
Page 1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   1

(Lec 6) 2-Level Minimization:   Basics & Algs(Lec 6) 2-Level Minimization:   Basics & Algs
What you know

Some useful data structures to represent Boolean functions
Cube lists:  represent a SOP form of a function
BDDs: represent function itself in canonical form

A few important algorithms & applications
URP-style cubelist tautology, ITE on BDDs
Use of BDDs to see if 2 different networks or FSMs  are same

A new way of thinking about Boolean functions
Divide & conquer algorithms on data structures

What you don’t know
Algorithms to simplify (minimize) a Boolean function(s)
Starting point is the classical 2-level form, sum of products

© R. Rutenbar 2001          CMU 18-760, Fall 2001   2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.



Page 2

© R. Rutenbar 2001          CMU 18-760, Fall 2001   3

Where Are We?Where Are We?
Moving on to real logic synthesis--for 2-level stuff

27    28    29    30    31    
3   4     5    6    7    

M      T      W     Th    F

10   11    12    13    14    
17     18     19     20     21     
24    25    26    27    28    

Aug
Sep

Oct 1    2    3    4    5    
8   9    10    11    12   

15        16     17     18     19
22 23     24    25    26    
29    30    31    1     2    
5   6    7    8    9    Nov
12   13    14    15      16      
19     20     21    22     23     
26     27     28   29     30       
3    4     5   6   7    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis 
Geometric data structs & apps

Dec

Thnxgive

10    11     12   13   14    16

© R. Rutenbar 2001          CMU 18-760, Fall 2001   4

HandoutsHandouts
Physical

Lecture 6 -- 2 Level Logic Minimization
Paper 1 – dynamic variable ordering for BDDs

Electronic
HW3 will be on the web site this weekend

Reminders
HW2 extended – Friday 5pm, my office (3105) or Lyz Knight’s (3107)
Project 1 deadline will also get pushed back a little…



Page 3

© R. Rutenbar 2001          CMU 18-760, Fall 2001   5

ReadingsReadings
DeMicheli has a lot of relevant stuff

He actually worked on this stuff as a grad student at Berkeley

Read this in Chapter 7
7.1  Intro:  take a look.
7.2  Logic optimization principles:  read 7.2.1-7.2.3  as background
7.3  Ops on 2-level logic covers:  read it but don’t worry about 7.3.2
7.4  Algorithms for logic minimization:  read it, but focus on Expand and

Reduce and the ESPRESSO minimizer.
7.5-7.6  Skip.
7.7  Perspectives:  read it.

Read this in Chapter 2
2.5.3 Satisfiability and cover:  gives some background about how people 

really solve covering problems of the type we talk about here

© R. Rutenbar 2001          CMU 18-760, Fall 2001   6

ReadingsReadings
If you are feeling especially macho here:

Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, Alberto
Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, 1984.
The bible of ESPRESSO heuristics, from the designers of the algorithms 
and authors of the various early code implementations
Lots of good details.
Not for the timid.
(Knowing some APL would also help explain the mysterious notation.)

Another good one is:  Gary Hachtel and Fabio Somenzi, Logic Synthesis 
and Verification Algorithms, Kluwer Academic Publishers, 1996.

We use some examples from both of these books.



Page 4

© R. Rutenbar 2001          CMU 18-760, Fall 2001   7

2-Level Minimization2-Level Minimization
What we assume you’ve seen is minimization by...

Boolean algebra
Pro:   easy, just algebra
Con:  hard to know when you have a good answer,  

hard with lots of vars & functions
Karnaugh Maps

Pro:   easy, visual
Con:  too complex past about 6-7 variables

Quine McCluskey
Pro:   systematic algorithm, fairly easy
Con:  complexity scales exponentially

What’s new here?

© R. Rutenbar 2001          CMU 18-760, Fall 2001   8

2-Level Minimization2-Level Minimization
A little history...

1950s:  Classical approaches
Quine McCluskey approach  showed that you could minimize things 
exactly, but complexity wasn’t very good
Dropped from attention...

1970s, early 80s:  Heuristic approaches
Don’t go after exact optimum solutions, just good solutions
Lots of progress, lots of attention
Most famous:  ESPRESSO from Berkeley

1980s-90s:  New exact approaches
Now have good data structre (BDDs) to do complicated things
Clever new approaches to “exact minimization” that tended not to
go exponential on practical test cases



Page 5

© R. Rutenbar 2001          CMU 18-760, Fall 2001   9

2-Level Minimization: Focus2-Level Minimization: Focus
Current state of affairs

Everybody uses BDDs for everything, everywhere...
..except one place:  Heuristic 2-level ESPRESSO minimization

ESPRESSO hacks on cubelists
ESPRESSO is many, fairly complex heuristics
ESPRESSO is called in the inner loop of many other optimization 
tasks now, that need a fast, good, 2-level minimization as part of a 
bigger design task

There are also several clever new exact algorithms
...that use BDDs for the data structures
Tend to be slower than ESPRESSO, but guarantee the exact best 
answer possible

What will we look at...?
A quick review of basics of 2-level logic minimization
A quick tour of the ESPRESSO strategy, with details for
just a few of the ESPRESSO heuristics

© R. Rutenbar 2001          CMU 18-760, Fall 2001   10

2-Level Minimization:  Background2-Level Minimization:  Background
Exactly what is the goal here?

