
Page 1

© R. Rutenbar 2001 CMU 18-760, Fall01 1

(Lec 15) ASIC Layout: Routing by Maze Search(Lec 15) ASIC Layout: Routing by Maze Search
What you know

Elementary ASIC gate placement by annealing
Given the netlist: where do we put gates to get min. estimated wire length

What you don’t know
How to actually wire the gates together: called routing
Flavors of routing: global versus detailed, area versus region
Our technical focus: area routing by maze routing

© R. Rutenbar 2001 CMU 18-760, Fall01 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001 CMU 18-760, Fall01 3

Where Are We?Where Are We?
Physical design--how to wire the placed gates...?

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001 CMU 18-760, Fall01 4

Routing: The ProblemRouting: The Problem

Dozens of circuits,
1000s of blocks,
1,000,000s of gates

Many meters of wire.

Page 3

© R. Rutenbar 2001 CMU 18-760, Fall01 5

3 Basic Routing Problems3 Basic Routing Problems
Size complexity

Big chips have an enormous number (100,000s, 1,000,000s) of wires
Not every wire gets to take an “easy” path to connect its pins; there may
be too much “congestion”, make path-finding hard
Essential to connect them all--can’t afford to tweak many wires manually

Shape complexity
It used to be that the representation of the layout was a simple “grid”
You knew where pin could / couldn’t be, where wire could / couldn’t go
In modern fab processes, it’s not like this anymore.
All wire geometry, wire material layers can have complex geometric
rules they must obey to be “design rule legal” in the layout

Timing complexity
It’s not enough to make sure you connect all the wires
You also must ensure that the delays thru the wires are not too big

© R. Rutenbar 2001 CMU 18-760, Fall01 6

Basic SolutionsBasic Solutions
Size complexity

Divide & conquer: don’t just solve “one big routing problem”
Solve of sequence of routing problems that “refine” routing
Start with “global” model of routing, end with “detailed” routing

Shape complexity
Coarse routing steps: are often “gridded”, ie, you assume wires fall on
some nice grid of legal locations. This is a simplification, but OK here.
Detailed routing steps: either require some underlying grid for all the
pins, or use “gridless” path search techniques to find paths

Timing complexity
First, make sure placement is good enough that you can hit timing
Account for timing (using different abstractions of “time”) at each level
of routing, from coarse to fine
Iterative improvement: identify problems, go back and try to fix ‘em

Page 4

© R. Rutenbar 2001 CMU 18-760, Fall01 7

A (Very) Short Historical Tour: RoutingA (Very) Short Historical Tour: Routing
In the beginning of chip routing…

Used ideas borrowed from PC-board routing
Only had 2 routing layers (one Horizontal, one Vertical, typically)
So, had to route “around” the placed objects, not “over” them

pin

pin

cell

cell

cell

cell

wire area
So, start with

overall floorplan
of placed chip.

Want to connect
pins thru the regions

left empty for routing

© R. Rutenbar 2001 CMU 18-760, Fall01 8

Routing: Global RoutingRouting: Global Routing

5
54

4 42

2

3

3

11

Usually start with global or coarse routing
Chop up chip into big regions
Decide thru which regions the wires will go, but not exactly where each
rectangle of each individual wire will go
Idea is to plan global paths for the wires, so we know early we can fit
them all in each region when we finally embed detailed rectangles

Page 5

© R. Rutenbar 2001 CMU 18-760, Fall01 9

Routing: Global RoutingRouting: Global Routing

5

5

4

42

2
3

3

11

Result of global routing
In each region of the chip, we know exactly which wires go thru that
region, and we know roughly where the pin IOs are to enter and exit
Typical decomposition for ASICs is into rectangular regions, as below
In this example, signals only enter on the 2 opposite sides

One routing
channel, with

signals that
use the channel

known from
global routing

© R. Rutenbar 2001 CMU 18-760, Fall01 10

For Row-Based PlacementsFor Row-Based Placements

Alternates logic & wiring
Regions for wiring called
channels, pins on top & bottom
Used when you have only 2 or
3 layers of metal wiring
Global routing determines
where row-spanning signals
cross the rows, and where the
horizontal extent of signals are
placed

Page 6

© R. Rutenbar 2001 CMU 18-760, Fall01 11

Global Routing for Row-Based ASICsGlobal Routing for Row-Based ASICs

Determines where each row
gets crossed by row-spanning signal

Determines which channels
horizontal parts of signal
will use, when there is choice

put it here?

or here??

this one here

© R. Rutenbar 2001 CMU 18-760, Fall01 12

Aside: Placement + Global RoutingAside: Placement + Global Routing
Smart row-based placers do some global routing

Helps decide if placement is good, by looking at where global routing
wants to use space
Routing can make rows wider if you need to add space to let signals
cross the rows (depends on metal layer, use of pins in cells, etc)
Routing can make layout taller if you need lots of tracks for wiring in
each channel. If you make smarter decisions about where to put
horizontal parts of the wiring in global routing, can get smaller layouts.

How?
Can do some decent global routing inside an annealing-based placer
Start global routing near the end, when you have OK evolving placemnt
Can look at row crossings, predicted congestion in channels, etc
Try to evolve placement and global routing at same time.

