
Page 1

© R. Rutenbar 2001 CMU 18-760, Fall01 1

(Lec 14) Placement & Partitioning: Part III(Lec 14) Placement & Partitioning: Part III

What you know
That there are 3 big placement styles: iterative, recursive, direct

Placement via iterative improvement using simulated annealing

Recursive-style placement via min-cut with F&M partitioning

What you don’t know
The last style: direct placement

One issue is mathematical model: quadratic wirelength minimization

Second issue is legalization strategy: we do PROUD-style legalization

© R. Rutenbar 2001 CMU 18-760, Fall01 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001 CMU 18-760, Fall01 3

Where Are We?Where Are We?

Physical design--placement via direct methods

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

© R. Rutenbar 2001 CMU 18-760, Fall01 4

Strategy: Direct PlacementStrategy: Direct Placement

All these use a technique called “Quadratic Placement”
Model all gates as movable points, all wires as 2-point “springs”

Minimize total squared Euclidean length: Σi EuclideanLength2(net i)

Surprisingly, can do initial parts of this directly, numerically, exactly

Initial Solution Legalization Strategy Final Placement

Page 3

© R. Rutenbar 2001 CMU 18-760, Fall01 5

Model AssumptionsModel Assumptions

Geometric simplifications
Gates: model as dimensionless points

Grid slots: none, ie, no placement grid, no “1 gate in 1 slot” constraints

Pins: must be fixed somewhere around boundary of the chip

Wires: we only allow 2-point connections; we minimize Σ length2

quadratic wirelength:

1

2

3

4

1

2

3

4
pin

pin pin

pin
pin

pin

© R. Rutenbar 2001 CMU 18-760, Fall01 6

Model Assumptions: Multipoint WiresModel Assumptions: Multipoint Wires

In real netlists, can have a wire connect to > 2 objects
If it connects to just 2 objects -- “points” -- called a “2 point net”

If it connects to > 2 objects -- called a “multipoint net”

Idea
Decompose each multipoint net into a set of 2 point nets

Necessary to be able use the quadratic wirelength model: square of the
length of the wire only really makes sense for 2 point net

How to decompose...?

Page 4

© R. Rutenbar 2001 CMU 18-760, Fall01 7

Decomposing Multipoint NetsDecomposing Multipoint Nets

Multi-point net
Suppose we have a 5 point net here

Solution: assume “fully connected” nets

A 5-point
net

Problem: quadratic wirelength is what?

All pt-to-pt
connections
must be included

k-pt net becomes
[k •(k-1)] / 2
2-pt nets for us

#2-pt nets here ==

© R. Rutenbar 2001 CMU 18-760, Fall01 8

Weighting the WiresWeighting the Wires

Each wire can have a “weight”
Specifies its importance in the minimization problem...

...or that there actually are multiple wires between 2 objects

In this formulation you can’t tell the difference

But what about a weighted multipoint wire?

Page 5

© R. Rutenbar 2001 CMU 18-760, Fall01 9

Weighting the WiresWeighting the Wires

Question
When we decompose, what happens to the weights?

Solution: for k-point net, multiply each 2 pt connection by

Example: 4 point net, look at typical partition of it objects

w =2

k=4 pts

© R. Rutenbar 2001 CMU 18-760, Fall01 10

Overall ModelOverall Model

Ideas
Objects are dimensionless points: (xi, yi) placed arbitrarily; pins fixed

Nets are all 2 point connections (maybe weighted) among these points

Wirelength is measured as sum of quadratic net lengths

1

2

3

4

1

2

3
4

1

2

3

4
pin

pin pin

pinpin

pin

pinpin

pin

Page 6

© R. Rutenbar 2001 CMU 18-760, Fall01 11

About the ModelAbout the Model

Why quadratic wirelength?