Input:  a truth table (with lots of don’t cares)
Output:  minimized sum-of-products expression
Minimum means, usually

Fewest product terms (each term == an AND gate, conceptually)
Fewest literals  (each literal is a gate input)

1

1

1
11

00     01     11     10
00

01

11

10

ab
cd

11 1

1 1
11

1

1

1
11

00     01     11     10
00

01

11

10

ab
cd

11 1

1 1
11

OK, but not the best... ...best you can do.



Page 6

© R. Rutenbar 2001          CMU 18-760, Fall 2001   11

2-Level Minimization2-Level Minimization
Reminder:  what’s a “literal”

Appearance of a variable in true or complemented form in an SOP 
expression for a function
A primary input on a gate

f = ab’ + ab’c + abc + bcd + bcd’    has   how many   literals

© R. Rutenbar 2001          CMU 18-760, Fall 2001   12

2-Level Minimization2-Level Minimization
What is simplification really all about?

Generate component pieces of the solution
Select which of these pieces are in the best solution

Component pieces = Prime Implicants
Products terms with some specific properties

Pick which pieces you need = Covering Problem
You don’t want all of them, which ones are needed?

Need to review some terminology...



Page 7

© R. Rutenbar 2001          CMU 18-760, Fall 2001   13

2-Level Minimization:  Terms2-Level Minimization:  Terms
Aside:

Most useful to think of all the terms in cube-space, or on a Kmap

What are component pieces of solution?
Term: Implicant

An implicant is any product term contained in your function
...when the implicant is 1 ==> your function is 1
...anything you can circle in a Kmap
...any cube you can identify on a cube-plot of your function

000 001

011010

100 101

111110

00     01     11     10
0

1

ab
c

a
b

c

1
1

1
1

1

1

1 1

1 1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   14

2-Level Minimization:  Terms2-Level Minimization:  Terms
What are component pieces of solution?

Term:  Prime Implicant  (PI)
An implicant with the property that if you remove any literal, it 
stops being an implicant
...a circle in a Kmap you cannot make any bigger
...a cube not contained in any other cube in your function

000 001

011010

100 101

111110

00     01     11     10
0

1

ab
c

a
b

c

1
1

1
1

1

1

1 1

1 1



Page 8

© R. Rutenbar 2001          CMU 18-760, Fall 2001   15

A product term
with _

literals

2-Level Minimization:  Mastering Terminology2-Level Minimization:  Mastering Terminology
Aside

Remember:  a “cube”  is just a “product term”
Keep in mind how all the different “views” of what a product term is 
relate to each other for simplification...

A Kmap group
that circles

1s

A cube that 
covers _

vertices
(minterms)

An AND gate
with _  

input wires
= = =

= A Good Thing

© R. Rutenbar 2001          CMU 18-760, Fall 2001   16

2-Level Minimization:  Terms2-Level Minimization:  Terms
What are component pieces of solution?

Term:  Essential Prime Implicant
If there is a row of the truth table...
...or a 1 in the Kmap
...or a vertex of the cube where f==1
..that is covered by exactly one PI, this PI is called essential

000 001

011010

100 101

111110

00     01     11     10
0

1

ab
c

a
b

c

1
1

1
1

1

1

1 1

1 1



Page 9

© R. Rutenbar 2001          CMU 18-760, Fall 2001   17

2-Level Minimization:  PIs2-Level Minimization:  PIs
Big theorem from 50s

Due to Quine (of ...& McCluskey)
A minimal SOP form of a 2-level function must always consist of a sum 
of Prime Implicants

Sort of makes sense
If not, you could always take an implicant of function, expand it to 
become a Prime, and buy back a few literals

Consequence
All we really need to work with is the PIs, that’s what the solution 
to 2-level minimization will be made out of

00     01     11     10
0

1

ab
c

1
1

1
1

1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   18

Sometimes    everything is essential

Sometimes     nothing is essential

In general, a mix of essential and inessential PIs

2-Level Minimization:  Aside2-Level Minimization:  Aside

1

1

1

1
1

00     01     11     10
00

01

11

10

ab
cd

1

1

1

1
1

1
11

00     01     11     10
00

01

11

10

ab
cd

11
1



Page 10

© R. Rutenbar 2001          CMU 18-760, Fall 2001   19

2-Level Minimization2-Level Minimization
First systematic minimization: Quine McCluskey

Generate all the PIs
Simple, exhaustive pairwise comparision technique
Start with each minterm, try to see how far you can “grow it”

Transform into a covering problem

1
1

1
1

1
00     01     11     10

00

01

11

10

ab
cd

11

bc’ = P1
abd = P2
acd = P3

b’cd = P4

m3   m4   m5   m11 m12  m13  m15

bc’ = – 1  0 – so covers:

a b c d

1

1 1

1

1

1 1
1 1

1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   20

2-Level Simplification:  QM2-Level Simplification:  QM
What’s a “covering problem”?

Somebody gives you a matrix with 0s and 1s in it
You must pick a set of rows... 

...that guarantees that each column is “covered”

..means there is a row with a “1” in that column in your set
...that minimizes some cost, ie, each row “costs” something, so want to 
choose the “cheapest” rows to cover all the columns

bc’ = P1
abd = P2
acd = P3

b’cd = P4

m3   m4   m5   m11 m12  m13  m15

1

1 1

1
1

1 1
1 1

1



Page 11

© R. Rutenbar 2001          CMU 18-760, Fall 2001   21

2-Level Minimization: Coverings2-Level Minimization: Coverings
How do you solve a covering problem?

