

Where Are We?

Physical	designhow to	wire the p	laced gates?
----------	--------------	------------	--------------

Aug 27 28 29 30 31 1 Sep 3 4 5 6 7 2 10 11 12 13 14 3 17 18 19 20 21 4 24 25 26 27 28 5 Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		Μ	Т	W	Th	F	
Sep 3 4 5 6 7 2 10 11 12 13 14 3 17 18 19 20 21 4 24 25 26 27 28 5 Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15	Aug	27	28	29	30	31	1
10 11 12 13 14 3 17 18 19 20 21 4 24 25 26 27 28 5 Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15	Sep	3	4	5	6	7	2
17 18 19 20 21 4 24 25 26 27 28 5 Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		10		12	13	14	3
24 25 26 27 28 5 Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15	Oct	17	18	19	20	21	4
Oct 1 2 3 4 5 6 8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		24	25	26	27	28	5
8 9 10 11 12 7 15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15			2	3	4	5	6
15 16 17 18 19 8 22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		8	9	10		12	7
22 23 24 25 26 9 29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		15	16	17	18	19	8
29 30 31 1 2 10 Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		22	23	24	25	26	9
Nov 5 6 7 8 9 11 12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15	Nov	29	30	31	1	2	10
12 13 14 15 16 12 Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		5	6	7	8	9	Ш
Thnxgive 19 20 21 22 23 13 26 27 28 29 30 14 Dec 3 4 5 6 7 15		12	13	14	15	16	12
26 27 28 29 30 14 Dec 3 4 5 6 7 15	Thnxgive	19	20	21	22	23	13
Dec 3 4 5 6 7 15		26	27	28	29	30	14
	Dec	3	4	5	6	7	15
10 12 13 4 6		10		12	13	14	16

Introduction Advanced Boolean algebra JAVA Review Formal verification 2-Level logic synthesis Multi-level logic synthesis Technology mapping Placement Routing Floorplanning (Project 3) Static timing analysis Electrical timing analysis Geometric data structs & apps

© R. Rutenbar 2001

Slicing Trees: 3 Basic Annealing Moves

■ Move: subtree swap

- Pick 2 random nodes in tree, swap them
- ▶ Be careful that the subtrees these node define are independent, ie, don't pick node S that is a child of node T's subtree
- ▶ Note can also just swap 2 leaf nodes, it's the same thing

Move: node cut inversion

- Pick a connected chain of internal cut nodes (random length chain, starting at a random node), then flip the direction on each one.
- ▶ This just means change "|" to "-" and vice versa

■ Move: leaf node change

- > Rotate or reflect a leaf node (if its not a square node)
- ▶ If the leaf node is available in different shapes, choose a different random shape for that node

© R. Rutenbar 2001

Annealing a Slicing Tree

■ Mechanically, do this in the annealing inner-loop

- > Pick one of 3 random move types: swap, invert, leaf change
- Pick random node(s) to do the move on
- Do the move on the tree
- > So the sizing operation to get an absolute location for each module
- This tells where all the pins are on the modules, and any pins around the outside of the layout
- ▶ Now, calculate the total wirelength of this perturbed floorplan
- Evaluate the cost function
- Decide to accept or reject the move
- ▶ If you reject it, you have to "undo" this change in the tree

■Note

- ▶ Not very incremental, on the move evaluation for wirelength
- ▶ That's just the way it works for slicing trees.

© R. Rutenbar 2001

CMU 18-760, Fall01 43

Annealing Cost Function for Slicing Tree

Can be pretty simple

- (Area of layout) + weight* (Σ wirelengths)
- You need to pick the weight to normalize the relative contribution of area (in units of length²) and wirelen (in units of length)

This is enough to do a pretty good job of floorplanning...

Choosing Optimal Shape: Stockmeyer Algorithm

Informally

Composing Shape Functions

Goal

- Suppose we have shape functions for all the individual modules, the leaf nodes in our slicing tree
- ▶ How do we get a shape function for the entire, overall layout itself?
- ▶ Given structure of a slicing tree, turns into 2 basic composition questions

Shape Function Inversion

▼Task

- Pick a desirable "final shape" for the whole layout, by selecting a point on the root shape function.
- "Invert" the functions down the tree to get a selected shape for each leaf module

Shape Function Inversion

Continue this idea

Shape Function Inversion

Why does this work?