Page 7

© R. Rutenbar 2001 CMU 18-760, Fall01 13

Routing: Detailed RoutingRouting: Detailed Routing

5

5

4

42

2
3

3

11

5

5

4

42

2
3

3

11

Detailed routing follows global routing
Detailed here means “actually put down the exact final rectangles that
make each individual wire”
In this case, you would use a channel router, which wires up a channel-
shaped rectangle with pins on the 2 opposite sides

© R. Rutenbar 2001 CMU 18-760, Fall01 14

Routing: Detailed RoutingRouting: Detailed Routing

1 1

1

2

2

3

3 4

44

Different detailed routers exist for different region shapes:

Switchbox router
for when rectangle has

pins on all 4 sides
Channel router

5

5

4

42

2
3

3

11

Page 8

© R. Rutenbar 2001 CMU 18-760, Fall01 15

Routing: Global + DetailedRouting: Global + Detailed

5
54

4 42

2

3

3

11

Repeat for each region until the whole chip is routed.

Does it always work...?
Nope
Often get some unrouted nets which require some rework by hand.

© R. Rutenbar 2001 CMU 18-760, Fall01 16

Historical TourHistorical Tour
Channel-ed layout styles

Dominated when we had 2-3 layers of available wiring
Disappeared when we got to 4, 5, 6, 7, 8… layers of wiring

What’s different now?
Route over the top of most placed objects, not “around” them
Get very different geometric models of global and detailed routing

Interesting historical aside:
Earliest routers, for boards, viewed task as “one big routing problem”
They routed over the entire board area, routed one net at a time.
These are now called area routers
Area routers gave way to region routers (eg, channel routers) when we did
chips with limited metal wiring layers
Now, we have lots of metal layers…we are back using area routers again

Page 9

© R. Rutenbar 2001 CMU 18-760, Fall01 17

Technology Marches On…Technology Marches On…
Now have lots of layers of wiring.

Don’t have to only put wires between the blocks of the chip
Now you can put wires over blocks of the chip
Area routers are designed to be good at dealing with obstacles.

pin

pin

cell

cell

cell

cell

pin

pin

cell

cell

cell

cell

Chop up chip, cells and all, into
regions for global routing

© R. Rutenbar 2001 CMU 18-760, Fall01 18

Global Routing TodayGlobal Routing Today

pin

pin

cell

cell

cell

cell

Chunk of IC to be detail routed.
Pins appear on boundary or anywhere
inside the region. Typically modeled

as a grid of legal wire locations
called tracks; typically 10-20

tracks in each dimension of one cell

Page 10

© R. Rutenbar 2001 CMU 18-760, Fall01 19

Routing Refinement TodayRouting Refinement Today
Global routing

Track supply (how many available tracks) vs demand (how many paths
want to go thru this cell in global grid)
Routing generates regions of confinement (ie, coarse path) for a wire

pin

pin

cell

cell

cell

cell

pin

pin

cell

cell

cell

cell

Global routing tell us we want
this net to use this rough path;
But we don’t know the exact path
in this region

© R. Rutenbar 2001 CMU 18-760, Fall01 20

Routing Refinement TodayRouting Refinement Today
Detailed routing embeds exact paths in these regions

Often insist on a grid: require wires and pin to use tracks on this grid
Tolerate off-grid pins: most geometry is on grid, fix-up exceptions

pin

pin

cell

cell

cell

cell

pin

pin

cell

cell

cell

cell

Global router tells us to
search for detailed paths

on these tracks in this region

Detailed router tells us exact
final path in this region;

may allow it to go off grid if needed

Page 11

© R. Rutenbar 2001 CMU 18-760, Fall01 21

Typical ProblemTypical Problem

Big ASIC chip today
~8 layers of wiring
In 0.12um technology, 20 x 20 track unit cell
is 10um x 10um box
1cm x 1cm chip is 2000 x 2000 global
routing grid

Often, use yet more wiring hierarchy
Functional blocks get their guts wired up
first, leaving wires between blocks unrouted
Then, we do “chip level assembly” routing,
which just routes cross-chip global signals
among blocks
This can still be ~ 100,000 nets

Still a big, very hard problem

~ 10mm x 10mm

© R. Rutenbar 2001 CMU 18-760, Fall01 22

2 Remaining Problems2 Remaining Problems
Shape complexity

So far, pictures we have drawn have shown paths on nice, simple grids
It’s not quite like that, if you look closely at modern technologies

Timing complexity
..and, we have not said anything about timing yet

Page 12

© R. Rutenbar 2001 CMU 18-760, Fall01 23

Shape Complexity: Modern Design RulesShape Complexity: Modern Design Rules
Lambda rules

Big idea in 1980: one fundamental distance unit -- lambda λ
All design rules are multiples of this unit
Allows process independent scaling of physical rules

In a λ -scaled process, 1 λ is the smallest physical unit of distance, for a
width, height, separation, overhang, etc
And, λ is “big”, every size, distance is just a few λs

Minimum CMOS
FET, channel is 2x3

Minimum metal1 wires
with minimum contact

© R. Rutenbar 2001 CMU 18-760, Fall01 24

Deep Submicron Design RulesDeep Submicron Design Rules

Unfortunately, λ rules don’t work anymore
They were an OK approximation of industrial reality in 1980s
In the 1990s, things got difficult.
In later 1990s, these are not remotely close to reality

