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(Lec 12) ASIC Placement & Partitioning:  (I)(Lec 12) ASIC Placement & Partitioning:  (I)

What you know about layout
Probably not much, at this point...

What you don’t know about placement...
Placement:  which gates go where on the chip

Approaches:  3 big ideas here--recursive, iterative, & direct placement

ASIC
placement

Gate-level netlist
of placeable objects

and connecting wires

A “placement” of
the gates in appropriate 

location to “optimize” layout
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Where Are We?Where Are We?

Physical design--how to geometrically place gates in a netlist?

27    28    29    30    31    
3   4     5    6    7    

M      T      W     Th    F

10   11    12    13    14    
17     18     19     20     21     
24    25    26    27    28    

Aug
Sep

Oct 1    2    3    4    5    
8   9    10    11    12   

15        16     17     18     19
22 23     24    25    26    
29    30    31    1     2    
5   6    7    8    9    Nov
12   13    14    15      16      
19     20     21    22     23     
26     27     28   29     30       
3    4     5   6   7    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis 
Geometric data structs & apps

Dec

Thnxgive

10    11     12   13   14    16

Midsem 
break

© R. Rutenbar 2001            CMU 18-760, Fall 2001   4

HandoutsHandouts

Physical
Lecture 12 -- ASIC Placement & Partitioning

Electronic
Nothing new...
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ASIC Placement:  First-Order ProblemASIC Placement:  First-Order Problem

What are we trying to do with placement?
Input:  a netlist of connected gates and nets

Output:  exact location on the chip of each gate

Optimization:   make sure we can connect all the wires

Is this hard?
Yes.  A bad placement can require dramatically more wiring.

More wiring is bad: we might need more “white” space for wires

...and long wires have more delay, so affects overall speed too.

If your placement is very bad, the next tool in the layout flow--the 
router--may not even be able to find paths for all the wires.

(Even if your placement is pretty good, might not be able to connect all 
the wires in ways that let chip function a the speed you intended…)
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For Any Placer:  3 Big QuestionsFor Any Placer:  3 Big Questions

Layout model
What constraints or limitations on the shapes of individual placeables?

What constraints on the shape or organization of the chip itself?

Optimization
What exactly does the placement algorithm try to optimize?

Turns out there are several viable alternatives

Legalization
Intermediate:  if you stop the placer in the middle of running, do you get 
a legal layout (even tho it might be a mediocre layout)?

Final:  at the end of the algorithm, is the result a real, legal placement, 
or does it require extra backend effort to finish it, legalize it?



Page 4

© R. Rutenbar 2001            CMU 18-760, Fall 2001   7

Layout Model:  IssuesLayout Model:  Issues

Layout model
What do we know about geometric shapes of objects we are placing?

What constraints do we have on where they are allowed to go?

Simplest model:
all objects are “points”

placed in “slots” 
in a simple uniform grid

More realistic ASIC model:
all objects are rectangles of
varying width, same height,
placed in rows with variable 

(but likely to be minimal) separation

Any cell
can go in

any slot

Each cell
can go
anywhere
in any row
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Reality Check:  Row-Based Layout ModelReality Check:  Row-Based Layout Model

The row-based objects really do come in different widths
“Width” you can think of as “how many IO pins wide”

Example: 200K gate IBM ASIC  [J. Vygen, DAC98]
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Reality Check:  Row-Based Layout ModelReality Check:  Row-Based Layout Model

..and, you do still have to 
deal with random logic + 
big blocks

Blocks called “macros,” 
examples are memories, 
registers, ALUs, etc

From [Vygen DATE98], 
200K gates + blocks

But, we ignore all this
For us, placeable gates 
look like “points”

18-763 does more 
algorithms for when you 
have “lots of shape” in 
your placeables
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Aside: Macro-Blocks vs Atomic GatesAside: Macro-Blocks vs Atomic Gates

In a really big design, you don’t do always placement “Flat”
“Flat” means “place all the gates at the same time, across the entire 
surface of the chip”

