(Lec 14) Placement \& Partitioning: Part III

- What you know
- That there are 3 big placement styles: iterative, recursive, direct
- Placement via iterative improvement using simulated annealing
- Recursive-style placement via min-cut with F\&M partitioning
- What you don't know
- The last style: direct placement
- One issue is mathematical model: quadratic wirelength minimization
- Second issue is legalization strategy: we do PROUD-style legalization

Copyright Notice

© Rob A. Rutenbar 2001

All rights reserved.
You may not make copies of this material in any form without my express permission.

Where Are We?

- Physical design--placement via direct methods

	M	T	W	Th	F		
Aug		28	29	30	\|3		I
Sep	3	4	5	6	7	2	
	10	\|II	12	13	114	3	
	17	18	19	20	$\underline{21}$	4	
	24	125	26	27	28	5	
Oct	I	2	3	4	5	6	
	8	19	10	II	12	7	
	15	116	17	18	19	8	
	22	23	24	25	26	9	
	29	130	31	I	2	10	
Nov	5	16	7	8	9	II	
	12	13	14	15	16	12	
Thnxgive	19	120	21	22	23	13	
	26	27	28	29	30	14	
Dec	3	14	5	6	7	15	
	10	\|II	12	13	14	16	

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Strategy: Direct Placement

\ All these use a technique called "Quadratic Placement"

- Model all gates as movable points, all wires as 2-point "springs"
- Minimize total squared Euclidean length: Σ_{i} EuclideanLength ${ }^{2}$ (net i) - Surprisingly, can do initial parts of this directly, numerically, exactly

Initial Solution

Legalization Strategy

Final Placement

Model Assumptions

- Geometric simplifications

- Gates: model as dimensionless points
- Grid slots: none, ie, no placement grid, no "I gate in I slot" constraints
- Pins: must be fixed somewhere around boundary of the chip
- Wires: we only allow 2-point connections; we minimize Σ length ${ }^{2}$

quadratic wirelength:

Model Assumptions: Multipoint Wires

V In real netlists, can have a wire connect to >2 objects

- If it connects to just 2 objects -- "points" -- called a " 2 point net"
- If it connects to $\mathbf{>} \mathbf{2}$ objects -- called a "multipoint net"
\square
\checkmark Idea
- Decompose each multipoint net into a set of 2 point nets
- Necessary to be able use the quadratic wirelength model: square of the length of the wire only really makes sense for 2 point net
- How to decompose...?

Decomposing Multipoint Nets

\checkmark Multi-point net

- Suppose we have a 5 point net here

Problem: quadratic wirelength is what?

- Solution: assume "fully connected" nets

All pt-to-pt connections must be included
k-pt net becomes [k•(k-1)] / 2
2-pt nets for us
\#2-pt nets here ==

Weighting the Wires

V Each wire can have a "weight"

- Specifies its importance in the minimization problem...
- ...or that there actually are multiple wires between 2 objects
- In this formulation you can't tell the difference

V But what about a weighted multipoint wire?

Weighting the Wires

\checkmark Question

- When we decompose, what happens to the weights?
- Solution: for k-point net, multiply each $\mathbf{2}$ pt connection by
- Example: 4 point net, look at typical partition of it objects \square
\square

Overall Model

\checkmark Ideas

- Objects are dimensionless points: (xi, yi) placed arbitrarily; pins fixed
- Nets are all 2 point connections (maybe weighted) among these points
- Wirelength is measured as sum of quadratic net lengths

About the Model

- Why quadratic wirelength?
- One reason: can get an analytical solution to $\min [\Sigma$ quadratic wirelen]
- We can write equations, solve numerically for an exact, best minimum

Tradeoffs

- Quadratic wirelen NOT a particularly good model of the length of real wires after routing -- but we can get an analytical min length
- Objects as dimensionless points NOT a particularly good model of a real placement -- must fix problems caused by ignoring shapes, and slots
- But--there are "fixes" that deal with these problems, and it turns out you can do HUGE things--millions of gates--with these methods

Direct Formulation

\All quadratic wirelength min. problems look like this eqn:
\square
vow to solve?