With difficulty -- it’s exponentially hard in general
But there are tricks to help, to exploit problem structure

Reduction techniques
Try to make the covering matrix smaller
Example:  find the essential PIs:   

Look for columns with a single 1 in them  
...the row of that single 1 is an essential PI
Cross out the row (it must be in solution, no need to search for it) 
and all columns with 1s in this row (these are covered minterms, no 
need to try to cover them elsewhere)

P1
P2
P3

i      j       k       l

1
1
1

1
1

1

1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   22

2-Level Minimization:  Dominance Relations2-Level Minimization:  Dominance Relations
Also row, col patterns to exploit...

1 1 1 1

1 1

Pi

Pj

Row Dominance

Pi has a 1 in every place
Pj does, and a few more

Keep Pi,  kill Pj.   Why?

Pi covers all the same
minterms and it’s bigger
so it’s cheaper.  So we’d
never pick Pj.  Kill Pj row.

1
1

1

1

1

1

mi mj

P1

P2

Column 
Dominance

mi has a 1 in every place
mj does, and a few more

Cross out col mi ignore it.  Why?

If you pick PIs to cover mj, you
will also cover mi, so stop worrying
about mi, just try to cover mj.

dominates

dominates



Page 12

© R. Rutenbar 2001          CMU 18-760, Fall 2001   23

2-Level Minimization:  Covering2-Level Minimization:  Covering
Does this always work?   NO!

Sometimes you go till you cannot reduce further and you still have a 
nontrivial table you cannot just read answer off of
Now what?    Do Combinatorial Search

Explore a search tree, each child of each node is a different decision 
you need to try
Techniques to prune search quickly:  branch & bound

row
i

row
j

keep it nuke it

row
j

keep it nuke it

row
k

row
k

keep it nuke it

row
k

row
k

trial soln = {Pj, Pk}
keep nuke

© R. Rutenbar 2001          CMU 18-760, Fall 2001   24

2-Level Minimization:  QM2-Level Minimization:  QM
What’s wrong with this approach?

#1  PI enumeration is very slow
You build them up from minterms, exhaustively checking each evolving
implicant against others to see if you can expand till prime
Why is this a problem

A “nasty” problem has zillions of primes

#2  Exact covering using this exhaustive search is very slow
You already have a zillion PIs
Doing an exhaustive search to get exact right set of PIs to cover the
minterms is exponential in number of PIs...
...and number of PIs is itself enormous in general



Page 13

© R. Rutenbar 2001          CMU 18-760, Fall 2001   25

2-Level Minimization: Strategies2-Level Minimization: Strategies
So, what do people actually do?

Heuristic minimization
Don’t generate all the PIs explicitly, then do exact cover
Instead, generate some cover of the function, then iteratively 
improve it

1  Generate some cover of function f

2  Iteratively improve, reshape this cover

3  if (it’s still getting better) goto 2

4  clean up final answer, quit

© R. Rutenbar 2001          CMU 18-760, Fall 2001   26

2-Level Minimization: Covers of F2-Level Minimization: Covers of F
Reminder:  function vs cover of function

We’ve been sloppy so far here not to distinguish these
A function != cover

Cover of a function
In SOP style, this is what set of implicants (product terms) you will 
actually use to implement your function
...it’s the set of groupings circled in your Kmap
...it’s what gets implemented as AND gates in real hardware
...it’s what a cubelist represents (each cube==product)
...it’s NOT what a BDD represents!



Page 14

© R. Rutenbar 2001          CMU 18-760, Fall 2001   27

2-Level Minimization: Cover vs Function2-Level Minimization: Cover vs Function
Remember

BDDs represent the function itself, not the gate implementation
Cubelists represent only a particular implementation

= x1’•x2’•x3 + x1’•x2•x3 + x1•x2’•x3 + x1•x2•x3

= x1’•x3 + x1•x3

= x3

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

x1 x2 x3 f

A function... 3 different covers of the function...

x1  x2  x3
[10  11  01]
[01  11  01]

x1  x2  x3
[10  10  01]
[10  01  01]
[01  10  01]
[10  01  01]

x1  x2  x3
[11  11  01]

3 different cubelist representationsx3

0 1

Only 1 BDD for all of these

© R. Rutenbar 2001          CMU 18-760, Fall 2001   28

2-Level Minimization:  Focus2-Level Minimization:  Focus
What do people really do today?

Heuristic minimization a la ESPRESSO
About only place left people still use cubelists
Lots of URP algorithms
We’ll look a few in detail, not all

Exact minimization
Slower than ESPRESSO, but exact optimum answer
Actually, the tricks are to avoid generating PIs explicitly, and to avoid 
generating ones you know early won’t be in the final cover
Data structures are actually BDDs here, usually
We won’t talk about these (though there are some very elegant 
algorithms here, and lots of interesting current work...)