One reason: can get an analytical solution to min[Σ quadratic wirelen]

We can write equations, solve numerically for an exact, best minimum

Tradeoffs
Quadratic wirelen NOT a particularly good model of the length of real
wires after routing -- but we can get an analytical min length

Objects as dimensionless points NOT a particularly good model of a
real placement -- must fix problems caused by ignoring shapes, and slots

But--there are “fixes” that deal with these problems, and it turns out
you can do HUGE things--millions of gates--with these methods

© R. Rutenbar 2001 CMU 18-760, Fall01 12

All quadratic wirelength min. problems look like this eqn:

How to solve?
Transform this into a standard optimization problem

Requires some linear algebra, some calculus

Direct FormulationDirect Formulation

Page 7

© R. Rutenbar 2001 CMU 18-760, Fall01 13

Linear equations
By now (I hope!) you should know that N linear equations in N unknows
can be written compactly as a single matrix equation

But how do we get to quadratic wirelength?

Basic Matrix StuffBasic Matrix Stuff

a11 x1 + a12 x2 + a13 x3 = k1
a21 x1 + a22 x2 + a23 x3 = k2
a31 x1 + a32 x2 + a33 x3 = k3

a11 a12 a13
a21 a22 a23
a31 a32 a33

x1
x2
x3

k1
k2
k3

=

© R. Rutenbar 2001 CMU 18-760, Fall01 14

Turns out that xT A x is the right form for quadratic wirelens
x is a column vector, xT is a row vector, A a square matrix

xT A x can represent a sum of (constant)•xi•xj for all possible pairs or i, j

But what exactly is the right way to set up this problem?

x = x1 xT =
x2

A = a b AT =
c d

xT A x =

Quadratic FormsQuadratic Forms

Page 8

© R. Rutenbar 2001 CMU 18-760, Fall01 15

1 2 3j n

1
2
3
.
i
.
n

cij

C =

i j

cij = 3 here

Can think of this as either:

i connects to j with 1 net of weight 3
i connects to j with 3 nets of weight 1

We can’t tell the difference using C matrix

Start with Point-to-Point Connectivity InfoStart with Point-to-Point Connectivity Info

Placeable objects
Set of n connected points {1, 2, ..., n}

Nets
2 point connections only, as discussed before

A weighted connectivity matrix represents these connections

© R. Rutenbar 2001 CMU 18-760, Fall01 16

Quadratic wirelen Matrix form

Matrix FormulationMatrix Formulation

Start with a simpler problem, 1-dimensional placement
We want to place the objects {1, 2, ..., n} on a line

Means we want to solve for x1, x2, ..., xn to minimize weighted
quadratic wirelength

Question: what is right A for xT A x ?

Page 9

© R. Rutenbar 2001 CMU 18-760, Fall01 17

1 2

3

1

4

C matrix is:

Quadratic wirelen is:

Matrix FormulationMatrix Formulation

When in doubt, try a little example: 3 objects placed on a line

1 23

© R. Rutenbar 2001 CMU 18-760, Fall01 18

Quadratic
wirelen =

= xT A x =

Matrix FormulationMatrix Formulation

Turns out this is the right matrix A for the job:

1*x1
2 + 5*x2

2 + 4*x3
2 - 2*x1*x2 - 8*x2*x3 - 0*x1*x3

1 -1 0
-1 5 -4
0 -4 4

x1 x2 x3
x1
x2
x3

Try it:

Page 10

© R. Rutenbar 2001 CMU 18-760, Fall01 19

C = A =1 2
1

3
4

A =

Matrix FormulationMatrix Formulation

Look closely: compare C and A; can you see pattern?

0 1 0
1 0 4
0 4 0

1 -1 0
-1 5 -4
0 -4 4

Diagonal

Cij

© R. Rutenbar 2001 CMU 18-760, Fall01 20

It all works

New problem
I don’t just want to write this wirelength down...

...I want to solve for the vector of x locations that minimizes it

How?

netlist
c ij a ij

aii diagonal = Σj cij

aij off diagonal = -cij

C A

1/2 ΣiΣj [c ij • (xi - xj)2] xT A x

Matrix Formulation SummaryMatrix Formulation Summary

Page 11

© R. Rutenbar 2001 CMU 18-760, Fall01 21

Just one variable, x

To minimize...

Minimizing xT A xMinimizing xT A x

This minimization is just a higher dimensional version of
something you already should know...

