing this?  We want to track critical path

We can use delays thru a block + delays thru wires to build timing graph
Consider a simple example with all arcs shown 

5
9

62

11
len4

len3

le
n2

len1 2 chip pins
5 internal block timing arcs (dotted)
4 nets (solid)

2 are pin-to-pin
1 is chip-to-pin
1 is pin-to-chip

c

c

c
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Handling Critical PathsHandling Critical Paths
We want to build the timing graph (from next lecture…)

It’s actually mechanical:  for this timing model, has a simple structure

src

Nodes for each 
block pin connected

to a net

Edges for each net,
and for each 

timing arc

snk

One distinguished “start” node, called “source”

One distinguished “end” node, called “sink”

A lot of nodes and edges,
but we are guaranteed the overall
graph is a DAG -- no cycles
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Handling Critical PathsHandling Critical Paths
Step 1.  Build all the nodes in graph

One per block pin that is connected to a net
(no clocks now)

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se
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Handling Critical PathsHandling Critical Paths
Step 2.  Clock-to-pin edges

For every timing arc FROM a clock node TO a block pin, add an edge in 
graph FROM source TO correct pin node

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11
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Handling Critical PathsHandling Critical Paths
Step 3.  Chip-to-pin edges

For every net FROM a chip pin TO a block pin, add an edge in graph 
FROM source TO correct pin node

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1
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Handling Critical PathsHandling Critical Paths
Step 4.  Pin-to-clock edges

For every timing arc FROM a block pin TO a clock, add an edge in 
graph FROM correct pin node TO sink 

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1

9 2
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Handling Critical PathsHandling Critical Paths
Step 5.  Pin-to-chip edges

For every net FROM a block pin TO a chip pin, add an edge in graph 
FROM correct pin node TO sink 

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1

9 2
len4
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Handling Critical PathsHandling Critical Paths
Step 6.  Pin-to-pin edges

For every net and every arc  FROM a block pin TO a block pin, add an 
edge in graph FROM correct pin node TO correct pin node 

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne
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Handling Critical PathsHandling Critical Paths
Done.  This is the required timing graph

Longest path form Source to Sink == worst-case delay, latch-to-latch
One path highlighted below 

src

snk

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne

5
9

62

11
len4

len3

le
n2

len1

c

c

c

1
2

3
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ObservationsObservations
Graph structure is constant--you only build it once

Same nodes, same edges, always

Timing arcs (dotted edges) are constant
Placement does nothing to change intra-block timing in our simple 
model of floorplanning

Placement changes the net delays (solid edge nums) in graph
Move a block, pins moves, net lengths change, delays change in graph
So, the critical path delay can change…
… and even what nets are on critical path

If you update the net delays in graph during placement…
You can track what the critical path is, and what worst delay is
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ObservationsObservations
Aside

This is why every net, and every timing arc, has its own ID in our netlist
Makes it much easier to update edges in timing graph when all edges 
have a unique name

Engineering decision: How will you couple placement & 
timing analysis?

Could update timing graph after EVERY move.  
Very accurate.  Very slow.
Could update timing graph every K moves.  Just assume the SAME nets 
comprise the critical path in between.  To eval timing changes as a 
result of a placement move, eval change is JUST ∆Σ(these net delays)
Could update timing graph only every temperature.  Do same as above.
Could do timing graph ONCE only near beginning of placement, HOPE 
its always same critical path, never update it again till all done.  
(Very, very dumb…)
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Coupling ExampleCoupling Example
Update every temperature.  Assume same crit path in between

So, how do we eval ∆timing on subsequent placement moves?
∆timing == ∆(len1 + len2)  !!  That’s it.  Very nice, very simple.

src

snk

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne

5
9

62

11
len4

len3

le
n2

len1

c

c

c

1
2

3

Assume this path,
thru nets 1, 2,
is always the critical 
path.
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Implementation HintsImplementation Hints
Some messy issues

What happens if several paths with same length, ALL critical?
You could try to track them ALL  (your call)

You could pick one, only worry about it.  
When you update, if your placement changes screwed up other 
paths, your timing update will automatically always pick A worst
path.  
It will work ~OK if you update often enough
This is the easiest way to do it.