Jargon: “very deep submicron”
or more recently “nanometer-scale” design rules

Minimum size “thing you can draw” in a modern process is called the
“feature size” of the process

Typically this is ~ length of the polysilicon gate on the FET
Submicron processes: this feature size is < 1 um
Deep submicron processes: this feature size is < 0.5 um
Very deep submicron processes: this feature size is << 0.5 um
Nanometer-scale processes: this feature size is < 100nm = 0.1um

Page 13

© R. Rutenbar 2001 CMU 18-760, Fall01 25

Deep Submicron Design RulesDeep Submicron Design Rules
Consider a basic 0.25um process

If this was λ rules, every distance would be a multiple of 0.25um
But it’s not
Everything is uniquely sized for fab yield and performance and density

0.25um

0.25um

Poly gate
min width

Metal1 wire
min width Metal1 wire

Metal2 wire

Contact

Note--even
different
cut overlaps
on different layers

© R. Rutenbar 2001 CMU 18-760, Fall01 26

Deep Submicron Design RulesDeep Submicron Design Rules
Manufacturing grid

Every edge of every rectangle must be on some fundamental grid, limited
by the accuracy of the lithography--the optical printing of masks
In λ rules, λ is this grid, λ is big relative to feature size: min feature ~ 2 λ
In real processes, the mfg grid is very small, 1/10 or 1/20 or 1/50th of the
feature size. Today, feature sizes can be 1, 5, 10 nanometers

Big problem for routing
You cannot build and maintain a routing grid this fine
5mmX5mm area at 10nm mfg grid = 500,0002 grid cells, 250 billion cells.
Purely gridded routing strategies stop working here...

Page 14

© R. Rutenbar 2001 CMU 18-760, Fall01 27

Timing ComplexityTiming Complexity
Remains a huge, somewhat open problem

Not uniquely a router problem
If placement is bad, you cannot get the wires short enough to meet
timing requirements

So you could improve the placement
But, maybe the the placement is OK--the routing is not too good, so
congestion forces nets to take long detours and be too long

So you could improve maybe the global routing
But maybe its really electrical crosstalk from neighbor wires screwing
up the signals on your wire

So you could improve detailed routing to move these wires away
But maybe the layout is really as good as you can do--your logic sucks,
its too big and its too deep and it uses slow gates

So you could improve your logic synthesis--and start layout over?

Lots of messy, circular dependencies here; active problem

© R. Rutenbar 2001 CMU 18-760, Fall01 28

So, What Will We Look At...?So, What Will We Look At...?
Classical maze-style area-routers

Big characteristics
Area router, not a region router

So can handle obstacles well...
..but they are sensitive to order in which wires routed.

Can use it for global and for detailed routing
…but we will focus mostly on detailed routing

Can handle messy gridless routing constraints
…but we don’t have time to explain how (take 18-763)
We will do simple gridded style

Can handle some timing constraints
...but we don’t have time to do this. (take 18-763)

Interestingly, this is a very old idea, yet hugely important still

Page 15

© R. Rutenbar 2001 CMU 18-760, Fall01 29

Routing: Maze RoutersRouting: Maze Routers
Our Topics:

History
Basic Mechanics

Two-point nets in one layer - unit cost
Multipoint nets
Multiple layers
Weighted cost

Design Variants
Vanilla scheme
Depth-first search (Rubin’s scheme)

© R. Rutenbar 2001 CMU 18-760, Fall01 30

Maze Routing: HistoryMaze Routing: History
1961

Lee, C. Y., “An algorithm for path connections and its applications”,
IRE Trans. on Electronic Computers, pp. 346-365, Sept. 1961.
Chester Lee of Bell Labs invents the algorithm; gets famous for “Lee
routers”

1974
Rubin, F., “The Lee path connection algorithm”, IEEE Trans. on
Computers, vol. c-23, no. 9, pp. 907-914, Sept. 1974.
Frank Rubin comes up with a way to make it go much faster.

1983
Hightower, D., “The Lee router revisited”, ICCAD, pp. 136-139, 1993.
Dave Hightower, who originally got famous for coming up with an
alternative to the Lee-router (a Hightower line-probe router) that was
faster and used a lot less memory, undergoes a spiritual conversion and
implements a killer maze router. Trick is: now machines have enough
(real and virtual) memory to do big maze routing tasks.

Page 16

© R. Rutenbar 2001 CMU 18-760, Fall01 31

Maze Routing: StrategyMaze Routing: Strategy
Strategy

One net at a time - completely wire one net.
Optimize path - find the best wiring path.

Problems
Early nets wired may block path of later nets.
Optimal choice for one net may block later nets.

Solutions
Careful net ordering.
Careful optimization to include impact on later wiring.
No Guarantees.

(How do people really do it today? Let router remove blocking nets or
shove them aside; called ripup/reroute or shove-aside routing.)

© R. Rutenbar 2001 CMU 18-760, Fall01 32

Maze Router: Basic IdeaMaze Router: Basic Idea
Given:

Grid - each square
represents where one wire
can cross.
A source and target.