Opposite of “flat” is what?    Hierarchical

Typically divide design into big chunks, then do 2 steps
Floorplan:  just like rooms in a house, plan the arrangement of these big
blocks on the surface of your chip, then try to lay out each block

Detailed, block-level layout: for each block, place it and route it

Chip-level assembly: put blocks back on the chip surface, deal with any 
surprises (example:  “oops!  too big!”), then route the global wires 
between the blocks

Today, block-level layout common up to ~ 500k gates, flat
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Aside:   About FloorplansAside:   About Floorplans

Floorplan boundaries at chip level may not be “strict”
Its up to the style of the layout tools if gates are required to stay 
“inside” their original floorplan blocks, or can move around, later

© Larry Pileggi

Floorplan pic
courtesy L. Pileggi,
Monterey Design

This is a chip placement
in which the “hard” macro blocks
are empty rectangles at left, right, 
and the gate-level logic blocks
are individually colored.

In this example, the gates
are allowed to move outside
of some “soft” (think: squishy)
floorplan regions.
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Aside:   About FloorplansAside:   About Floorplans

…and, here is a much “flatter” placement of same chip

© Larry Pileggi

Floorplan pic
courtesy L. Pileggi,
Monterey Design

Same“hard” macro blocks
at left, right. 
But now the gate-level logic blocks
are much more blended into
each other, since this placement
was done more flat, without
the previous floorplan constraints.

(It’s an active research problem, 
how far we can push “flat” layout.)
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One More Aside:  About Layout “Size”One More Aside:  About Layout “Size”

Terminology a bit vague:  how big is a “5 million gate ASIC”
Surprisingly, its almost certainly NOT 5,000,000 logic gates

These “gates” numbers are sort of like “equivalent small gates”

…sort of like transforming everything into a 2-input or 4-input NAND

Consequence:  2 measures people use for “size” here
Gates:  this is “equivalent little NAND gates”.  Usually a big number

Placeables:  how many things the placer really places.  ~Rule:  Gates ÷ 4

Size of this?
1 gate

+ D

D FF

Q  Q’

Size of this?
~6 gates

NAND2 1bit adder

Size of this?
~10 gates

AOI22

Size of this?
~4 gates
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Classical Placer Optimization GoalsClassical Placer Optimization Goals
Total estimated wirelength Congestion minimization

Add up estimated-length
for all nets in the placement.

This  Σi length(net i) is
what the placer tries to
minimize

Take any cut through the placement.
Count the number of nets that
cross this cut line.

For every cut line, placer tries
to minimize this crossing count.
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Optimization:  Minimum WirelengthOptimization:  Minimum Wirelength

Wirelength minimization
Every placer tries “make it possible to  route all the wires”?

We must translate this into a concrete goal for the placer.

Classical goal:   Σi length(net i) is to be made as small as possible

New problem
How do we estimate the
required total wirelength
for a placement?

This is our estimate of
of the “quality” of any
candidate placement

Σi length(net i) == ?
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Placement:  Wirelength EstimationPlacement:  Wirelength Estimation

Some facts
You have to estimate the total wirelength because  it’s too expensive in 
CPU time (usually) to really call the routing tool for each wire

So, the “estimator” is supposed to give a reasonable guess for the
wirelength, but be really quick to compute

Wirelength estimators
Many many different types

Depend on what assumptions you can make about how the wires will
actually get routed in the final ASIC layout

Also depends on how much CPU time you can afford

Let’s look at a few classical strategies
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Wirelength EstimationWirelength Estimation

Euclidean estimation
For a 2-point net, just the 
hypotenuse of the triangle.

Problem:  nobody really
allows wires at arbitrary
angles in most chips

Manhattan estimation
For a 2-point net, just the
sum of the legs of triangle

(Name from pt-to-pt distance
measured by NY cab drivers)

Perfectly OK for 2 point nets...

Estimate is:

Estimate is:
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Wirelength EstimationWirelength Estimation

What happens if >2 
endpoints on the nets?

Several options
Can use the simple trick of 
putting a 2-pt connection 
between all pairs of points...