1-variable version

© R. Rutenbar 2001 CMU 18-760, Fall01 22

2 variables, x1 x2

To minimize...

Minimizing xT A xMinimizing xT A x

Higher dimensional version: 2-variable case

f = x1
2 - x1x2 + x2

2

∂f = 2x1 - x2 = 0

∂f = -x1 + 2x2 = 0
∂x

∂x

=

Page 12

© R. Rutenbar 2001 CMU 18-760, Fall01 23

min xT A x

For placement

Add so-called
“pad” constraint
to force the solution
to “spread out”,
pads represent fixed
objects connected to
wires; they can’t move

Oops: ProblemOops: Problem

The only direct solution here is xi=0 for all i
This is the solution to the unconstrained form of the problem

We have to add some additional constraints to avoid this trivial soln

© R. Rutenbar 2001 CMU 18-760, Fall01 24

1

2

3

4

1

2

3

4

1

2
3

4

pad

pad

fixed
x,y

fixed
x,y

Pad Constraints: BasicsPad Constraints: Basics

Assume some objects are fixed, can’t move, and that there are
wires from these to the movable objects

Like pads are fixed around the periphery of a chip surface

Page 13

© R. Rutenbar 2001 CMU 18-760, Fall01 25

Back to the 1-var case to see how to optimize

Functional form
1/2 • a x2 + b•x + constant

To minimize

x=?x=k x=h

fixed pad fixed pad Quadratic wirelen:

Pad ConstraintsPad Constraints

1*(x-k)2 + 1*(x-h)2

= x2 - 2kx + k2 + x2 - 2hx + h2

=

© R. Rutenbar 2001 CMU 18-760, Fall01 26

2-var example
2 variables (objects); arbitrary number of pads and nets

Functional form

x1

fixed pad fixed pad Quadratic wirelen:

x2

x1 x2 x1
x2

A (2x2) + 2 b1 b2 x1
x2

+ constant• • •

Written: xT A x + 2bT x + constant

Pad ConstraintsPad Constraints

x=k x=h 1(x1-k)2 + 1(x2-h)2 +1(x1-x2)2

= [2x1
2 + 2x2

2 - 2x1x2] + [-2kx1 -2hx2] + [k2 + h2]

•

Page 14

© R. Rutenbar 2001 CMU 18-760, Fall01 27

min f = x1
2 - x1 x2 + x2

2 + b1 x1 + b2 x2 + constant

Pad ConstraintsPad Constraints

Concrete 2-variable example

x1

x2
=

∂f = 0 =
∂x1

∂f = 0 =
∂x2

© R. Rutenbar 2001 CMU 18-760, Fall01 28

min x12 - x1 x2 + x22 + b1 x1 + b2 x2 + constant

Starting problem Solution

Pad ConstraintsPad Constraints

Reformulate all this with matrices

x1

x2
=

2 -1
-1 2

-b1

-b2

2x1 -x2 = -b1
x1 -2x2 = -b2

fixed

x1

x2

fixed
Netlist =

0 1
1 0

C=

Page 15

© R. Rutenbar 2001 CMU 18-760, Fall01 29

1

2

(0,0)

(1,1) quadratic wirelen for just x part is:

3 x12 + 6 x22 -4 x1x2 - 8 x2 + 1

1

2

4

3 -2
-2 6

x1
x2

x1 x2 + 2 0 -4 + 1

= xT A x + 2bT x + const

solution still: Ax = -b =

x1
x2

0
4

Be Careful...Be Careful...

