(Lec05) BDDs Applied: Finite State Machine Verific

\checkmark What you know

- Representations: Cube lists, BDDs
- Manipulations: URP attacks on cubes, implementation for BDDs
- Useful computations
\triangleright Are these 2 blocks of logic doing the same thing for all inputs?
\triangleright Build a BDD for each and see if they are identical

What you don't know

- Cool ways people apply BDDs out in real world
- Example: Verifying logic with any kind of time-varying behavior
- Important application: Finite State Machines
\triangleright I give you 2 different FSM implementations
\triangleright You tell me: are they behaviorally equivalent...
\triangleright...ie, for same input stream, will they make identical outputs?
- This is a whole new problem...

Copyright Notice

© Rob A. Rutenbar, 2001

All rights reserved.

You may not make copies of this material in any form without my express permission.

Where Are We?

- Something really new, made possible by BDDs: Formal Verif.

M	T	W	Th	F		
Aug 27	28	29	30	\|3		I
Sep 3	14	5	6	7	2	
10	\|II	12	13	14	3	
17	18	19	20	[2]	4	
24	125	26	27	28	5	
Oct 1	2	3	4	5	6	
8	9	10	II	12	7	
15	16	17	18	19	8	
22	23	24	25	26	9	
29	130	\|3]	I	2	10	
Nov 5	6	7	8	9	II	
12	113	14	15	16	12	
Thnxgive 19	120	21	22	23	13	
26	127	28	29	30	14	
Dec 3	4	5	6	7	15	
10	[1]	12	113	14	16	

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Handouts

\checkmark Physical

- This lecture -- Lec05 Formal Verification

V Electronic

- Project I (will be shortly...) on the web site. In projectl, we give you the skeleton of a BDD package in JAVA, and you get to complete it, and then try to apply it to a portfolio of common gate-level logic test/verification problems.
- HW2 is also (still out) on the web site. HW2 covers lectures 3, 4 (BDD basics and internals) but not lecture 5 (FSM verification).
\triangleright Some HW2 bug fixes will also appear shortly

Readings

\checkmark De Micheli

- Doesn't really do much on formal verification
- Bryant's Symbolic Analysis Paper from Comp Surveys
- Does a lot of this material...
- ...but it's very dense. Go thru the lecture, work thru all the algebra, go back and look at Bryant's paper.

Some Terminology

\checkmark Verification

- You give me a logic implementation of some design, and some specification you guarantee is correct
- I figure out -- somehow -- whether the implementation is correct

Strategy: Simulation

- Validate that the logic implementation works for all the inputs that you simulate
- Problem: it might NOT work for an input you DON'T simulate!

Strategy: Formal Verification

- Prove that there DOES NOT exist an input (or a sequence of inputs over time) that causes the logic to make a wrong answer
- Or, FIND an input that causes it to make a wrong answer

Formal Verification: Who Cares...?

Computer Stocks Tumble Over Chip Flaw

Sharas of emputer companies tumtied vesterdsy bresule of oer cern a bout a flaw in tse invel Carpe-
rathon's top-pl-the- Ind Pentium chis
A hough the flaw, which was it:
chosed lant week. aflesta orly corr
fien ma hematical calculations an:

Intel is โaulted for poor P.R. in its Pentium problem.

Erisiacior," rale john Lsion corputer analyat at Paine wecber in a repart
lotal astid 1 would not bexin alys.
ping se* chlpa whincet the flaw for
tlona diasater, and it puts latelt a enterressing ollumalion" said Eres

- Intel, for one...
- They simulated the divider a whole lot
- They still missed some inputs that made errors
- Result, the Pentium FDIV bug, lots of bad press, lots and lots of money lost
- Formal verification techniques are now capable of finding errors like these in complex designs

Flurry of Lawsuits Filed Against Intel Over Pentium Flaw

By Rucliard B. schmitt

RAR's Amazing (and Coincidental) Link to This..

Formal Verification: This Lecture

- Pick one significant problem: FSM verification

- Review finite state machines (from basic digital designs)
- Show why this is a hard problem
- Show a clever attack on the verification problem that exercises a lot of what you know about BDDs and their capabilities

New stuff here

- Dealing with temporal behavior: we want to know the FSM works for all patterns of inputs, over all future clock ticks
- Representing this temporal behavior using Boolean functions
- Reasoning about this behavior
- Turning the whole shebang into a sequence of symbolic computations you could do with \mathbf{C} code + a good BDD package

FSM Verification: Reminders

Vhat's in an FSM?