Problem:
Find shortest path
connecting source and
target.

wires can:

cross or bend

S

T

Page 17

© R. Rutenbar 2001 CMU 18-760, Fall01 33

Maze Routing: ExpansionMaze Routing: Expansion

Start at the source.

Find all new cells that are reachable
at distance 1, ie, all paths that are just
1 unit in total length - mark all with distance.

Using the distance 1 cells,
find all new cells which
are reachable at distance 2.

Repeat until the
target is found.

S

1

1

2

2

22

© R. Rutenbar 2001 CMU 18-760, Fall01 34

Maze Router: ExpansionMaze Router: Expansion
Strategy

Expand one cell at a time
until all of the shortest paths
from S to T are found.
Expansion creates a
wavefront of paths that
search broadly out from
source cell until target is hit

S

T

Page 18

© R. Rutenbar 2001 CMU 18-760, Fall01 35

Maze Router: BacktraceMaze Router: Backtrace

Now what? Backtrace
Select a shortest-path (any
shortest-path) back to the
source and mark its cells so
they can’t be used again.
Since there are many paths
back, optimization
information can be used to
select the best one.
Here, just follow the path
costs in the cells in descending
order...

S

T

© R. Rutenbar 2001 CMU 18-760, Fall01 36

Maze Router: Clean-UpMaze Router: Clean-Up

Now what? Clean-up
Clean up the grid for the next
net, leaving the S to T route as
an obstacle.
Now, ready to route the next
net with the obstacles from the
previously routed net in place in
the grid.

S

T

Page 19

© R. Rutenbar 2001 CMU 18-760, Fall01 37

Maze Router: BlockageMaze Router: Blockage

X

X

X

X X

T

S

X X

Blockages
All future nets must route
around this blockage.

© R. Rutenbar 2001 CMU 18-760, Fall01 38

Classical Maze RouterClassical Maze Router
Three main steps:

Expansion
Breadth-first-search to find all paths from source to target.

Backtrace
Walk the shortest path back to the source and mark path cells as used.

Clean-Up
Erase all distance marks from other grid cells before the next net is

routed.

Page 20

© R. Rutenbar 2001 CMU 18-760, Fall01 39

Maze Router: ConcernsMaze Router: Concerns
Storage

Do we need a really big grid to represent a big routing problem?
What info required in each cell of this grid?

Complexity
Do we really have to search the whole grid each time we add a wire?

Technology
Just 1 wiring layer? How do we do 2 layers? 3? 4? 6??
Complex wire widths or spacings?

2 issues here
Applications of basic algorithm
Implementation issues for the basic algorithm

© R. Rutenbar 2001 CMU 18-760, Fall01 40

Applications: Multipoint NetsApplications: Multipoint Nets
Multipoint Nets

One source -> Many targets.
You get this with any net that represents fanout

Strategy
Use maze route algorithm to find path from source to nearest target.
Relabel all cells on the path as sources and rerun maze router using all

sources simultaneously.
Repeat for each segment.

Page 21

© R. Rutenbar 2001 CMU 18-760, Fall01 41

Multipoint NetsMultipoint Nets

Given:
A source and many targets.

Problem:
Find shortest path connecting
source and targets.

S

T

T

© R. Rutenbar 2001 CMU 18-760, Fall01 42

Multipoint NetsMultipoint Nets

First...
Run maze route to find the
closest target.
Start at source, go till you find
ANY target.

S

T

T

Page 22

© R. Rutenbar 2001 CMU 18-760, Fall01 43

Multipoint NetsMultipoint Nets

S

S

S

S S

T

Second...
Backtrace and relabel the
whole route as sources for the
next pass.
We will expand this entire set
of source cells to find the net
segment of the net
Idea is we will look for paths of
length 1 away from this whole
set of sources, then length 2, 3,
etc.
Go till you hit another target

© R. Rutenbar 2001 CMU 18-760, Fall01 44

Multipoint NetsMultipoint Nets

Trick
Expand simultaneously from
all of these sources to find the
shortest path from the
existing route to the next
target.

S

S

S

S S

T

Page 23

© R. Rutenbar 2001 CMU 18-760, Fall01 45

X

X

X

X

X

X

X X X

Multipoint NetsMultipoint Nets

Finally
Do usual cleanup
Mark all of the segment cells as
used and clean-up the grid.
Now, have embedded a
multipoint net, and rendered it as
an obstacle for future nets

© R. Rutenbar 2001 CMU 18-760, Fall01 46

Application: Mutilple Layer RoutingApplication: Mutilple Layer Routing
How -- mechanically do we handle multiple layers?

Parallel grids, vertically stacked, one for each layer.
Use vias to access other layers.
Label cell as to whether a via is permitted at this location.

New expand
Out on each layer,
Up/down at each via.