Page 15

© R. Rutenbar 2001          CMU 18-760, Fall 2001   29

2-Level Minimization:   ESPRESSO Heuristics2-Level Minimization:   ESPRESSO Heuristics
What we just reviewed here

2-level minimization “basics”
Minimum solutions are made out of prime implicants
Finding the best set of PIs is intrinsically a covering problem
It’s usually too expensive to generate all PIs and search exhaustively 
for the best cover

What you don’t know (yet)
Heuristics that avoid the explosion-of-PIs problem
ESPRESSO:  most successful heuristic, from IBM / Berkeley

The  “reduce-expand-irredundant” loop
Some more basic tools for doing this

More operators on covers of functions represented as cubelists
More useful properties of covers of Boolean functions

© R. Rutenbar 2001          CMU 18-760, Fall 2001   30

2-Level Minimization:  PCN Revisited2-Level Minimization:  PCN Revisited
Positional Cube Notation (PCN)

Recall basics:  for each cube (product term)
1 slot per variable, 2-bits per slot
01 == var    10 == var’     11== var not in product    00==void

Cube list represents a cover of a function f
Just a list of cubes, one cube for each product in SOP cover

Useful properties
Reasonably small:  n vars => 2n bits/cube
Already saw that it’s fairly simple to do some things

Cofactor, etc

There are, in fact, a bunch of other operators...



Page 16

© R. Rutenbar 2001          CMU 18-760, Fall 2001   31

2-Level Minimization:  PCN2-Level Minimization:  PCN
One nice reason for the bit-oriented format

Boolean ops on cubes -- AND, OR, etc  -- actually meaningful

Operator:  Cube Intersection
Regard each cube as a set of (appropriately adjacent) minterms
Cube intersection == bitwise AND of PCN fields

000 001

011010

100 101

111110

a
b

c

1 1

1

1

1

1

Acube = [01 11 11] = a
Bcube = [11 11 01] = c

AND    = [01 11 01]  = ac

Acube

Bcube

© R. Rutenbar 2001          CMU 18-760, Fall 2001   32

2-Level Minimization:  PCN2-Level Minimization:  PCN
What happens when cubes don’t intersect?

One of the fields in the AND is void == 00 
00 means “nuke this cube, it can’t exist!”

000 001

011010

100 101

111110

a
b

c

1 1

1

1

1

1

Acube = [01 11 11] = a
Bcube = [10 11 01] = a’c

AND    = [00 11 01]  = void

Acube

Bcube



Page 17

© R. Rutenbar 2001          CMU 18-760, Fall 2001   33

2-Level Minimization:  PCN2-Level Minimization:  PCN
OK, so what does bitwise OR do...?

Operator: Supercube
Supercube(Acube,Bcube) = ?

Another cube...

...smallest cube containing both Acube and Bcube
Supercube = bitwise OR

000 001

011010

100 101

111110

a
b

c

1

1

1

Acube = [01 10 10] = ab’c’
Bcube = [11 10 01] = b’c

OR    =   [11 10 11]  = a’

Acube

Bcube

© R. Rutenbar 2001          CMU 18-760, Fall 2001   34

2-Level Minimization:  PCN2-Level Minimization:  PCN
More sophisticated ops: Acube # Bcube  (called ‘sharp’)

In English
Acube # Bcube = [ list of cubes that cover all minterms in Acube

that are NOT in Bcube ]

Say we “sharp off” parts of Acube that are in Bcube  (see HW)

000 001

011010

100 101

111110

a
b

c

1

Bcube= [01 11 01] 
= ac 

000 001

011010

100 101

111110

1

1

1

1

1

1

Acube = [11 10 11]
= b’

1

1 1

1

Acube # Bcube =



Page 18

© R. Rutenbar 2001          CMU 18-760, Fall 2001   35

Heuristic 2-Level MinimizationHeuristic 2-Level Minimization
OK, where are we?

We have a data structure: Cubelists in PCN
Good for representing covers of functions in SOP form

We have several useful operators
Intersect, supercube, # [this is a HW problem]

We have URP as a basic algorithm style for attacking things, ie, 
Recursive divide & conquer based on Shannon factorization for

Tautology,  cube containment in a cover [this is also a HW problem...]

What don’t we have?
Overall strategy for heuristic minimization
== ESPRESSO

© R. Rutenbar 2001          CMU 18-760, Fall 2001   36

Real 2-Level Synthesis:  Basic StyleReal 2-Level Synthesis:  Basic Style
ESPRESSO style

Start with any prime cover...
Repeat these operations:   reduce, expand, irredundant

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1 1 1

1

1
00     01     11     10

00

01

11

10

ab
cd

1

11

11

1
1

1 111 11

Some
really 
lousy,
but
prime
cover

Start Reduce

4 PIs 4 implicants, 
but now maybe not prime
cover has been reshaped



Page 19

© R. Rutenbar 2001          CMU 18-760, Fall 2001   37

Real 2-Level SynthesisReal 2-Level Synthesis

Need more terminology to explain strategy here...

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1 1 1

1

1
00     01     11     10

00

01

11

10

ab
cd

1

11

11

1
1

1 111 11

Expand Irredundant

4 PIs, 
one is redundant 3 PIs, now none redundant

© R. Rutenbar 2001          CMU 18-760, Fall 2001   38

What do we start with?
Truth table with don’t cares
Represent as sets of minterms; standard names for these:

Ultimately, we manipulate

cubelist-style covers 

for FON, FOFF, FDC 000 001

011010

100 101

111110

Properties of CoversProperties of Covers

a
b

c

1d

1

1

1 d

a b c   f
0 0 0   1
0 0 1   0
0 1 0   1
0 1 1   d
1 0 0   d
1 0 1   1
1 1 0   0
1 1 1   1

FON =  ON-set = {                            } = where f == 1

FOFF =  OFF-set = {                          } = where f == 0

FDC =  Don’t care set = {                } = where f == d



Page 20

© R. Rutenbar 2001          CMU 18-760, Fall 2001   39

Properties of CoversProperties of Covers
Types of covers

Minimum:   has fewest PIs, and among all covers with same number of  
PIs, this one has the fewest literals
This is the best you can do...

