

Where Are We?

▼ Physical design--how to geometrically *layout* gates in a netlist?

	Μ	Т	W	Th	F	
Aug	27	28	29	30	31	1
Sep	3	4	5	6	7	2
	10		12	13	14	3
	17	18	19	20	21	4
	24	25	26	27	28	5
Oct		2	3	4	5	6
	8	9	10		12	7
Midsem	15	16	17	18	19	8
break 🌂	22	23	24	25	26	9
	29	30	31	1	2	10
Nov	5	6	7	8	9	П
	12	13	14	15	16	12
Thnxgive	19	20	21	22	23	13
	26	27	28	29	30	14
Dec	3	4	5	6	7	15
	10		12	13	14	16

Introduction Advanced Boolean algebra JAVA Review Formal verification 2-Level logic synthesis Multi-level logic synthesis Technology mapping Placement

Routing Static timing analysis Electrical timing analysis Geometric data structs & apps

© R. Rutenbar 2001

CMU 18-760, Fall 2001 3

Aside: From Methodology to Intellectual Property

■ Intellectual property (IP)

- Something you can buy for \$\$\$ that embodies some design expertise
- ► Easier to buy it than to build it

Historical forms of IP

- Chips: You buy the hardware, plug it into a board, wire it up and go
- Software: You buy it, load it, boot it, run it.

Evolving forms of IP

- **Soft IP:** buy the Verilog source code. Synthesize it yourself.
- Firm IP: buy the gate/block level netlist. Do your own mapping, layout
- ► Hard IP: buy the actual layout. May have to "adjust" to your fab
- ► Ability to buy tools that do synthesis/layout is one big factor driving IP

© R. Rutenbar 2001

CMU 18-760, Fall 2001 13

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><table-container><table-row><table-container>

Summary: Physical Design for ASICs

■ What exactly are we going to look at?

1. Placement & partitioning

- Once you know the gates for your chip, where do you put them?
- 2. Routing
 - ▶ Once you know where the gates are, how do you connect the wires?
- 3. Logical timing & electrical timing analysis
 - > You have gates, have wires, have delay models: so how fast will it go?
- 4. "Big" geometry: representation & manipulation
 - ► How do you deal efficiently with 1,000,000,000 rectangles?

© R. Rutenbar 2001

CMU 18-760, Fall 2001 23