..but this dramatically 
overestimates the 
necessary wirelength

Estimate is:

x=0     1     2    3    4

y=5

4

3

2

1

0
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Wirelength EstimationWirelength Estimation

Better idea
Take the subset of those 
connections that has 
minimum overall length, but 
touches every point

Called “minimum spanning 
tree” -- O(N2) algs to get it for 
N points

Problems
It still overestimates the wire 
needed, since it assumes wire 
is made only of discrete gate-
to-gate connections

Estimate is:
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Wirelength EstimationWirelength Estimation

OK, how would a real 
router tool wire it?

As a “Steiner tree”
Difference is the Steiner 
tree can have connection 
points at arbitrary places, 
not just at the spots where 
there are endpoints of net

Problem
Getting an optimal Steiner 
tree is NP Hard, ie, 
exponentially hard in 
general case.

There are good heuristics, 
though, but its still 
expensive to do really well. 

Estimate is:

x=0     1     2    3    4

y=5

4

3

2

1

0

a Steiner pt
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Aside:  About Steiner Tree Constructions Aside:  About Steiner Tree Constructions 

Bigger, clearer Steiner example

Pins to connect Min Spanning Tree Draw it manhattan

Redraw it--different
orientations of 2pt paths

Now we can see the
better Steiner tree

2 so-called
“Steiner-points”
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Aside: About Steiner Tree ConstructionsAside: About Steiner Tree Constructions

Can I always just “tweak” the minspan tree to get best Steiner?
Example on previous page “flips” L-shaped paths, maximizes overlap

Answer:  No.  There are optimal Steiners you cannot find this way

OK, so how much better (shorter) is Steiner over minspan tree?
Big result:  [F.K. Hwang 1976] 

Minspan tree never longer than 1.5X length of the optimal Steiner tree

Said the other way: going to Steiner tree saves at most 1/3 of length
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Wirelength EstimationWirelength Estimation

OK, what do we really use?

Half-perimeter metric
Put a box around all the pins

Take 1/2 of perimeter, which 
is just length + width of box

This is a guaranteed lower  
bound on the amount of 
wire you need

(Why?)

This is really easy to compute, 
widely used.

Note, for 2-point nets this IS the 
Manhattan estimate!

Estimate is:
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Reality Check: Wirelength EstimationReality Check: Wirelength Estimation

Half-perimeter metric
Real distribution of bounding-box sizes for big IBM ASIC [Vygen DATE98]

14.6mm2, 181K nets, total wirelength: 106.34 meters
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Optimization:  Congestion  MinimizationOptimization:  Congestion  Minimization

Wirelength minimization is not only option
Small total wirelength is good:   shorter wires take up less space, have 
less delay, etc

BUT--still easy to place too many gates so close you cannot wire them

Estimated wirelength does not account for congestion, ie, there is more 
demand for wires than supply of wires in a region of space

Can target congestion instead of wirelength
Note they do tend to correlate, but minimizing one does not 
neccessarily optimize the other
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Congestion vs WirelengthCongestion vs Wirelength

Common problem
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Densely placed region
on surface of your chip

…wirelength may be
very good, very small

…but can you fit all the
local wires, that connect
gates just inside this region? 

…and is there enough 
space for global wires, 
that don’t connect
inside here, to pass thru?



Page 14

© R. Rutenbar 2001            CMU 18-760, Fall 2001   27

Congestion HistogramsCongestion Histograms

A simple model shows how wirelength, congestion relate
Make several uniformly spaced cuts across layout, both directions

Count num of wires that must cross each cut;  plot values as histogram

Note:
Area under each histogram 
correlates with (but is not
same as) estimated wirelength

Typically, we want to “flatten”
these histograms, so there are
no regions with more wires than
the max num of wires that will fit.
We are especially sensitive to the
peaks (maxima) in these plots, 
since they are likely hotspots for
congestion. 