Gotta be careful about the 2s and 1/2s floating around here
Often see this formulated as 1/2 xT A x + bT x + const

It’s the same thing, just divide by the “2” in front of b, get a new const

Here is another simple example

© R. Rutenbar 2001 CMU 18-760, Fall01 30

Useful result

Conditions for SolutionConditions for Solution

1-var case
min 1/2 a x2 + b x + const has a solution x = -b/a as long as a = positive

General case
min 1/2 • xT A x + bT x + const has a solution if A is positive definite

Definition: Positive definite
Matrix A is positive definite if, for any vector x, xTAx > 0 always

Page 16

© R. Rutenbar 2001 CMU 18-760, Fall01 31

1

2
3

4

fixed
x,y

fixed
x,y

Formulation:

Placing in (x,y) PlanePlacing in (x,y) Plane

How to handle the 2 dimensional wirelen minimization task?
Formulate the x variables and the y variables as 2 separate minimization
problems; minimize them separately

Why? There are never any x • y terms in the quadratic wirelength
formula; OK to separate out the problem like this

Min x quadratic wirelength
wirelen => Ax = -b

Min y quadratic wirelength
wirelen => A y = -b’

x1
x2
…
xn

y1
y2
…
yn

© R. Rutenbar 2001 CMU 18-760, Fall01 32

1

2

3 4

(1,0)

(0, 1)

(1/2,0)

C = A =

for x: A x = -b = y: A y =-b’=

5

(1,1)

ExampleExample

4 pads, a new 5 object netlist

0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
0 1 1 0 1
0 1 0 1 0

3 -1 -1 0 0
-1 4 -1 -1 -1
-1 -1 4 -1 0
0 -1 -1 4 -1
0 -1 0 -1 3

Page 17

© R. Rutenbar 2001 CMU 18-760, Fall01 33

1

2

3 4

(1,0)

(0, 1)

(1/2,0)

5

(1,1)

Some Subtleties HereSome Subtleties Here

Note: not precisely the same A as before
Start with the same C connectivity matrix among placeable objects

A is still (special diagonal) - [cij]

But you now have to account for the extra connections to the fixed pad
objects for these elements on the diagonal; you sum weights on these
wires as well as wires to movable objects

A=

1
2
3
4
5

1 2 3 4 5

© R. Rutenbar 2001 CMU 18-760, Fall01 34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

5

4

3

2

1

2

3 4

(1,0)

(0, 1)

(1/2,0)

5

(1,1)

Placement Result (MATLAB)Placement Result (MATLAB)

Page 18

© R. Rutenbar 2001 CMU 18-760, Fall01 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3 4

(1,0)

(0, 1)

(1/2,0)

5

(1,1)

10
10

A = 21 -1 -10 0 0
-1 4 -1 -1 -1

-10 -1 13 -1 0
0 -1 -1 4 -1
0 -1 0 -1 3

1

5

43
2

bx = 0
0
1
1

0.5

by = 10
0
0
1
0

Another Placement ResultAnother Placement Result

Change weights: remember to change A and b vectors!

© R. Rutenbar 2001 CMU 18-760, Fall01 36

Summary So Far…Summary So Far…

Direct placement
Dimensionless points, 2-point weighted wires

Minimize sum of squares of wire lengths

Has a direct-form representation of aggregate wirelength with
functional form

1/2 • xT A x + bT x + const or equivalently

xT A x + 2 bT x + const

...this is minimized at Ax = -b

Do x and y placements separately

Open issues
These objects are really not dimensionless points, and we don’t
yet have a legal placement when this is finished

There are ways around these problems

Page 19

© R. Rutenbar 2001 CMU 18-760, Fall01 37

The “points” really have shape, and need to be in rows

Problems
Legalization: the objects almost certainly overlap after quadratic place.

How do we fix this…?

Several strategies; we will look informally at one

Dealing with ShapeDealing with Shape

1

2

3

4

© R. Rutenbar 2001 CMU 18-760, Fall01 38

Strategy: PROUDStrategy: PROUD

Who
Ren Song Tsay, Ernest Kuh, Chi Ping Hsu, “PROUD: A Sea-Of-gates
Placement Algorithm,” IEEE Design & Test of Computers, Dec 1988.

What
Recursive legalization by partitioning & refining

Use quadratic placement as starting point for a recursive strategy

Page 20

© R. Rutenbar 2001 CMU 18-760, Fall01 39

PROUD: MechanicsPROUD: Mechanics

Mechanics

Balancing
cut

Perform the first
quadratic placement,

inside this region.
Via sorting gates on X,

decide which gates need to
be on the left side
(want ~1/2 on left)

Place a physical cutline at
the X center of the region;
We will now reformulate
a new placement problem

just to re-do the gates on the left.