000 001

011010

100 101

111110

a
b

c

11

1

1

11

Minimum cover of f

000 001

011010

100 101

111110

a
b

c

11

1

1

11

ON-set of f
(skip don’t cares
for now...)

1 1
111

1

ab
c

00  01  11  10

0

1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   40

Properties of CoversProperties of Covers
Types of covers

Minimal Irredundant:  this cover not a proper superset of any other cover
In English:  can’t remove any cube and still have a cover
Not as good as a minimum cover, “weaker” statement about quality of 
the cover of the function.  

000 001

011010

100 101

111110

a
b

c

11

1

1

11

000 001

011010

100 101

111110

a
b

c

11

1

1

11

Redundant cover Minimal irredundant cover
(but it’s not minimum)



Page 21

© R. Rutenbar 2001          CMU 18-760, Fall 2001   41

Hierarchy of “goodness” in covers
Prime cover better than nonprime cover
Irredundant is better than an arbitrary Prime cover
Minimum is better than Irredundant
Think about these like this:

Why are we doing this?
Minimum is hard to get...
....but we can aim for Minimal Irredundant
If we get lucky we’ll get a Minimum; if not, we’re probably close.

Properties of CoversProperties of Covers

All covers of function f Prime
Irredundant

Minimum
Other
(nonprime)

© R. Rutenbar 2001          CMU 18-760, Fall 2001   42

ESPRESSO Loop:  Details of the StrategyESPRESSO Loop:  Details of the Strategy
Iteratively reshapes a cover

A (somewhat) simplified version of algorithm

ESPRESSO (FON, FDC ) {
FOFF = complement(FON U FDC);  // get cover of OFF-set
F = expand(FON, FOFF);                   // get first cubelist cover of function f...

//    ...OK to cover some don’t cares
F = irredundant(FON, FDC)             // get rid of redundant cubes from expand()
E = essentials(F, FDC);                   // find essential primes, remember them
F = F - E;                                           // take essentials out of F, we don’t need

//     to try to look later for covers of these

// ESPRESSO loop
do {

$C = cost(cubelist for F);            // count literals and cubes
F = reduce(F, FDC);            // shrink this cover...
F = expand(F, FOFF);                  //...then regrow some PIs--maybe improve
F = irredundant(F, FDC);            //  get rid of redundant cubes in F

} while( cost(cubelist for F) < $C) // ...ie, while things are getting better
return( F U E );                                  // put back essential PIs

}



Page 22

© R. Rutenbar 2001          CMU 18-760, Fall 2001   43

ESPRESSO-Loop:  the “Big Picture” ViewESPRESSO-Loop:  the “Big Picture” View
Inputs: ON, DC

Compute complement:
OFF=compl(ON, DC)

Compute F,
first prime cover

(OK to cover DCs)

Remove redundant
cubes from F

Remove essentials:
F = F - E

Compute 
E=essential PIs

Compute cost
$oldC = cost(F)

F = reduce(F)

F = expand(F)

F = irredundant(F)

Cost(F) < $oldC ?

Add back essentials;
Output:  F U E

YES

NO

B
as

ic
 s

et
up

E
S

P
R

E
S

S
O

 L
O

O
P

F = first, lousy,
prime cover

© R. Rutenbar 2001          CMU 18-760, Fall 2001   44

1. How you do
complement,
why you need it.

ESPRESSO Loop:  What Will We Cover ...?ESPRESSO Loop:  What Will We Cover ...?

ESPRESSO (FON, FDC ) {
FOFF = complement(FON U FDC);  
F = expand(FON, FOFF);                   

F = irredundant(FON, FDC)
E = essentials(F, FDC);                   
F = F - E; 

do {
$C = cost(cubelist for F);            
F = reduce(F, FDC);            
F = expand(F, FOFF);                  
F = irredundant(F, FDC);            

} while( cost(cubelist for F) < $C)
return( F U E );                                  

}

2. Simplified version
of how expand
works

3. Just mention what
reduce does, not how.

4. Just mention what
irred. does, not how.

Skip this one.



Page 23

© R. Rutenbar 2001          CMU 18-760, Fall 2001   45

ESPRESSO Ops:  ComplementESPRESSO Ops:  Complement
Input

Cube list F that covers function f  (we’ll ignore the don’t cares)

Output

Cube list  that covers complement of function F, i.e., a cover of F’

Why do we need it?