Increasing
crossing
countIncreasing

crossing
count
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Three Big Placer StrategiesThree Big Placer Strategies

Recursive (bipartitioning)
Recursively partition the netlist onto halves of the chip

We cover:  Kernighan-Lin and Fidduccia-Matthyses algorithms

Iterative improvement
Perturb a random placement repeated until it stops getting better

We cover:  Simulated annealing algorithm

Direct (quadratic)
Write an equation (a big one) whose numerical solution = a placement(!)

We cover:  classical quadratic placement
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Strategy:  Recursive PlacementStrategy:  Recursive Placement

Usually called “min-cut” placement
Recursively divide chip surface into 2 parts, and partition gates across the 
halves to minimize the number of wires across the cut

Min-cut minimizes congestion directly,  doesn’t minimize wirelen directly

Initial Partition

• Gates swapped across 
partition to find min-cut

• Pin position estimated at 
center of partitions

Intermediate Partition

• Gates increasingly 
localized

Final Placement

• Eventually all circuits 
placed near legal locations

• Exact pin positions known
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Strategy: Iterative Improvement PlacementStrategy: Iterative Improvement Placement

Placement results from many, small, random perturbations
Can minimize just about anything you can measure or estimate

But--must evaluate that estimation function many many times

Usually used to optimize total wirelength directly

Initial Placement

• Gates randomly placed 
in legal locations

• Any optimization
metric can be used 

Final Placement

• Eventually all circuits 
settle in a location

• Exact pin positions known

Intermediate Placement

• Gates move  between 
legal locations

• Net length gradually 
minimized 
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Strategy:  Direct PlacementStrategy:  Direct Placement

All these use a technique called “Quadratic Placement”
Model all gates a points, all wires as 2-point “springs”

Minimize total squared Euclidean length:  Σi EuclideanLength2(net i)

Surprisingly, can do initial parts of this directly, numerically, exactly

Initial Solution

• Direct soln. of quadratic  
total wirelength metric

• Gate and pin positions 
not yet legal

Legalization Phase

• Iterative snap-to-grid 
finds  legal locations

• Any metric usable here

Final Placement

• Eventually all gates 
placed in legal locations

• Exact pin positions known
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Placer Strategies Compared Placer Strategies Compared 

Yes, legal 
at the end

Maybe
(for our 
ex, yes)

Doable, as 
histogramsDirectMulti-pt

Both 
area and 

shape

Iterative
annealing

No, need 
final snap 

to grid

No, only 
points, 
not on 

row grid

NoDirect, 
quadratic

2-point 
nets only

0-dim 
points 
only

Direct 
quadratic

No, need 
final snap 

to grid

No,  only 
clusters 
in middle

DirectIndirectMulti-pt
Have 

area but 
no shape

Recursive 
min-cut

Legalization
Middle         Final

Optimization
Wirelen       Congest

Layout Model
Gates          NetsStrategy
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Evolution of Strategies:  Rough TimelineEvolution of Strategies:  Rough Timeline

1970s

1980s

1990s

2000s

Earliest techniques are iterative improvement

Recursive mincut emerges as viable

Iterative improvement gets much better
with emergence of annealing; pure annealing, 
or mincut+annealing dominate

Quadratic direct emerges as viable and
also much more scalable to very large
designs, much faster than annealing at 100k+ gates

Early evidence of return to pure min-cut with
emergence of some new partitioning algs, more
concern about congestion, and speed at 5M+ gates
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First Strategy:  Iterative ImprovementFirst Strategy:  Iterative Improvement

Where are we?
Assume you have a placement (each gate located in a cell on grid)

Assume use half-perimeter metric to compute Σnets (estimated wirelen) 

Can now tell if this placement is good (Σnets = small) or bad  (Σnets = big)

Basic strategy
Basic idea:  iteratively improve via long sequence of small placement changes

Start with a random placement

Perturb it (example: swap 2 gate’s cell locations in grid)

Evaluate improvement = ∆wirelength

Questions
How do we know what to perturb, how much, when to quit, etc?
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Earliest Iterative Improvement ApproachesEarliest Iterative Improvement Approaches
1970s

“Optimal” perturbation 
schemes try to relocate 
gates to “best” new locations

Lots of variants
For(each gate g in some order){

compute optimal spot
move gate g
if (spot occupied) remove

existing gate, this is new g

}

How well did this work…?
OK  (not great by modern measures)

Problem is these methods are 
inherently greedy:  they quit when 
can’t find another good perturbation

Example: treat wires
as force vectors,
decide where they
“pull” center gate to
“want” to settle

x=0     1     2    3    4

y=5

4

3

2

1

0
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Iterative Improvement ApproachesIterative Improvement Approaches

Problem with the 70s “optimal” strategies:  Greedy algorithms
They only pick “good” perturbations that most improve wirelength...