- Transform this into a standard optimization problem
- Requires some linear algebra, some calculus

Basic Matrix Stuff

- Linear equations

- By now (I hope!) you should know that \mathbf{N} linear equations in \mathbf{N} unknows can be written compactly as a single matrix equation

$$
\begin{aligned}
& a||x|+a| 2 \times 2+a|3 \times 3=k| \\
& a 2|x|+a 22 \times 2+a 23 \times 3=k 2 \\
& a 3|x|+a 32 \times 2+a 33 x 3=k 3
\end{aligned} \quad \quad\left(\begin{array}{l}
a|l a| 2 a \mid 3 \\
a 2 \mid \text { a22 a23 } \\
a 3 \mid a 32 a 33
\end{array}\right)\left(\begin{array}{l}
x \mid \\
x 2 \\
x 3
\end{array}\right)=\left(\begin{array}{l}
k \mid \\
k 2 \\
k 3
\end{array}\right)
$$

\checkmark But how do we get to quadratic wirelength?

Quadratic Forms

Turns out that $\mathrm{x}^{\mathrm{T}} \mathbf{A} \mathrm{x}$ is the right form for quadratic wirelens
$-x$ is a column vector, x^{\top} is a row vector, A a square matrix

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x \mathbf{I} \\
\mathbf{x 2}
\end{array}\right] \quad \mathbf{x}^{\top}=\quad \mathbf{A}=\left[\begin{array}{ll}
\mathbf{a} & \mathbf{b} \\
\mathbf{c} & \mathbf{d}
\end{array}\right] \quad \mathbf{A}^{\top}= \\
& \mathbf{x}^{\top} \mathbf{A} \mathbf{x}=
\end{aligned}
$$

$x^{\top} \mathbf{A} x$ can represent a sum of (constant) ${ }^{\bullet} \times{ }^{\bullet} \cdot x j$ for all possible pairs or i, j

- But what exactly is the right way to set up this problem?

Start with Point-to-Point Connectivity Info

- Placeable objects
- Set of \mathbf{n} connected points $\{1,2, \ldots, n\}$
\checkmark Nets
- 2 point connections only, as discussed before
- A weighted connectivity matrix represents these connections

Can think of this as either:
i connects to j with 1 net of weight 3
i connects to j with 3 nets of weight 1
We can't tell the difference using \mathbf{C} matrix

Matrix Formulation

- Start with a simpler problem, 1-dimensional placement
- We want to place the objects $\{1,2, \ldots, n\}$ on a line
- Means we want to solve for $\times 1, \times 2, \ldots, x n$ to minimize weighted quadratic wirelength
\checkmark Question: what is right A for $x^{T} A x$?

| Quadratic wirelen | Matrix form | |
| :---: | :---: | :---: | :---: | :---: |
| | | |

Matrix Formulation

- When in doubt, try a little example: 3 objects placed on a line

Quadratic wirelen is:

Matrix Formulation

- Turns out this is the right matrix A for the job:

Quadratic
wirelen $=$

$$
\begin{aligned}
I * x_{1}{ }^{2} & +5^{*} x_{2}{ }^{2}+4^{*} x_{3}{ }^{2}-2 * x_{1}{ }^{*} x_{2}-8 * x_{2}{ }^{*} x_{3}-0^{*} x_{1}{ }^{*} x_{3} \\
& =x^{\top} A x=\left[x_{1} x_{2} x_{3}\left[\begin{array}{rrr}
I & -I & 0 \\
-I & 5 & -4 \\
0 & -4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right.
\end{aligned}
$$

Try it:

Matrix Formulation

Vook closely: compare C and A ; can you see pattern?

$A=$

Matrix Formulation Summary

- It all works

V New problem

- I don't just want to write this wirelength down...
- ...I want to solve for the vector of x locations that minimizes it
- How?

Minimizing $\mathrm{x}^{\top} \mathrm{A} \mathrm{x}$

- This minimization is just a higher dimensional version of something you already should know...
- 1-variable version

Just one variable, x		
		\longrightarrow
To minimize...		