We will use it in expand() -- this tells us where we cannot expand cubes

Strategy

A lot like URP tautology, only with different rules

© R. Rutenbar 2001          CMU 18-760, Fall 2001   46

ComplementComplement
Basically same as URP tautology

Critical observation

Just like with tautology, try to complement the function if you can, if 
you can’t -- you cofactor and try on the simpler pieces

As before, we need
Splitting rule:  which variable do we pick to cofactor?
Termination rule: how do we actually complement at the leaves?

f’ = x•(fx) + x’•(fx’)



Page 24

© R. Rutenbar 2001          CMU 18-760, Fall 2001   47

URP ComplementURP Complement
There are again several useful termination rules

Examples
If fx or fx’ == all don’t care cube  ( ==1 ) then return complement ==“0”
If every cube in fx or fx’ has one variable in same polarity, say “y”, eg

We have cube-list for f,
compute f’ = x•(fx) + x’•(fx’)

x=1 x=0

We get cube-list for fx
Try to get (f’)x = fx directly

We get cube-list for fx’
Try to do (f’)x’ = fx’ directly

yzw
yz’
ywv

= y•(zw + z’ + wv) => complement is  y’ + (zw + z’ + wv)

=> return [ y’ + URPcomplement(zw + z’ + wv)]

fx fx’

© R. Rutenbar 2001          CMU 18-760, Fall 2001   48

URP Complement: Role of UnatenessURP Complement: Role of Unateness
Turns out unateness helps again

Splitting rule:  Pick most not-unate variable
Try to get the leaves to be unate -- why?
We actually did this on HW1:

Positive unate in x:   f = fx + x fx

Negative unate in x:   f = x fx +  fx

Get to eliminate the x variable
entirely, which is a little simpler



Page 25

© R. Rutenbar 2001          CMU 18-760, Fall 2001   49

URP ComplementURP Complement
What it does

It gives us a cube-list cover of the OFF set, which expand() uses

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1 1

1111

We start with a cover of
the ON set...

URP
Complement 1

1
00     01     11     10

00

01

11

10

ab
cd

1

1

We get a cover of
the OFF set... it may
not be very good
(minimal) but that’s OK

© R. Rutenbar 2001          CMU 18-760, Fall 2001   50

ESPRESSO Ops:  ExpandESPRESSO Ops:  Expand
Input

Cube list F that covers function f

Output
Cube list  that covers f, with each implicant as big as possible, i.e. prime

Strategy

assign each cube Ci a priority weight wi
for (each cube Ci in priority order from small to large) {

determine which vars in cube Ci we can remove;
remove these vars to make the cube a bigger expanded cube

}



Page 26

© R. Rutenbar 2001          CMU 18-760, Fall 2001   51

Aside:  What Does “Expanding A Cube” Mean?Aside:  What Does “Expanding A Cube” Mean?

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

1

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

1

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

1

cube = xyz’w’
= [01 01 10 10]

cube = xz’
= [01 11 10 11]
= w -> don’t care
= “raised w in cube”

cube = xz’w’
= [01 11 10 10]
= y -> don’t care
= “raised y in cube”

Suppose we start with this

© R. Rutenbar 2001          CMU 18-760, Fall 2001   52

Expanding CubesExpanding Cubes
NOTE: we cannot keep expanding this cube forever...

We eventually make a cube that covers 0s as well as 1s
Such a cube is called infeasible -- it tries to cover a cube in OFF set.

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

1

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

1

cube = z’
= [11 11 10 11]
= raised x
= INFEASIBLE

cube = x
= [01 11 11 11]
= raised z
= INFEASIBLE



Page 27

© R. Rutenbar 2001          CMU 18-760, Fall 2001   53

Expand:  Ordering CubesExpand:  Ordering Cubes
First problem:  what order to expand cubes?

Order obviously makes a difference in final answer!

Strategy
Weight the cubes 
Sort the cubes on weight number
Expand cubes in this sorted order: light to heavy

Idea
Cube  is “light” if it is unlikely to be covered by other cubes

Light cubes cover fewer minterms...
...don’t have so many don’t cares in PCN slots
Example:   (ab’cd) is lighter than (ac)

Heuristic: 
Add up all the 1s in each column of cube cover;
big num means lots of vars in this polarity (or don’t cares)
Look for cubes that have few 1s in these dense columns

© R. Rutenbar 2001          CMU 18-760, Fall 2001   54

Expand:   Weighting CubesExpand:   Weighting Cubes

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

11

1
xz’      01 11 10 11
yz’w     11 01 10 01
xyz      01 01 01 11
x’y’z’w’ 10 10 10 10

sum   23 23 31 33

01 11 10 11
11 01 10 01
01 01 01 11
10 10 10 10

2
3
2
3
3
1
3
3

*

1. First do
per column
per bit sums

2. Transpose this vector

3. Do Matrix multiply

=

0*2+1*3+1*2+1*3+1*3+0*1+1*3+1*3   17
1*2+1*3+0*2+1*3+1*3+0*1+0*3+1*3 = 14
0*2+1*3+0*2+1*3+0*3+1*1+1*3+1*3   13
1*2+0*3+1*2+0*3+1*3+0*1+1*3+0*3   10

4. Result = weights

4 rows x 8 columns



Page 28

© R. Rutenbar 2001          CMU 18-760, Fall 2001   55

Expand:   Weighting CubesExpand:   Weighting Cubes

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

11

1
17

13

14

10

Small num = light cube
These cubes have vars where 
others have don’t cares or vars of 
opposite polarity
Sort by ascending weight
Expand in ascending order

x’ y’ z’ w’

x z’

x y z

x z’ w

© R. Rutenbar 2001          CMU 18-760, Fall 2001   56

Doing Expand on a Cube: Which Vars to Raise?Doing Expand on a Cube: Which Vars to Raise?
Given a cube to expand, which vars do we turn into don’t cares?  May 
be several different possible answers...  Called “raising” the variables.