...and continue until they can’t make any more progress

Problem:  local minima in the cost surface for the placement task 

Σnets wirelen

quality metric
for each
possible

layout

Local
Minimum

Global
Minimum

Layout configurations
(independent variables
that define each layout;

we just show 2 here)
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Solution Technique:  Simulated AnnealingSolution Technique:  Simulated Annealing

Let’s go waaay off to the side here and develop an idea
How far off to the side?  Let’s go look at some statistical mechanics 
from our friends in computational physics

Idea originally developed by Scott Kirkpatrick et al, physicist from IBM

Suppose you want to make a perfect crystal
Perfect = all atoms lined up on crystal lattice sites;  no defects

Perfect = this is the lowest energy “state” for this set of atoms

o o o o o o o o
o o    o o o o o
o o    o o o o o
o o o   o o o o
o o o o o    o o
o o o o o    o o
o o o o o    o o

o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o
o o o o o o o o

o

o
o

o

Imperfect order, 
has HIGHER energy

Perfect order, 
has MINIMUM energy

© R. Rutenbar 2001            CMU 18-760, Fall 2001   38

Real, Physical AnnealingReal, Physical Annealing

How do you do this physically?
You “anneal” the material

Get it very hot:  gives atoms energy to move around

Cool it very slowly:  gently restricts range of motion till everything 
freezes into (you hope) a low energy configuration

Temp = HOT

Low

High

Hot Temp = COLD

Low
Cold

When it’s hot... When it’s cold...
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Annealing -> Simulated AnnealingAnnealing -> Simulated Annealing

Now what?
That was a real physical system: real atoms, energy, heat, etc.

Think about attacking this problem computationally

How do you compute this low energy state, from first principles.

Back up a bit...
Suppose the temperature is constant

How do you simulate what these atoms are doing as they hop around?
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Annealing: BasicsAnnealing: Basics

Phrase this question more exactly
How do you compute the low-energy configurations of a physical system in 
thermal equilibrium (ie, at a constant temperature)?

Answer
Metropolis algorithm

Start with the system in a known configuration, at known energy E

Perturb system slightly (eg, move an atom to new location)

Compute ∆E , change in energy due to this perturbation

if (∆E < 0 )

then

else   {

go back to start
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Aside:  Metropolis CriterionAside:  Metropolis Criterion

That if-then in algorithm is “the Metropolis criterion”
After you perturb an atom and compute ∆energy, it tells you if you keep 
this new perturbation as new configuration or throw it away

If the energy goes down, ∆E<0, this is a “better” state: keep it

If energy goes up, ∆E >0, this is a “worse state”:  maybe keep it, depends 
on temperature

Temp = T, ∆E > 0

T

Compute e 
-∆E/KT

= a number in [0,1]

= Probability that
you will accept 
this perturbation

Generate r
a random number
in [0, 1]

Compare r and e 
-∆E/KT

if (r is smaller)
keep this perturbation
else reject it
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Aside:  Metropolis CriterionAside:  Metropolis Criterion

Example
Suppose ∆E > 0

Suppose p = e - ∆E / KT = 0.8

Suppose you generated r = uniform random number in [0,1] = 0.3

What is really going on?

What is the probability that  0 < r < 0.8?

0 1
p=0.8

r = 0.3
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Simulated AnnealingSimulated Annealing

Question
Metropolis algorithm iteratively visits configurations with “reasonably 
probable” energies at the given fixed temperature

What if I want to find a minimum energy state, now what do I do?