- States -- unique bit pattern represents each state; FFs store state
- External inputs: inputs from the outside world
- Next state logic: from current state and external inputs, this makes the inputs to the FFs that determine the next state at the next clock tick
- Output logic: from states (and maybe the inputs) makes combinational outputs for the FSM
- Clock: synchronizes everything; only states changes on clock tick

FSM Verification: What's the Problem?

- Several scenarios

- You have a "trusted" implementation of the machine that you know is correct (but maybe not optimal as hardware) and a "real" implementation as gates. Are they the same?
- You have an "old" implementation in one technology, and a "new" implementation in another technology (eg, a different tech library). Is old == new?

Why is this hard?

- Because of what "same" means here
- Has to do with behavior over time -- this temporal dependence is new for us...
- We need to be more precise

Equivalent FSMs

V Means this:

- Start them in some known "equivalent" states; clock starts running
- For every possible combination of inputs over future clock ticks, two machines will have identical outputs
- (Doesn't say anything about logic delays or low level stuff like that; just think about ideal clock ticks here...)

FSM Equivalence: Easy Case

- Sometimes this isn't too hard: special case
- Suppose 2 FSMs have identical state encodings: same \#bits, same unique bit pattern for each state, same kinds of FFs
\checkmark Then this reduces to combinational equiv. checking

FSM I

FSM 2

Combinational Equivalence Checking

\checkmark Reminder

- This is the easiest "formal verification" sort of problem
- You have 2 different implementations of the same function
- They have identical input and output variables
- Your task: determine if they give identical outputs over all possible inputs, or find a counterexample where the outputs differ
\checkmark Why is this easy?
- Build a BDD for each function. If they are identical, you get the identical same BDD pointer for each one.
- If not identical, build BDD for (function F) \oplus (function G) and find satisfying inputs for this new function. These inputs make F != G !
- Easy since it uses all the standard BDD stuff.
- No notion of time in here, no sequences of inputs over clock ticks

FSM Equivalence: Hard Case

VFSMs not always so easy to check. More general case:

- 4 states. 2 state variables p,q. I input x. I output z. D FFs.

FSM1 Implementation

- It looks like this...

FSM2: Same Behavior, Different Implementation

Vet's implement it as a 1-hot machine

- Now, 4 state variables: abcd; again D FFs, but now 4 of them

I hot example transition...

FSM 2 Implementation

V It looks like this

FSM Equivalance Checking

This is why it's hard

- Can't just look at the logic now and say "yeah, they're the same"
- Need a whole new, systematic method that deals with temporal aspect of things here, and the possible differences in encodings

FSM Formal Verification Strategy

v 4 Big Ideas

- Sets as Boolean functions

- Use BDDs to represent sets of things
- Symbolic representation of FSMs
- Represent them as sets of allowable transitions
\checkmark Reachability analysis
- Represents the sets of FSM states you can get to from the start state on 0 clock ticks, I clock tick, 2 ticks, etc.

- Cross-product FSMs

- Take 2 FSMs you want to compare for equivalence, and make I single new special machine, on which reachability analysis $==$ verification

1. Sets as Boolean Functions

- We already saw this idea on an early HW
- Suppose your objects in your sets are: abcdef
- Assume these are now Boolean vars; var = I means "an object in set"
- Represent set as function; value $=1$ for patterns that $==$ one obj in set
let $S=\{a, b, f\}$
abcdefs
0000000
0000011
0000110
0001000

0100001

1000001
IIOOOO
Since it's a Boolean function, we can also represent this as a BDD, even for very large sets

Sets as Boolean Functions

\BDD representation lets you do some neat stuff
\rightarrow Suppose $A(a, b, c, d, e, f), B(a, b, c, d, e, f)$ are sets represented as BDDs
What is A U B?