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

11

1
00   01    11   10

00

01

11

10

xy
zw

1

1

1

1

1

11

1

00   01    11   10
00

01

11

10

xy
zw

1

1

1

1

1

11

1

xyz’w’ = [01 01 10 10]

Raise yw

Raise zw

xz’ = [01 11 10 11]

xy = [01 01 11 11]



Page 29

© R. Rutenbar 2001          CMU 18-760, Fall 2001   57

Expand:  the Blocking MatrixExpand:  the Blocking Matrix
Turn this into yet-another-covering problem

Make a small binary matrix called the “blocking matrix”
One row for each variable in the cube you are trying to expand
One column for each cube in the cover of the OFF set
Put a “1” in the matrix if the cube variable (row) != polarity of the var in 
the cube (column) of the OFF cover;  else “0”.   If don’t care, it’s a “0”

wx
yz

f = w’x’z’ + xz + x’yz’ + w’xyz’
f  = x’z + wxz’ + wy’z’ expand this cube

va
rs

in
 e

xp
an

d 
cu

be

cubes in f cover (may be a lot...)

1

1
1

1
1
1

11
1

0 0

0

0

0

0

0

00   01    11   10
00

01

11

10
x’z

wy’z’

wxz’

© R. Rutenbar 2001          CMU 18-760, Fall 2001   58

Just look at first row, where var = w’ in expand cube

Blocking matrix captures idea of which cubes of OFF set will BLOCK
you from raising the variable
It’s not just “if we raise this one w’ var we will hit this one OFF cube” but 
all the stuff in the OFF set you could hit if you raise other vars, too.

What “Blocking” MeansWhat “Blocking” Means

00

01

11

10

wx
yz

w’xyz’

va
rs

in
 e

xp
an

d 
cu

be

cubes in f’ cover

w’

x

y

z’

x’z      wxz’   wy’z’
110

1

1
1

1
1
1

11
1

0 0

0

0

0

0

0

00   01    11   10
wy’z’

wxz’



Page 30

© R. Rutenbar 2001          CMU 18-760, Fall 2001   59

Solving the Right Covering Problem HereSolving the Right Covering Problem Here
What “cover” do we want here?

va
rs

in
 e

xp
an

d 
cu

be

cubes in f’ cover

w’

x

y

z’

x’z      wxz’   wy’z’
2 solutions

wx
yz

1

1
1

1
1
1

11
1

0 0

0

0

0

0

0

00   01    11   10
00

01

11

10

110

001

100

001

© R. Rutenbar 2001          CMU 18-760, Fall 2001   60

Why the Blocking Matrix WorksWhy the Blocking Matrix Works
It guarantees no “expanded” parts of your cube get blocked

You pick rows -- vars -- to keep that cover the columns
So, variables you keep all mutually DO  NOT HIT any cubes in OFF set
When you AND these vars, the single product term -- bigger cube -- you 
get also DOES NOT HIT any of the cubes in OFF set

Solution is:
raise x, y
keep: w’z’
as bigger cube

wx
yz

1

1
1

1
1
1

11
1

0 0

0

0

0

0

0

00   01    11   10
00

01

11

10

va
rs

in
 e

xp
an

d 
cu

be

cubes in f’ cover

w’

x

y

z’

x’z      wxz’   wy’z’
110

001

100

001



Page 31

© R. Rutenbar 2001          CMU 18-760, Fall 2001   61

Solving the Covering Task on Blocking MatrixSolving the Covering Task on Blocking Matrix
Use fast, non-optimal heuristics

Need to do this quick, since you do it a lot--for every cube being 
expanded in the cover of function f inside expand()

Use simple, greedy heuristics...
...ie, at each step, pick the row with the most 1s in it, etc
Also, can use some simple essential / dominance rules like from Q-M

Gotta pick the row associated with a column with a single 1 in it
Can do simple row and col dominance tricks to reduce the size

What you DON’T do is aggressive search with backtracking--no time

© R. Rutenbar 2001          CMU 18-760, Fall 2001   62

ESPRESSO Ops:  ReduceESPRESSO Ops:  Reduce
Input

Cube list F that covers function f

Output
Cube list that covers f, with each implicant reduced--maybe not 
prime–so that no implicants overlap on any minterms

Strategy
for (each cube C in F, now from heavy to light) {

intersect C with the rest of the cover F
remove from C the minterms covered elsewhere
find the biggest cube that covers this “reduced C”
replace C with this reduced cube

}

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1 1 1

1

1
00     01     11     10

00

01

11

10

ab
cd

1

11

11

1
1

1 111 11



Page 32

© R. Rutenbar 2001          CMU 18-760, Fall 2001   63

ReductionReduction
Basic trick

Pick a cube, and remove it from your current cover of f...
...carefully intersect it with the complement of the rest of this cover
...minterms in this intersection are what you want to keep
...repeat on next cube

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1

1

11

1
1

1 1

11

11

1 1
1

1
00     01     11     10

00

01

11

10

ab
cd

1

1
1 1

1111

0
0

00     01     11     10
00

01

11

10

ab
cd

0

0
0 0

0
0

00     01     11     10
00

01

11

10

ab
cd

0

0
0 0

pick
a cube

look at
compl.

keep
intersection

result for
this cube 

repeat
for all 
other cubes

© R. Rutenbar 2001          CMU 18-760, Fall 2001   64

ESPRESSO Ops:  ReduceESPRESSO Ops:  Reduce
Basic strategy

Weight cubes like expand() does...
...but now process heavy to light

Heavy cube covers lots of minterms...
...so better chances for reduction of heavy cubes first

Process cubes one at a time, in this heavy-to-light order

What does Reduce do...?
Starts with a prime cover...
...and shrinks individual primes in it
You still get a cover of the function but it’s probably not prime anymore
Big idea: this is a good starting point to do expand again, 

to regrow cubes in a different direction



Page 33

© R. Rutenbar 2001          CMU 18-760, Fall 2001   65

ESPRESSO Ops:  IrredundantESPRESSO Ops:  Irredundant
Need a little terminology, again

Look at a little example  cover F = {cubes A, B, C, D, E}

Now, for a particular fixed cover...