Graph path mechanics
Next lecture (for static timing stuff) and, actually, maze routing 
mechanics (want now MAX path thru this graph).
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Coupling Timing into Annealing PlacementCoupling Timing into Annealing Placement
How?  3 options

Option 1:  don’t.  Just ignore timing issues.
Option 2:  as an objective to minimize, like area:

Cost = [Area] + Wn*[Netlen] + Wt*[max Delay]

Option 3:  as a constraint.  We give you a target T, you try to meet it:

Cost = [Area] + Wn*[Netlen] + Wt*[TimeMiss]2

TimeMiss = 
If (maxDelay > target T) 

then |T - maxDelay|

else  0
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Overall Input File FormatOverall Input File Format
All ints and short lower-case-only strings at start of a line

#blocks #nets  timingSpec
block 1  #shapes   x1 y1 … xn yn
timing #arcs
arc 1   fromPin toPin delay
arc 2   fromPin toPin delay
…
arc m  fromPin toPin delay
block 2 #shapes   x1 y1 … xn yn
timing #arcs
arc <m+1> fromPin toPin delay
arc <m+2> fromPin toPin delay

…
block B  …..
timing ….
arc …   

net 1   #pins  blockID pin  … blockID pin
net 2   #pins blockID pin  … blockID pin
net 3   #pins blockID pin  … blockID pin
…
net N   #pins blockID pin  … blockID pin
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Timing Spec in Input FileTiming Spec in Input File
About that first line:

#blocks #nets timingSpec

timingSpec is an integer
timingSpec < 0  =>  just ignore timing completely
timingSpec ==0 =>  just try to minimize overall worst critical path
timingSpec >0 ==>  this is T, the target timing you should try to meet
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Output File FormatOutput File Format
Philosophy

You read the netlist, do timing-driven placement, write a file out
File tells us the placement, and your numbers for area, wirelength, 
overlap, critical path delay, and one critical path 
We (actually, your earnest, hardworking TAs) provide a CHECKER tool

CHECKER tells you if your placement is OK, if your area, wirelength, 
overlap, critical path delay, critical path are indeed CORRECT

Very useful for your debugging
Major pain in the butt for us to build  (go hug a TA…)

Input
netlist

Floorplan
Tool

Output
File

CHECKER
Tool

Check
File

YOU US
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Output File FormatOutput File Format
Simple, minimal  (nothing not already lying around in placer)

<Σnetlengths number>
<Σpairwise block-block overlap area number>
<overallArea number>
<overallCriticalPathDelay number>
block 1  centerX centerY rotation shape
block 2  centerX centerY rotation shape
…
block B  centerX centerY rotation shape
net 1  length
net 2 length
…
net N length
path #edges
<edge type> edgeID
<edge type> edgeID
…
<edge type> edgeID

<edge type> is
either net or arc

Overlap?
Ought to be 0
always for your
slicing tree floorplanner.

If you did this like in
HW4, then you could get
some “residual”
overlaps in final
floorplan.  We check
for this, anyway.
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Output File Format ExampleOutput File Format Example
src

snk

1 w

1 se

2 nw

2 sw

3 se

6 1110

9

2
20

5

11

8

3 ne

5
9

62

11
20

8

11

10

c

c

c

1
2

3

Critical path shown
shaded here in this
placement

49
0
area
35
block 1  cenX cenY rot shape
block 2  cenX cenY rot shape
block 3  cenX cenY rot shape
net 1  10
net 2  11
net 3   8
net 4   20
path 4
net 1
arc 1
net 2
arc 2

arc1 arc2 Output file
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For CreditFor Credit
Logistics

You can work in groups of 2 or alone.  Other ideas -- ask RAR

Code
Your will write a slicing tree floorplanner.
Optional – you can handle timing.  OK to NOT to do it.
Your choice on platform, language
BUT, it has to be something WE can get to, so YOU can demo for US

Checking
YOU will run the CHECKER, dump its output into your writeup
This determines how well your program did (both correctness, and
competitive results against others in class)
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For CreditFor Credit
Writeup

Not paper.  Web page.  You submit it to us end of class.
PLEASE make it portable:  we copy the whole directory structure to 
our 760 web pages.  If you put absolute pathnames, links, it messes up
Suggestion

Make a directory:  <yourname>760Web, eg,  bubba760Web
Inside it, put all your html web pages:  foo*.html
Inside it, also make 2 directories:  760Stuff  and 760Code
Inside 760Stuff, put ALL your graphics and pics and sounds and 
explanatory video clips, etc.  Inside 760Code, put all your code.
Use only relative link names for internals:   ./760Stuff/foo.gif  etc
If its on the machine in your dorm room, and it will disappear 
before break--TELL US WHEN.  
If we don’t see a web page, you don’t get a grade…
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For CreditFor Credit
About Writeup--basic pieces

Introduction:  summarize the problem
Formulation:  you had to make some assumptions, since there are lots 
of degrees of freedom in this project.  Explain them.  Justify them.
Optimization goals:  tell us what you tried to do well. 
Implementation:  describe any interesting data structures, algorithms, 
optimizations, tricks, etc
Results: what did you run, how well did you do?