- Individual module shape functions specify size of "holes" big enough for the individual modules
- Composing shape functions adds the sizes of the hole left-right and topbottom
- ▶ At top, shape function applies to whole layout. An X x Y you pick is guaranteed to be realizable
- ▶ The shape function at each "|" or "--" cut node specifies that one dimension is fixed, and the other varies
- ► The individual shape functions are used to translate the one fixed coord of the "hole" into the other dimension we need
- ...and down the tree we go

Result

Individual leaf modules can be fixed, or have a finite set of shapes, or have a continuum of shapes, and we can represent slicing layout

Our Block Model for Floorplans Implementation hint: rotations Make a table for each block, for each shape Entries for each of the 4 rotations: 0, 90, 180, 270 Save the ΔX and ΔY values you need to add to the (centerX,centerY) location of the block to compute location of pin These (ΔX , ΔY) values are constant, independent of the block location, only depending on the block, the shape of the block. This saves you the grief of computing these every time a block move; you only do it once, at start of the program

© R. Rutenbar 2001

Our Net Model for Floorplans

Examples

Simple 2 pt net: net i 2 3 e 2 w

Another 2 pt net: Nets can have all their pins on one (real) block: <u>net i 2 3 ne 3 e</u>

A 5 pt net: This one goes to a chip pin and to 4 other block pins; chip outline drawn bigger here for clarity: net i 5 0 n 3 n 3 ne 1 nw s sw

© R. Rutenbar 2001

Floorplanning -> Timing

Project goals

- First goal is to be able to get a decent floorplan:
 - > Packed, small area, small wirelength, no overlap
 - > (or, not much overlap--hard to make it 0 without more fancy stuff)
- ▶ Next (optional) goal: good timing

We also have a timing model

- Each block has a timing model: timing arcs
- Each net has a timing model: length-based delay
- > You get to build, maintain, update timing graph
- As placement evolves, blocks move, so nets change, so net delay changes, so critical path changes, so timing changes
- ▶ You get to track all this...

© R. Rutenbar 2001

Delays Thru a Block

How do we model these 3 delays

- > Pretend the "latch" is like a pin; call it the "clock" pin
- ▶ We give a delay edge from a pin to a pin (clock counts here)
- Edge gives direction (which way signal goes) and delay number
- Standard name for these: timing arcs

Handling Critical Paths

■ Why are we doing this? We want to track *critical path*

- ▶ We can use delays thru a block + delays thru wires to build timing graph
- Consider a simple example with all arcs shown

© R. Rutenbar 2001

<section-header><section-header><section-header><text><text><image><image>

<section-header>

For Credit

Writeup

- ▶ Not paper. Web page. You submit it to us end of class.
- ▶ PLEASE make it portable: we copy the whole directory structure to our 760 web pages. If you put absolute pathnames, links, it messes up
- Suggestion
 - > Make a directory: <yourname>760Web, eg, bubba760Web
 - > Inside it, put all your html web pages: foo*.html
 - > Inside it, also make 2 directories: 760Stuff and 760Code
 - Inside 760Stuff, put ALL your graphics and pics and sounds and explanatory video clips, etc. Inside 760Code, put all your code.
 - > Use only relative link names for internals: ./760Stuff/foo.gif etc
 - ▷ If its on the machine in your dorm room, and it will disappear before break--TELL US WHEN.
 - > If we don't see a web page, you don't get a grade...

© R. Rutenbar 2001

Benchmarks

Code Complexity

■ Basic floorplanner

- ▶ Parsing: moderate pain
- ▶ Annealer for floorplanner is pretty straightforward
 - > Use skeleton from TSP problem and HW4 placer problem
 - New stuff is the slicing tree data structure, moves, sizing, and shape functions if you choose to do them

▼Timing component

- ▶ Building timing graph: messy book-keeping, but conceptually OK
- Longest path: not too bad, you have to THINK how you will get not just the length, but the nets on this path as well
- Coupling to annealing placer:
 - > Easiest is probably to update graph every K moves or every Temp
 - > Easiest is probably to just treat maxDelay as an objective to min
- Graphics: once past brief learning curve, not hard to do something simple like dump blocks/nets as boxes/lines to screen
 - Just like HW4 placer
- © R. Rutenbar 2001

CMU 18-760, Fall01 119

Where Are We?

About a month to do this--more if it drags over into finals.

	Μ	Т	W	Th	F	
Aug	27	28	29	30	31	1
Sep	3	4	5	6	7	2
Oct	10		12	13	14	3
	17	18	19	20	21	4
	24	25	26	27	28	5
		2	3	4	5	6
	8	9	10		12	7
	15	16	17	8	19	8
	22	23	24	25	26	9
Nov	29	30	31		2	10
	5	6	7	8	9	11
	12	13	14	15	16	12
Thnxgive	19	20	21	22	23	13
	26	27	28	29	30	14
Dec	3	4	5	6	7	15
	10		12	13	14	16

© R. Rutenbar 2001 CMU 18-760, Fall01 120