Answer
Simulated annealing

Add outer loop that starts with a high temperature, and slowly cools it

Do enough perturbations at each temperature in the sequence of cooling 
steps to get to thermal equilibrium (ie, do the Metropolis procedure)

Do enough temperatures so that the problem actually freezes into a low 
energy state, and further  cooling does not further lower energy
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Simulated Annealing Simulated Annealing 
Start with the system in a known configuration, at known energy E

T = temperature = hot;    frozen = false;

while ( ! frozen ) {

repeat {

Perturb system slightly (eg, move a particle)

Compute ∆E , change in energy due to perturbation

if (∆E < 0 )

then   accept this perturbation,  this is the new system config

else   accept maybe, with probability = e -∆E/T

} until (the system is in thermal equilibrium at this T)

If (E still decreasing over the last few temperatures)

then T = 0.9 T   // cool the temperature; do more perturbations

else  frozen = true

}

return (final configuration as low-energy solution)
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Toy ExampleToy Example

Pretty easy to code a little example
Problem:  2D lattice of atoms, each in one of 2 states: + 1 -

Energy of the system:  

Only in the bonds between neighbor atoms

Contribution is +1 if atom states different, else 0 

To anneal:

Moves are just:  pick an atom, flip the state, compute ∆E

+ - - + -

+ - - - -

- - + + -

+ + - + -

+ + - - -

- - -

+ + -

- + -

Suppose we flip center atom

Old contribution to energy:

New contribution to energy:

∆E is:

- - -

+ - -

- + -
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Annealing Pseudo-CodeAnnealing Pseudo-Code

Pseudo-code

T = 100

Loop: for ( i = 1 to 10 * number of atoms ) {

pick a random atom, flip it, compute ∆E

accept = metropolis(∆E, T)

}

if  (total cost is still improving, ie, changed > 1% over last 3 temps)

T = 0.9 * T

goto Loop;

else quit
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Toy Annealer:  ResultsToy Annealer:  Results

10x10 lattice, 1000 moves per temperature
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Toy Annealer: ResultsToy Annealer: Results

100x100 lattice, 250,000 moves per temperature
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What Has This To Do With Placement?What Has This To Do With Placement?

Combinatorial optimization problems are like these physical 
systems being coerced into low-E states

Physical System Engineering Problem
System with atoms Optimization problem with many
in various states variables  (x1, x2, x3, ..., xn)

Energy Cost metric  (eg, wirelength)

∆E perturbation Iterative improvement step, ∆cost perturb

Lowest energy “groundstate” Optimum solution

Temperature Hill climbing control parameter

Annealing Simulated Annealing
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Annealing Algorithm:  Essential PiecesAnnealing Algorithm:  Essential Pieces

What are the components of any annealing solution to a 
combinatorial problem?

There are 4 key pieces

We go over them here…

1. State representation
Exactly what are the configurations of solutions to your problem that 
you will visit as you iteratively perturb things?

2. Cost function
How will you measure how good each visited configuration is during 
iterative perturbations?

This plays the role of “energy” in simulated annealing
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Annealing Algorithm:  Essential PiecesAnnealing Algorithm:  Essential Pieces

3. Move set
In annealing-speak, perturbations are always called “moves”

The move set is the set of “types” of perturbations that you with do to 
evolve from one solution configuration to the next

Examples:

Move that atom from (x,y,z) to (x’,y’,z’)

Rotate that block in the floorplan for the chip

Swap the position of those 2 gates in the placement

old
configuration

new
configuration

1 move
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Annealing: Essential PiecesAnnealing: Essential Pieces
4. Cooling Schedule

Starting temperature

How hot is hot enough at the start of annealing?

Usually want it hot enough that any move you try is accepted

When it’s hot, you basically randomize the solution

Equilibrium criterion

How do you know you have done enough moves at the current 
temperature to stop, and exit to see if you should cool T?

For now, just do a lot of moves at each temperature (~100*objects)

Cooling rate

How fast to cool? Tnew = 0.9•Told  ? Tnew = 0.8 • Told ?