Page 24

© R. Rutenbar 2001 CMU 18-760, Fall01 47

Multiple LayersMultiple Layers
2 parallel grids, vertically stacked

Expansion can now go UP/DOWN; vias can go where “v” mark is

S

T

Layer 1 Layer 2

v

v

v

v

© R. Rutenbar 2001 CMU 18-760, Fall01 48

Multiple LayersMultiple Layers
Backtrace & cleanup as usual

S

T

Layer 1 Layer 2

v

v

v

v

Page 25

© R. Rutenbar 2001 CMU 18-760, Fall01 49

Aside: About ViasAside: About Vias
Vias are how you move layer to layer

Electrical connects between separate layers of physical wiring
“Vertical” electrical connection

Geometric issue #1: Size
On chips, vias may be wider than wire widths are
So you have to be careful where you assume you can put them

Since vias can “stick out,” may force extra space between your wires

spacing
too small

here…

metal spacing
rule

© R. Rutenbar 2001 CMU 18-760, Fall01 50

Aside: About ViasAside: About Vias
Geometric Issues #2: Vertical stacking

Relevant in multi-layer metal process, and in PC boards
Can you put multiple vias connecting different sets of layers directly on
top of each other, in a so-called stack?
In all modern processes yes, in older ones, no. Router has to handle this.

5-layer metal cross section
from IBM PowerPC

Metal1 to metal2 vias

Page 26

© R. Rutenbar 2001 CMU 18-760, Fall01 51

Implementation Issues: Non-Unit GridsImplementation Issues: Non-Unit Grids

S

T

shaded cells cost 3

Old problem
Each cell in grid cost the same
to cross it with a wire
Cost ==1, unit-cost
Is this necessary?

Now
Given grid, Source and target
Weights for each cell.

Problem:
Find minimum cost path
connecting source and target.

3 3 3 3

3 3 3 3

© R. Rutenbar 2001 CMU 18-760, Fall01 52

Weighted GridsWeighted Grids
Many good applications

Make the router avoid electrically
sensitive areas of IC
After global routing, weight cells
with lots of potential wiring
congestion higher, so router tries
to avoid them
Can make different layers have
different expense to use
Can make different vias have
different expense to use
Can make different directions of
expansion have different expense,
eg, you want metal 2 mostly
vertical, so left-right expansions
cost more...

Expansion...?
Always expand next cheapest
partial path

S

T

3 3 3 3

3 3 3 3

Page 27

© R. Rutenbar 2001 CMU 18-760, Fall01 53

Subtle Search Issues with NonUnit CostsSubtle Search Issues with NonUnit Costs

S

T

3 3 3 3

3 3 3 3

1

1 1

4

2 2

2

What cost does this get, and why?

Cost = 4 = cheapest path to this
cell from the Source cell

We expand the cell to north
to reach this cell, and we
add this cell to the search
wavefront at cost=4, reached
from the north.

1

3

Expand this cell...

Reach this cell at
cost = 1 + 3 = 4...

??

© R. Rutenbar 2001 CMU 18-760, Fall01 54

Maze Routing: Mid-Point SummaryMaze Routing: Mid-Point Summary
What do we know?

Grid-based expansion, one net at a time
Can use costs in grid to get different effects
Can deal with multiple wiring layers, multi-point nets

What don’t you know?
Real implementation issues
Data structures for grid, for the search
Depth-first expansion techniques for speed
Subtle interactions between cost strategy and search strategy
Expanding a cell vs reaching a cell vs multiple-reaching....

Next topics: serious implementation issues.

Page 28

© R. Rutenbar 2001 CMU 18-760, Fall01 55

Implementation ConcernsImplementation Concerns
Representation

How do we store the routing grid?
What do we need in each cell?
How do we represent the state of the advancing path search process?

Algorithms
We have a serial computer: we can process one cell at a time...
...so, which cell is next to “label” in the search process
Does the order matter?
How can we do this as fast as possible?

© R. Rutenbar 2001 CMU 18-760, Fall01 56

Big Idea: Search WavefrontBig Idea: Search Wavefront
One big goal

Efficient storage: big layout needs a big grid
Want to put as little in each cell as possible

Idea: Don’t actually store path costs in grid cells
Big costs -> many bits per cell.
Only the cells most recently labeled during search will be used to
expand the search for new paths
These cells constitute the search wavefront

Wavefront is important:
Store wavefront list with all needed info about each wavefront cell.
Mark a few bits in the actual grid cells just to indicate how you found

the path to this cell - i.e., remember the predecessor cell.

Page 29

© R. Rutenbar 2001 CMU 18-760, Fall01 57

Example Wavefront for Simple SearchExample Wavefront for Simple Search

Wavefront is...
The frontier of the active
search for new paths
The neighbors of the new cells
worth looking at to try to
extend the evolving path
search
The only cells we need to look
at to decide how to continue
the search process

Implication
Don’t store the path cost
numbers in the grid
Just store the wavefront cells
themselves in a special data
structure

3

3

4

4 4

4

2

3

3

4

S

2

2

3

4

2

3

3

4

3

4

4

T

4

© R. Rutenbar 2001 CMU 18-760, Fall01 58

More Complex WavefrontMore Complex Wavefront

2 S

2

2

4

T

33

33

3

3

3

3 2

3

3

S

2

2

3

4

3

5

T

33

33

3

3

After expanding 1st S cell After expanding 3 neighbors of S

Page 30

© R. Rutenbar 2001 CMU 18-760, Fall01 59

More Complex WavefrontMore Complex Wavefront
What wavefront is...