Think neat tables, plots, pics of layouts, graphs of cost vs temp, etc
Explain your results:  why did they happen like this

Post mortem:  given you could do it over, what would you do different?
Code:  put it someplace in the web page (preferably in 760Code dir) 



Page 58

© R. Rutenbar 2001 CMU 18-760, Fall01   115

For CreditFor Credit
You have to demo, too

Last week of class on a couple days--signup sheets
We will release some new benchmarks during the demo, and ask you to 
run one. It will be small; available in a couple of flavors.
You should print (or, better, draw) something enlightening
You run the CHECKER, we look over your shoulder and see what it says
Goal:  it works, it gives an OK answer.
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Points = [120] (But Weighted Like Proj2 Overall)Points = [120] (But Weighted Like Proj2 Overall)
Breakdown

[30 pts]  Web Writeup: Approach & Implementation
[30 pts]  Web Writeup: Results & Analysis
[10 pts]  Code: Reasonableness
[20 pts]  Demo:  Works, Quality, Style, Discussion
[30 pts]  Coolness

You actually got the thing to work (nice floorplans)
Results quality (bigger, better, faster, etc)
Interesting algorithms (more sophisticated annealing, you actually 
DID the timiting, interesting coupling of timing to layout, etc)
Interesting implementation (eg, did it in JAVA, but its not slow…)
Graphics (animated like RAR’s placer videos)
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BenchmarksBenchmarks
Will appear in /afs/ece/class/ee760/proj3/benchmarks

3 level of test cases
Level 0:  no timing at all, just pack the blocks, minimize wirelength, 

area;  blocks have only one shape apiece; you can ignore 
rotations of the blocks to get a good layout

Level 1: level-0, but blocks can have multiple shapes, and you need to 
do rotations to get a good layout

Level 2: level-0 geometry, but now we have timing arcs too
Level 3: whole shebang -- placement, shapes, rotations, timing arcs

Size
5-50 blocks, 5-100s of nets, 5-100s of timing arcs
3 different timing optimizations:  none,  minimize, and hit-target-timing
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GraphicsGraphics
Just mazingly helpful for a layout tool

It’s very hard to debug a layout algorithm if you cannot SEE it run
Also, more points for some animation

Use cmuview2 tcl code
(You can use whatever you like here: JAVA, etc, is fine too)
Think about drawing floorplan every K moves, or end of each temp
Think about drawing the wires, and critical path
Think about intelligent use of colors 

blocks, nets, rooms on floorplan, pins, nets on critical path, etc.  
You will amazed how useful this can be…
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Code ComplexityCode Complexity
Basic floorplanner

Parsing:  moderate pain
Annealer for floorplanner is pretty straightforward

Use skeleton from TSP problem and HW4 placer problem
New stuff is the slicing tree data structure, moves, sizing, and shape 
functions if you choose to do them

Timing component
Building timing graph:  messy book-keeping, but conceptually OK
Longest path:  not too bad, you have to THINK how you will get not just 
the length, but the nets on this path as well
Coupling to annealing placer:

Easiest is probably to update graph every K moves or every Temp
Easiest is probably to just treat maxDelay as an objective to min

Graphics:  once past brief learning curve, not hard to do something 
simple like dump blocks/nets as boxes/lines to screen

Just like HW4 placer
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Where Are We?Where Are We?
About a month to do this--more if it drags over into finals.

27    28    29    30    31    
3   4     5    6    7    

M      T      W     Th    F

10   11    12    13    14    
17     18     19     20     21     
24    25    26    27    28    

Aug
Sep

Oct 1    2    3    4    5    
8   9    10    11    12   

15        16     17     18     19
22 23     24    25    26    
29    30    31    1     2    
5   6    7    8    9    Nov
12   13    14    15      16      
19     20     21    22     23     
26     27     28   29     30       
3    4     5   6   7    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Floorplanning (Project 3)
Static timing analysis
Electrical timing analysis 
Geometric data structs & apps

Dec

Thnxgive

10    11     12   13   14    16 Want demos, web writeup by 14th