000 001

011010

100 101

111110

a
b

c

11

1

1

11

Redundant cover

A
B

C

D
E

Relatively essential PIs = {A, E}
These cover minterms not covered
by another cube in this particular cover

Totally redundant PIs   = {}
These are cubes in F covered by
the relatively essential PIs -- nuke them

Partially redundant PIs = {B, C, D}
These are what’s left over of F

© R. Rutenbar 2001          CMU 18-760, Fall 2001   66

A E

ESPRESSO Ops:  IrredundantESPRESSO Ops:  Irredundant
Goal of irredundant() here is what??

Know we need to keep {A, E},   “relatively essential” in this cover
Which of {B,C,D} can we nuke and not uncover any minterms?

000 001

011010

100 101

111110

a
b

c

11

1

1

11

What’s covered by
partially redundant
PIs = {B,C,D}
(relatively essentials
unshaded for clarity)

B

C

D

What can we get rid of and not
uncover any minterms of f?

Expected answer:



Page 34

© R. Rutenbar 2001          CMU 18-760, Fall 2001   67

ESPRESSO Ops:  IrredundantESPRESSO Ops:  Irredundant
What irredundant does

It chooses which of these partially redundant PIs to get rid of to reduce 
the size of the cover

How ESPRESSO does NOT do it
Cube by cube, ie, like expand() and reduce(), which use cube weighting
You could go thru the cubes in order, and ask “can I get rid of this cube?  
is it covered by the rest of the cubes?”   
It works, but not too well

How ESPRESSO does it
Yet another covering problem
You get a matrix of 0s and 1s and you do a heuristic cover on it
Turns out this “more global” view of the problem, which looks at all the 
cubes simultaneously, gives much better answers 

© R. Rutenbar 2001          CMU 18-760, Fall 2001   68

How Well Does All This Work...?How Well Does All This Work...?
Fabulous  

Everybody uses ESPRESSO.  Really fast, really robust

Where does ESPRESSO spend its time?
Complement   14%   (big if there are lots of cubes in cover)
Expand 29%   (depends on of size of complement)
Irredundant 12%
Essentials 13%
Reduce 8%
Various optimizations 22%   (special case, “last gasp” optimizations)

How fast?
Usually does less than 5 expand-reduce-irredundant loop iterations; often 
converges in just 1-2 iterations.
Example result:  minimized SOP with 3172 terms, 23741 literals, in 
roughly 16 CPU seconds on a ~10 MIP machine (in 1984...)



Page 35

© R. Rutenbar 2001          CMU 18-760, Fall 2001   69

ESPRESSO:  Multiple Output FunctionsESPRESSO:  Multiple Output Functions
We’ve totally avoided one big point so far...

In real world, want to minimize a set of functions over same input
f1(x,y,z), f2(x,y,z), f3(x,y,z), ... fk(x,y,z)
Want to try to share product terms among these functions

000 001

011010

100 101

111110

a
b

11

1

1

000 001

011010

100 101

111110

11

f1(a,b,c)

c

f2(a,b,c)

1

© R. Rutenbar 2001          CMU 18-760, Fall 2001   70

Multiple Function MinimizationMultiple Function Minimization

000 001

011010

100 101

111110

a
b

11

1

11

000 001

011010

100 101

111110

11

f1(a,b,c)

c

f2(a,b,c)

1

Good solution has 
just 3 cubes, one of 
them shared 
between
f1 and f2

f1

f2

b’c’

ab’

bc

ab’



Page 36

© R. Rutenbar 2001          CMU 18-760, Fall 2001   71

ESPRESSO:  Multiple Function MinESPRESSO:  Multiple Function Min
Trick

Transform the multiple function problem into a single new function
Messy part:  it’s now a function with non-binary variables!
Called a multi-valued function

There are generalizions to handle this...
PCN, Shannon expansion, URP algorithms, unateness, etc, all can be 
generalized to apply to this case
All the old algorithms work, they just get a lot messier inside
This is the way ESPRESSO really handles multiple functions 
simultaneously
De Micheli has some stuff about this...
...but even he tends to avoid all the details

© R. Rutenbar 2001          CMU 18-760, Fall 2001   72

SummarySummary
Espresso does heuristic 2-level minimization

Avoids enumerating all PIs then doing a covering problem
Basic strategy is Reduce-Expand-Irredundant

Reduce:  take a prime cover and shrink each cube so no minterms
covered by more than 1 cube; done cube-by-cube
Expand:  take a cover and make all the cubes prime; used to reshape 
a cover after reducing it;  done cube-by-cube
Irredundant:  take a prime cover and get rid of big set of redundant 
cubes to make better cover;  not cube-by-cube, a covering problem

Repeat: Iteratively improve the cover...until can’t make it any better

How good is it?
Great, usually only a few cubes away from minimum
Fast, even for big things
It set the standard for 2-level minimization