Set of cells already reached in
the expansion process...
...which have neighbors we
have not already reached
Indexed by cost of cells reached
(== costs of paths that start at
source and end at this cell)
Expanded in cost order,
cheapest cells before more
expensive cells

3

3

4

4 4

4

2

3

3

4

S

2

2

3

4

4

3

5

4

4

T

33

33

3

3

© R. Rutenbar 2001 CMU 18-760, Fall01 60

Outline of Expansion AlgorithmOutline of Expansion Algorithm
Cheapest-cell-first search

Variant of Dijkstra’s algorithm
Assume wavefront is a cost-indexed list of cells you have already visited

during search process, and “labeled” with path cost

How does the wavefront grow?
Pull out a cheapest cell C from the wavefront

Look at the neighbors N1, N2, ... of cell C you have not visited yet
Compute the cost of expanding this path to reach these new cells N1...
Add these new cells N1, N2, ... to the wavefront data structure (indexed
by their cost)
Remove cell C from the wavefront
Repeat with the next cheapest cell on wavefront...

Page 31

© R. Rutenbar 2001 CMU 18-760, Fall01 61

Maze Router: TerminologyMaze Router: Terminology
We need some terminology or we’ll get confused

Wavefront

Reached
A cell is reached when it is put on the wavefront list - when it becomes a
frontier cell.

Expanded
A cell is expanded when it is a wavefront cell and it has just been used to
reach its neighbors. This is just before it is removed from the wavefront
list.

Dijkstra’s Approach
Expand cells in order of lowest cost. Each cell gets expanded exactly
one time.

© R. Rutenbar 2001 CMU 18-760, Fall01 62

Illustrating the TerminologyIllustrating the Terminology

T

Current wavefront.

Already expanded, won’t revisit.

Cells not reached yet.

W = on current wavefront
X = removed from wavefront
? = new reachable cells

S

Page 32

© R. Rutenbar 2001 CMU 18-760, Fall01 63

Reaching a New Cell During SearchReaching a New Cell During Search

A. Wavefront
cell

Know:
pathcost
predecessor

B. Unreached
cell

Know:
cell cost

To reach this cell:

© R. Rutenbar 2001 CMU 18-760, Fall01 64

Reaching A New CellReaching A New Cell
To reach cell B

Grab cell A, pathcost=12, from
wavefront
See unreached neighbor B
Compute cost to reach B is
12 + 3 = 15
Add this cell to wavefront

Mark grid cell B as “reached”
(only takes a few bits) so we
don’t try to put it on wavefront
again (ie, reach it again)

A. Wavefront
cell

Know:
pathcost = 12
pred = NORTH

B. Unreached
cell

Know:
cell cost = 3

Page 33

© R. Rutenbar 2001 CMU 18-760, Fall01 65

Basic Maze Routing AlgorithmBasic Maze Routing Algorithm
wavefront_structure = { source cell }
while (we have not hit target) {

if (wavefront == empty)
quit -- no path to be found

C = get lowest cost cell on wavefront_structure
if (C == target) }

backtrace path in grid
cleanup
return -- we found a path

}
foreach (unreached neighbor N of cell C) {

mark N cell in grid as reached
compute cost to reach it = pathcost of C + cellcost of N
mark N cell in grid with predecessor direction back to cell C from N
add this cell N to wavefront

}
delete cell C from wavefront

}

© R. Rutenbar 2001 CMU 18-760, Fall01 66

Data Structure IssuesData Structure Issues
2 key structures

Routing grid
Hold cells of area to route,
costs of each cell, blockages
Mark these cells to know what
cells you have already reached
Mark predecessor in here too

Wavefront
Hold active cells to expand
Cell info has pathcost,
predecessor information
Indexed on pathcost
Always expand cheapest cell
(ie, cheapest partial path) next

T

S

Page 34

© R. Rutenbar 2001 CMU 18-760, Fall01 67

Data Stucture ImplementationData Stucture Implementation

grid *whichCell
int pathCost

Each wavefront
cell stores:

Wavefront list:

int cellCost

char predecessor

Each grid
cell stores:

Grid of cells:

A 2-D array is just fine here

Need something clever here--
want fast insert/delete in cost
here. Dumb linked list isn’t
going to be fast enough...

boolean reached

© R. Rutenbar 2001 CMU 18-760, Fall01 68

Wavbefront Option: HeapWavbefront Option: Heap
Store cells of wavefront in a heap

(also called a priority queue -- consult your favorite data structures book)
Classical data structure designed for fast insertion and retrieval of

lowest cost data item.
All ops (add, delete, etc.) have O(logN) time complexity for N objects.
Most routers do it like this.

min.
item

Other, higher
cost cells in here

min cost item is
always at the top.

Insert “bubbles” the items in
heap around to ensure the
cheapest item always on top.

Ditto for delete.

Page 35

© R. Rutenbar 2001 CMU 18-760, Fall01 69

Wavefront Option: Cost-Indexed ArrayWavefront Option: Cost-Indexed Array
Basically a big hash table

Index is path cost
In each bin of table we insert the cells in wavefront at that cost
Get almost constant-time insert/delete

Problem
It’s a BIG table -- 1 bucket for each possible path cost.

Pmin Pmax

All cells in a bin
have same cost.

. . .