Slower cooling (0.9) gives better answers, but takes longer

Frozen criterion

When is overall solution as good as it will get, so it’s time to quit?

Usually wait a few temps and see if cost stops changing much
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Simple Combinatorial Optimization ExampleSimple Combinatorial Optimization Example

Travelling Salesman Problem
Visit a set of cities in order, one visit per city, first city = last city

Minimize total length of travel

To anneal
State = list of cities in
order, called a tour

Ex:  (Detroit, Paris, 
Lisbon, London, Detroit)

Move = swap 2 cities in tour

Ex:  (Detroit, London,
Lisbon, Paris, Detroit)

Cost = sum of lengths of travel,
city to city, on tour

Cooling -- you know

[Kirkpatrick, Science 1983]
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OK, How to Do ASIC Placement?OK, How to Do ASIC Placement?

Surprisingly easy to do a “toy” placer
State

Just the (x,y) location of each placeable object in our grid

Cost

Just total estimated half-perimeter wirelength over all nets

Moves

Easiest is pick 2 random gates and swap their locations on the grid

Cooling

T init = hot; Tnew = 0.9*Told;  do a lot of moves at each 
temperature to ensure equilibrium (eg, 100*#gates   moves/temp)

Quit when the cost curve versus temperature is flat enough

(Real placers are a lot more complicated, but this is surprisingly OK…)
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Example:  [Kirkpatrick, Science 1983]Example:  [Kirkpatrick, Science 1983]

Actually placing chips on a package, but same idea
hot warm

cool froze

Congestion
histogram values

Colors
code known
multiple-chip
functional units
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OptimizationsOptimizations

Incremental cost calculation
You cannot afford to go recompute the cost of each net in the entire 
placement after you do one measly little swap

For one thing, it’s stupid: most lengths didn’t change!

You have do this incrementally--just look at the wires that could change

x=0     1     2    3    4

y=5

4

3

2

1

0

∆wirelen = 

x=0     1     2    3    4

y=5

4

3

2

1

0
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OptimizationsOptimizations

Range limiting
You don’t get any rewards for proposing moves that have a very high 
probability of being rejected -- rejected moves don’t advance solution

Sometimes you can tell in advance which are more likely to succeed

Range = amount by which the cost is likely to change if you do this move

T = HOT,  moves with large range are OK;  T=COLD, not

HOT WARM COLD
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Why Does Annealing Work?Why Does Annealing Work?

Helpful mental model #1:   Balls & Hills
Look at a simple representation of a combinatorial optimization task

Can model as a cost surface   (also called a “landscape” or “space”)

The configuration we are visiting now is the “ball” on the “hill”

Cost

All possible configurations of system
that is being optimized.   

Note we only draw for 1 variable

you
are here...
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Balls & HillsBalls & Hills

Consider classical “greedy” iterative improvement
Only take moves that improve the cost

Physical analogy:   like a quench, cool too fast and you get lousy crystal

Can get easily trapped in local minima

Cost

All possible configurations of system
that is being optimized.   

Note we only draw for 1 variable

yes
NO,

never!
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Balls & HillsBalls & Hills

Simulated annealing allows probabilistic hill climbing
Suppose temperature T = HOT, remember Pr[accept] = e -∆ C/T

Cost

All possible configurations of system
that is being optimized.   

Note we only draw for 1 variable

Maybe
Probably Definitely

Yes,
always
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Balls & HillsBalls & Hills

Simulated annealing allows probabilistic hill climbing
Suppose temperature T = COLD, remember Pr[accept] = e -∆ C/T

As temperature cools, fewer uphill moves acceptable

Cost

All possible configurations of system
that is being optimized.   

Note we only draw for 1 variable

No way
Probably NOT Maybe

Yes,
always
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Balls & Hills:  Some NumbersBalls & Hills:  Some Numbers

Cost

All possible configurations of system

Maybe
Probably Definitely

1000

100

1

Uphill Probability we will accept this move
∆C Hot T=1000 Warm T=100 Cold T=1

1 0.999 0.99 0.37

100 0.900 0.37 ~0

1000 0.37 0.00004 ~0
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Helpful Model #2:  Landscape FlatteningHelpful Model #2:  Landscape Flattening

Consider this bumpy cost surface (ball & hills)

Question
As a function of temperature, how much of this cost surface is reachable if 
we start from where the ball is in this figure?