Minimizing $\mathrm{x}^{\top} \mathrm{A} \mathbf{x}$

- Higher dimensional version: 2-variable case
2 variables, $x_{1} x_{2}$
$f=x_{1}{ }^{2}-x_{1} x_{2}+x_{2}{ }^{2}$
To minimize...

\[\)| $\frac{\partial f}{\partial \mathbf{x}}=2 x_{1}-x_{2}=\mathbf{0}$ |
| :--- |
| $\frac{\partial \mathbf{f}}{\partial \mathbf{x}}=-x_{1}+2 x_{2}=0$ |

\]

Oops: Problem

The only direct solution here is $\mathrm{xi}=0$ for all i

- This is the solution to the unconstrained form of the problem
- We have to add some additional constraints to avoid this trivial soln

Pad Constraints: Basics

Assume some objects are fixed, can't move, and that there are wires from these to the movable objects

- Like pads are fixed around the periphery of a chip surface

Pad Constraints

- Back to the 1-var case to see how to optimize

fixed pad	fixed pad	Quadratic wirelen:
		Quadratic wirelen:
		$\begin{aligned} & I^{*}(x-k)^{2}+I^{*}(x-h)^{2} \\ = & x^{2}-2 k x+k^{2}+x^{2}-2 h x+h^{2} \end{aligned}$
		=

$-1 / 2 \cdot a x^{2}+b \cdot x+$ constant
To minimize

Pad Constraints

- 2-var example
- 2 variables (objects); arbitrary number of pads and nets

$$
\begin{aligned}
\text { fixed pad } & \\
& =\left[2 x_{1}{ }^{2}+2 x_{2}{ }^{2}-2 x_{1} x_{2}\right]+\left[-2 k x_{1}-2 h x_{2}\right]+\left[k^{2}+h_{2}\right]
\end{aligned}
$$

V Functional form

$$
\left.[x \mid \times 2] \cdot[A(2 \times 2)] \cdot\left[\begin{array}{l}
x 1 \\
x 2
\end{array}\right]+2 \bullet \text { bl b2 }\right] \cdot\left[\begin{array}{l}
x 1 \\
x 2
\end{array}\right]+\text { constant }
$$

$$
\text { Written: } \quad x^{\top} A x+2 b^{\top} x+\text { constant }
$$

Pad Constraints

- Concrete 2 -variable example

$$
\min f=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+b_{1} x_{1}+b_{2} x_{2}+\text { constant }
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{1}}=0= \\
& \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{2}}=0=
\end{aligned}
$$

$$
\longmapsto()\binom{x 1}{x 2}=(
$$

Pad Constraints

V Reformulate all this with matrices

$$
\left.\min x\right|^{2}-x\left|x 2+x 2^{2}+b\right| x \mid+b 2 \times 2+\text { constant }
$$

Starting problem

Solution

Be Careful...

V Gotta be careful about the 2s and $1 / 2 \mathrm{~s}$ floating around here

- Often see this formulated as $1 / 2 x^{\top} \mathbf{A} \times+b^{\top} x+$ const
- It's the same thing, just divide by the " 2 " in front of b, get a new const
- Here is another simple example

Conditions for Solution

v 1-var case

$\rightarrow \min 1 / 2 a x^{2}+b x+$ const \quad has a solution $\mathrm{x}=-\mathrm{b} / \mathrm{a}$ as long as $\mathrm{a}=$ positive
\checkmark General case
$-\min \mathrm{I} / 2 \cdot \mathrm{x}^{\top} \mathbf{A} \mathbf{x}+\mathrm{b}^{\top} \mathrm{x}+$ const has a solution if A is positive definite

V Definition: Positive definite

- Matrix A is positive definite if, for any vector $x, x^{\top} A x>0$ always

Useful result

Placing in (x, y) Plane

\checkmark How to handle the 2 dimensional wirelen minimization task?

- Formulate the \mathbf{x} variables and the \mathbf{y} variables as $\mathbf{2}$ separate minimization problems; minimize them separately
- Why? There are never any $x \cdot y$ terms in the quadratic wirelength formula; OK to separate out the problem like this

Example

$\checkmark 4$ pads, a new 5 object netlist

for $x: A x=-b=() y: A y=-b \prime=()$

Some Subtleties Here

V Note: not precisely the same \mathbf{A} as before

- Start with the same \mathbf{C} connectivity matrix among placeable objects
- A is still (special diagonal) - [$\left.c_{i j}\right]$
- But you now have to account for the extra connections to the fixed pad objects for these elements on the diagonal; you sum weights on these wires as well as wires to movable objects

Placement Result (MATLAB)

Another Placement Result

- Change weights: remember to change A and b vectors!

$b x=\left(\begin{array}{r}0 \\ 0 \\ 1 \\ 1 \\ 0.5\end{array}\right) \quad b y=\left(\begin{array}{r}10 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)$

© R. Rutenbar 2001 CMU 18-760, Fall01 35

Summary So Far...