Cost bins --->

© R. Rutenbar 2001 CMU 18-760, Fall01 70

Rememember How Expand Algorithm Works...Rememember How Expand Algorithm Works...
Always expand next cheapest cell

Implication is you cannot have an
arbitrarily wide “spread” in the
values of “live” cells on wavefront
If CMAX is the maximum cell cost
value you can see in the grid
...then the biggest spread of cost
values you can see in the wavefront
is CMAX + 1

In this example
Biggest spread in costs you can see is
4, since biggest cell has cost=3,

3 + 1 = 4 different cost values
possible in wavefront at any time

3

3

4

4 4

4

2

3

3

4

S

2

2

3

4

4

3

5

4

4

T

33

33

3

3

Page 36

© R. Rutenbar 2001 CMU 18-760, Fall01 71

Remember How Expand Algorithm WorksRemember How Expand Algorithm Works
Said another way...

s s+CMAX

The worst thing that
can ever happen is you
expand a “cheapest” cell
down here to reach a cell of
cost = CMAX...
Ex: expand S cost = 1

. . .

Cost bins --->

...and resinsert it up
here at cost s+CMAX
Ex: reach west neighbor at pathcost=4

© R. Rutenbar 2001 CMU 18-760, Fall01 72

Wavefront ImplementationWavefront Implementation
So, you can do this with only CMAX+1 bins in array

It’s a circular array: when you empty the lowest cost bin, it means you
can reuse it for the next MAX pathcost value you need.

Cmin Cmax. . .

Old Cmin goes
to the end of

the array.

New Cmin is previous Cmin + 1 list.

Page 37

© R. Rutenbar 2001 CMU 18-760, Fall01 73

Wavefront Data StructuresWavefront Data Structures
Historically, saw both kinds of structures in real routers

Hashed cost array
Heap-based
Today, heaps seem to be dominating; just a lot more flexible on what
they allow you to do with costs

But, there are still some subtle interactions with the search
algorithm to discuss

Question
What constraints have to met for this simple expand-cheapest-cell-next
strategy to get the best path?

© R. Rutenbar 2001 CMU 18-760, Fall01 74

Plain Maze Routing RevisitedPlain Maze Routing Revisited
Key assumptions

Always expand cheapest cell next
Expand each cell just once
Reach each cell just once
Guaranteed to find the min cost path (we hope...)

Question rephrased
What are the constraints on the cost function used for paths
(ie, pathcost of a cell as it is reached) so that above stuff holds...?

Page 38

© R. Rutenbar 2001 CMU 18-760, Fall01 75

Pathcost ConstraintsPathcost Constraints
Basic constraint: Consistency

The cost of adding a cell to a path (reaching a cell) is independent of the
path itself
It does NOT matter how you reached this new cell, it still adds the
same cost to the path
Guarantees we reach it once (from a cheapest path) and thus expand it
just once

It’s actually easy to create a cost function that is inconsistent,
and violates all these nice properties

© R. Rutenbar 2001 CMU 18-760, Fall01 76

Inconsistent Cost FunctionInconsistent Cost Function
Penalize paths with bends

Still store 1 cost inside each cell
But, now add another cost when
you reach a cell that requires a turn
(a bend) from the direction that
reached the expanding cell

A. Wavefront
cell

Know:
pathcost = 10
pred = NORTH

B. Unreached
cell

Know:
cell cost = 1

C. Unreached
cell

Know:
cell cost = 1

Suppose bend penalty = 2

Page 39

© R. Rutenbar 2001 CMU 18-760, Fall01 77

Inconsistent Cost FunctionInconsistent Cost Function
Try this example with bend penalty = 2

Don’t mark the “reached” bit in each grid cell when you reach the cell
Allow search to revisit previously reached cells...

SOURCE

cost=1 cost=1

cost=2

cost=3

cost=1 cost=1

TARGET

© R. Rutenbar 2001 CMU 18-760, Fall01 78

Inconsistent Cost ExampleInconsistent Cost Example
SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

3

2

5

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET
 5

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

bend!

3

3 6**
bend!

6**
8

6** 7

1 2

3 4

5 6

Revisit this
cell, reach it

again at
more cost

Revisit
target,
but it’s

cheaper now

Page 40

© R. Rutenbar 2001 CMU 18-760, Fall01 79

Inconsistent Cost Function: ImplicationsInconsistent Cost Function: Implications
Notice what happened

Reached same cell, later, at a higher cost, but it was ultimately on the
cheaper overall source-to-target path

Implications
You will reach cells multiple times at different costs.
You will have same cell in wavefront multiple times at different costs.
Cannot guarantee you need only CMAX+1 hash bins in array
Can still expand cheapest first, but cannot quit when you reach target

Termination of search?
Cannot quit until each cell in wavefront has a cost so big that it is NOT
POSSIBLE to reach target any cheaper than current cheapest path
May reach, expand lot more cells with an inconsistent cost function...
..but you can do a lot of cool things with such functions

© R. Rutenbar 2001 CMU 18-760, Fall01 80

Termination of Search: Close Up LookTermination of Search: Close Up Look
Cannot quit
until no cell

in the
wavefront
has a cost
that could

lead to a
cheaper
path to

target

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

3

2

5

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET
 5

SOURCE

 cost=1 cost=1

cost=2

cost=3

cost=1

cost=1

TARGET

bend!

3

3 6**
bend!