We think temp T “hides” the obstacles when hot;  adaptively 
“smooths” or “flattens” these obstacles so we ignore them at the start

Cooling restricts us to ever smaller “good” areas;  obstacles reappear

Idea sometimes referred to as “adaptive smoothing” of cost surface

Cost

Configurations

Cost

Configurations

?????
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Landscape FlatteningLandscape Flattening

Cost

Unreachable here,
this  hill is too high at
this lower temperature

Unreachable here,
this  hill is too high at

this yet lower temperature

Unreachable here,
this  tiny hill is too high at
this very cold temperature

Cost

Configurations

Entire cost surface reachable here,
no hill is an obstacle

T=HOT T=WARM

T=COOL T=FROZEN
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Annealing DynamicsAnnealing Dynamics

Question
When my annealer is running, what do I actually see happening at each 
temperature, and across sequences of decreasing temperatures?

Answer
At each temperature, you visit solution configurations in your 
“neighborhood” of the cost surface

Those solution configurations will all have different costs

You will see a “distribution” of costs at any fixed T

What does that distribution look like?
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Annealing DynamicsAnnealing Dynamics

Distribution of configurations at temperature
Can make a histogram, with ranges for cost of solutions seen

Vertical axis counts how many configurations visited that fall into each 
cost “bucket”

Get a bell-shaped distribution

Count =
# observed

configs
within

cost range

Cost ranges for
visited configurations
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Annealing DynamicsAnnealing Dynamics

Typically...
You visit some really good (low cost solutions), but temperature is high 
enough you keep jumping out

You visit some really lousy configurations (uphill) but keep falling back 
to the “middle”

Count =
# observed

configs
within

cost range

Cost ranges for
visited configurations

mean cost

+1σ-1σ
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Annealing DynamicsAnnealing Dynamics

What happens to distribution as cooling proceeds?
Histograms get narrower:  unwilling to visit so many bad configs in the 
neighborhood, and there are fewer “better” configs around

Histograms get taller:  more of the solutions you find are near the 
mean, temp is too low to jump uphill to really worse ones, and again 
there are fewer better ones around to fall down into

Count =
# observed

configs
within

cost range T = hotter,
mean is higher
spread is wider

T = colder,
mean is lower

spread is narrower

Cost ranges of visited configs

cooling
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Toy Example:  How Cost Distribution EvolvesToy Example:  How Cost Distribution Evolves

10x10 lattice example
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Some Annealing FAQsSome Annealing FAQs

Question Answer

Does annealing always get No.  It just avoids a whole lot of
global, optimum solution? suboptimal local solutions

How fast is annealing? Usually regarded as “slow”,
tho depends a lot on implementation;
must visit many solution configurations.

Are results deterministic, No.  If you run same random initial
and repeatable? config 10 times (different random num

sequences) you get 10 different answers
Can I affect this..? Yes.  Well-tuned annealers have tighter

“spreads” on their solutions
Do I really have to guess all No.  There are more complex adaptive
those cooling nums myself? algs that auto-tune cooling to problem
Does annealing work on Yes.   Very well on lots of other probs. 
other combinatorial problems?
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SummarySummary

Annealing is
A way of constructing algorithms for combinatorial optimiz. problems

Iterative improvement with hill climbing

Composed of a few essential pieces

State representation, cost function, move set, cooling schedule

Good at not getting stuck in some local minima

ASIC placement
3 big strategies:  recursive, direct, iterative improvement

2 big optimization goals:  estimated total wirelength, congestion

Annealing has been very successful in itetrative improvement 
placement with total wirelength minimization as the goal

Annealing runs out of gas around 100k-gates

Part II covers  recursive & direct techniques (surprise: they are related)