\checkmark Direct placement

- Dimensionless points, 2-point weighted wires
- Minimize sum of squares of wire lengths
- Has a direct-form representation of aggregate wirelength with functional form

$$
\begin{aligned}
& 1 / 2 \cdot x^{\top} A x+b^{\top} x+\text { const or equivalently } \\
& x^{\top} A x+2 b^{\top} x+\text { const }
\end{aligned}
$$

\checkmark...this is minimized at $A x=-b$

- Do x and y placements separately

TOpen issues

- These objects are really not dimensionless points, and we don't yet have a legal placement when this is finished
- There are ways around these problems

Dealing with Shape

The "points" really have shape, and need to be in rows

V Problems

- Legalization: the objects almost certainly overlap after quadratic place.
- How do we fix this...?
- Several strategies; we will look informally at one

Strategy: PROUD

v Who

- Ren Song Tsay, Ernest Kuh, Chi Ping Hsu, "PROUD: A Sea-Of-gates Placement Algorithm," IEEE Design \& Test of Computers, Dec 1988.

V What

- Recursive legalization by partitioning \& refining
- Use quadratic placement as starting point for a recursive strategy

PROUD: Mechanics

- Mechanics

Place a physical cutline at the X center of the region; We will now reformulate a new placement problem just to re-do the gates on the left. be on the left side (want ~I/2 on left)

PROUD: Mechanics

Mechanics

Focus on the gates inside the shaded region on the left side of the cut.

Big question:
How do we model the fact that wires connect to gates on the right? We can't just ignore these when we re-place gates on left in their own smaller (shaded) region!

PROUD: Mechanics

\checkmark Idea

- We model physical effect of wires that go "outside" our left-side region via wires to psuedo-pins which represent "approximately" where these wires need to go
- Now, we can solve the left-side alone, again, to get the next cut

Solution: model gates on the right as new,"fake" pins on the left.

Process is called "pseudo pin propagation"

PROUD: Processing the Subregions

\checkmark Idea

- Pick one of the regions RI (eg, the left one) of cut hierarchy
- Propagate pseudo-pins to RI's cut boundary
- Solve (quadratic re-place) region RI
- Now, pick NEXT region, R2
- Propagate pseudo-pins to R2's cut boundary
\triangleright Note, some of these may be due to the most recent gate placement motions of solving RI
- Solve (quadratic re-place) region $\mathbf{R 2}$
- Pick NEXT region, R3, etc

∇ Iteration

- Tsay says he goes around this whole loop 3-5 times at each level of the hierarchy
- ...i.e., we "propagate \& replace" each region 3-5 times, which allows effects of global movements to be "felt" by everybody

PROUD: Iteration

- Why do we repeat this operation?
- Ping-pong back and forth thru subregions?
- Gives objects in region a chance to "influence" other regions

Initial solve

Prop. from right

Prop. from left

Solve left

Solve right

Better answer; repeat this

PROUD: Iteration

Vasier to see when there are many regions at the level of the cut hierarchy

Replace RI

Replace R2

Replace R3

Replace RI again...

PROUD: Finalizing Placement

- Does this create a legal placement buy itself? No
- It does a pretty good job of global placement, and guaranteeing that you do not put more modules in any region than the area allows
- But, it cannot really force individual gates into cell rows

\checkmark Solution

- Don't partition all the way down to individual objects
- Go down to regions with many (IOs) of objects, snap onto row grid, and then do iterative improvement based on swaps of modules
- People do annealing down here, among other things...

PROUD: Summary

V Quadratic place

- To get the initial placement
- Again, on each region of the cut hierarchy, to help legalize the region, to move objects to good place after they are forced to go in a region

Recursive cutting

- To force \sim right number of placeable objects in each region
- Uses quadratic placement and psuedo-pins to do each region

Final legalization

- Run above till each region has few tens of cells
- Then do iterative improvement

Summary

I Iterative improvement placement by annealing

- "The" approach in the 1980s; runs out of gas at a few 100,000 gates
- Recursive mincut placers
- Based on clever, iterative improvement partitioning
- Coming back into style today; very good for very large ASICs

V Quadratic direct placement

- Point-based, 2-point-wires; can minimize quadratic wirelen exactly, fast
- But, placement not really legal (overlaps); lots of work here.

Today

- Mix of quadratic and mincut techniques to do "gross" placement; iterative improvement "local refinement" to get legal final placement
- This is really how people really do millions of gates today...