6**
8

6** 7

1 2

3 4

5
You hit target at cost 8,
but there is a cell at
cost 6 in wavefront,
and there are cellCost=1
cells in grid, so potentially
possible to hit target at cost=7

Page 41

© R. Rutenbar 2001 CMU 18-760, Fall01 81

Expansion Process, RevisitedExpansion Process, Revisited
Problem:

Expand lots of cells to find one path to the target.
CPU time is proportional to # of cells you search.
No attempt to search in direction of target first.

Questions:
How do you search toward the target?
Can we do this and still keep guarantees of reaching the target with the

minimum cost path?

© R. Rutenbar 2001 CMU 18-760, Fall01 82

Motivation for Smart SearchMotivation for Smart Search

3

3

4

4 4

4

2

3

3

4

S

2

2

3

4

2

3

3

4

3

4

4

T

4

Searching toward the
target in the shaded
region.

Expanding away from
the target seems to be
a waste of time.

Page 42

© R. Rutenbar 2001 CMU 18-760, Fall01 83

Smarter Search: Rubin’s SchemeSmarter Search: Rubin’s Scheme
Two parts:

Add predictor function to the cost.
Direct the search toward the target

Plain maze router
You add a cell to the wavefront with a cost that measures partial cost of
the path, source-to-target

Rubin’s Scheme
You add a cell to the wavefront with a cost the estimates the entire
source-to-target cost of the path
Trick: estimate this as pathcost(source to cell) + predictor(cell to target)
(We will see this exact same idea again, when we do Static Timing
analysis; this predictor will be called the ESPERANCE of a path…)

© R. Rutenbar 2001 CMU 18-760, Fall01 84

Plain Maze RoutingPlain Maze Routing

Source

Expand

Reach

Target

Reached cell goes on wavefront with this cost

pathcost(source to cell being expanded)

+ cost of newly reached cell

Page 43

© R. Rutenbar 2001 CMU 18-760, Fall01 85

Add A Depth-First Predictor Add A Depth-First Predictor

Source

Expand

Reach

Target

Reached cell goes on wavefront with this cost

pathcost(source to cell being expanded)

+ cost of newly reached cell

+ estimate of pathcost(reached cell to target)

A typical estimator is:

min cell cost * distance to target

© R. Rutenbar 2001 CMU 18-760, Fall01 86

Technical ResultsTechnical Results
Depth first predictor

If the predictor is always a lower bound on how much pathcost you will
really add to get to the target...
...you will still get the min cost path, guaranteed

What does it do?
It alters the order in which we expand cells
It prefers to expand cells that are closer to the target first
It does this in a very geometrically stylized way

Look at an example...

Page 44

© R. Rutenbar 2001 CMU 18-760, Fall01 87

Rubin Expansion ExampleRubin Expansion Example

Observe
It prefers to stay inside
the bounding box of the
source-target rectangle
before it expands other
cells.
How do we know which
cell to expand in order
inside the box?

Several heuristics which
all basically say: don’t
turn unless you have to,
and prefer to expand the
cells that are actually
closest to target, first

3

3

4

4 4

4

2+5
=7

3

3

4

S

2+5
=7

4

2+3
=5

3 4

T

4

2+3
=5

© R. Rutenbar 2001 CMU 18-760, Fall01 88

Some SubtletiesSome Subtleties
Will again reach a cell
multiple times with different
costs

Suppose you really expand
cheapest first, and among those
of same cost, closest to target
Can shoot directly toward
target...
...but you reach cells early with
suboptimal costs
Can reach time again later

S

4

T

expand
these
cells

straight
toward
target

You will first reach this cell
as NORTH neighbor of cell
x, but cost will be big because
your path goes thru cell x,
which is bad path here

x

Page 45

© R. Rutenbar 2001 CMU 18-760, Fall01 89

Rubin Expansion ExampleRubin Expansion Example
Works great...

Until you get a case like this
with the target blocked inside
the source to target rectangle.
Problem now is that it
explores the whole rectangle
before it tries anyplace else.
Might it not be faster to search
outside the rectangle if the
rectangle is VERY big...?

S

4

T

4

© R. Rutenbar 2001 CMU 18-760, Fall01 90

Another TweakAnother Tweak
Can insist that cells closer to
target always be cheaper

Add cell to wavefront as

pathcost(src -> cell)

+cost of cell

+ K • estimated cost(cell -> target)

K is just a fudge factor
Forces cells closer to target to be
cheaper.
Typically small (like 1.1)
Try K=2 in this example for effect

Effects
Faster search, smaller search, but
lose guarantees of minimum soln

S

4

T

4

Page 46

© R. Rutenbar 2001 CMU 18-760, Fall01 91

Area Routing By Maze Routing: SummaryArea Routing By Maze Routing: Summary
Been around a long time

Very flexible cost-based search
Extremely flexible, can be recast to attack many problems
Zillions of tweaks for speed, space, etc.
Still widely used, but now often with rather more sophisticated
representations of “space” than a 2D grid to handles gridless cases

Remaining problems
Still routes one net at a time. Early nets block later nets.
Lots of iterative improvement strategies here (I didn’t talk about)
Great if there IS a path; if not, will spend a long time to prove to you
that there is NO path