Physical
cut1

© R. Rutenbar 2001 CMU 18-760, Fall01 40

PROUD: MechanicsPROUD: Mechanics

Mechanics

Focus on the gates
inside the shaded region

on the left side of the cut.

Physical
cut1

Physical
cut1

Big question:
How do we model the
fact that wires connect
to gates on the right?

We can’t just ignore these when we
re-place gates on left in their
own smaller (shaded) region!

Page 21

© R. Rutenbar 2001 CMU 18-760, Fall01 41

PROUD: MechanicsPROUD: Mechanics
Idea

We model physical effect of wires that go “outside” our left-side region
via wires to psuedo-pins which represent “approximately” where these
wires need to go

Now, we can solve the left-side alone, again, to get the next cut

Solution: model gates on
the right as new,“fake”

pins on the left.

Process is called
“pseudo pin propagation”

© R. Rutenbar 2001 CMU 18-760, Fall01 42

PROUD: Processing the SubregionsPROUD: Processing the Subregions

Idea
Pick one of the regions R1 (eg, the left one) of cut hierarchy

Propagate pseudo-pins to R1’s cut boundary

Solve (quadratic re-place) region R1

Now, pick NEXT region, R2

Propagate pseudo-pins to R2’s cut boundary

Note, some of these may be due to the most recent gate placement
motions of solving R1

Solve (quadratic re-place) region R2

Pick NEXT region, R3, etc

Iteration
Tsay says he goes around this whole loop 3-5 times at each level of the
hierarchy

…i.e., we “propagate & replace” each region 3-5 times, which allows
effects of global movements to be “felt” by everybody

Page 22

© R. Rutenbar 2001 CMU 18-760, Fall01 43

PROUD: IterationPROUD: Iteration

Why do we repeat this operation?
Ping-pong back and forth thru subregions?

Gives objects in region a chance to “influence” other regions

Initial solve Prop. from right Solve left

Prop. from left Solve right Better answer;
repeat this

© R. Rutenbar 2001 CMU 18-760, Fall01 44

PROUD: IterationPROUD: Iteration

Easier to see when there are many regions at the level of the
cut hierarchy

Initial solve

. . .

Replace R1

Replace R1
again...

Replace R2 Replace R3

Replace R4 Replace R5

1 2

3

4

5
1

Page 23

© R. Rutenbar 2001 CMU 18-760, Fall01 45

PROUD: Finalizing PlacementPROUD: Finalizing Placement

Does this create a legal placement buy itself? No
It does a pretty good job of global placement, and guaranteeing that you
do not put more modules in any region than the area allows

But, it cannot really force individual gates into cell rows

Solution
Don’t partition all the way down to individual objects

Go down to regions with many (10s) of objects, snap onto row grid, and
then do iterative improvement based on swaps of modules

People do annealing down here, among other things…

© R. Rutenbar 2001 CMU 18-760, Fall01 46

PROUD: SummaryPROUD: Summary

Quadratic place
To get the initial placement

Again, on each region of the cut hierarchy, to help legalize the region,
to move objects to good place after they are forced to go in a region

Recursive cutting
To force ~ right number of placeable objects in each region

Uses quadratic placement and psuedo-pins to do each region

Final legalization
Run above till each region has few tens of cells

Then do iterative improvement

Page 24

© R. Rutenbar 2001 CMU 18-760, Fall01 47

SummarySummary
Iterative improvement placement by annealing

“The” approach in the 1980s; runs out of gas at a few 100,000 gates

Recursive mincut placers
Based on clever, iterative improvement partitioning

Coming back into style today; very good for very large ASICs

Quadratic direct placement
Point-based, 2-point-wires; can minimize quadratic wirelen exactly, fast

But, placement not really legal (overlaps); lots of work here.

Today
Mix of quadratic and mincut techniques to do “gross” placement;
iterative improvement “local refinement” to get legal final placement

This is really how people really do millions of gates today…