2. Symbolic Representation of FSMs

\checkmark Idea is to represent the set of all legal transitions

| Legal transitions | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FROM ON Input | TO | |
| OR. Rutenbar 2001, | CMU 18-760, Fall 2001 23 | |

Symbolic FSM Representation

- How do we do this
- First, what NOT to do: can't do it by enumerating all transitions and "adding logic" to represent each one
- A machine with 100 FFs + 10 inputs has approx. $1000 \cdot 2^{100}$ transitions!
- What do we want?
- A new Boolean function, called $\delta()$, the "transition relation"

- Let's look at some examples

Transition Relation Examples

- Look at FSM 1: it will be $\delta(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}+, \mathrm{q}+)$

Transition Relation Examples

- OK, now FSM 2: it will be: $\delta(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{a}+, \mathrm{b}+, \mathrm{c}+, \mathrm{d}+)$
$\delta(a=0, b=0, c=0, d=1, x=0, a+=0, b+=0, c+=0, d+=1)=$ $\delta(\mathrm{a}=\mathrm{l}, \mathrm{b}=0, \mathrm{c}=0, \mathrm{~d}=0, \mathrm{x}=0, \mathrm{a}+=0, \mathrm{~b}+=\mathrm{l}, \mathrm{c}+=0, \mathrm{~d}+=0)=$

State: $\mathbf{a b c d}=1000$ abcd=0100

Constructing the Transition Relation

∇ What do we want? a BDD for $\delta()$

- There is a great, simple trick here
- The next state logic is already most of the logic you need

About the Transition Relation

- Bryant reports that, as a BDD, it can be very big
- Much bigger than then next state logic itself, which is inside of it
- Various tricks to get around having the build the whole thing

V For us though, we'll just press on

- Knowing how to do this in the most straightforward, "frontal assault" is fine for now.

About the Transition Relation

V One subtlety: May be some "bogus" stuff in δ

- What happens if not all bit patterns are legal states?
- Will find also all the δ (illegal old state, input, illegal new state) too
- δ tells you everything about FSM. Ignores legal start state assumptions.

State: $\mathbf{a b c d}=1000$ abcd=0100

Legal $=1000,0100,0010,0001$
All others illegal

3. Reachability Analysis

Vhat's the idea?

- Build a Boolean function that represents all the FSM states you can reach in up to K clock ticks, starting from a known initial state at clock tick 0
- Sets called "reachability" sets: $\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{I}}, \mathbf{R}_{\mathbf{2}}, \ldots \mathbf{R}_{\mathrm{K}}$
- Example of what we expect to happen.

Reachability Analysis

VObservations

$-R_{k}$ is a function only of the state variables, since all you want to know is if the state bit pattern you input can be reached from the start state in not more than k clock ticks

$-R_{0}$ is easy to compute, since there is only I state in it, the assumed initial (reset) state for the FSM.

Assume A is initial state; then R_{0} for this $F S M=$

Reachability Analysis

The hard part: going from \mathbf{R}_{k} to $\mathrm{R}_{\mathrm{k}+1}$

- What do we know to start? Ex: FSM 1
- Transition relation: $\delta(p, q, x, p+, q+) \quad$ (we have a BDD for this)
$-R_{0}=R_{0}(p+, q+)=(p+)^{\bullet}\left(q^{+}\right)$(we have a BDD for this too)
∇ What do we want to do?
- Compute $\mathbf{R}_{1}\left(\mathbf{p}^{+}, q^{+}\right)$using \mathbf{R}_{0} and $\delta\left(p, q, x, p^{+}, q^{+}\right)$
- Then, compute $\mathbf{R}_{2}\left(p^{+}, q^{+}\right)$using $\mathbf{R}_{1}\left(p^{+}, q^{+}\right)$and $\delta\left(p, q, x, p^{+}, q^{+}\right)$
- Then $\mathbf{R}_{3}\left(\mathbf{p}^{+}, q^{+}\right)$from $\mathbf{R}_{2}\left(p^{+} q^{+}\right)$and $\delta(p, q, x, p+, q+)$...
-...keep going until $R_{k+1}=R_{k}$ for some k, and we are done
- Note: easy to tell if $\mathbf{R}_{\mathrm{k}}=\mathbf{R}_{\mathrm{k}+1}$ given BDDs!
\checkmark Called iterated reachability analysis

Iterated Reachability Analysis

V Mechanically, how?

- Need to look close at the structure of the \mathbf{R} sets
- Think about sets like Venn diagrams: what's inside what?
- If you know \mathbf{R}_{k}, what else is there to get to $\mathbf{R}_{\mathrm{k}+1} \ldots$?

Observation \#I

Iterated Reachability Analysis

Observation \#2

Iterated Reachability Analysis

- So, for FSM1 example we can write R_{k} like this:

$$
\mathbf{R}_{\mathrm{k}+1}\left(\mathrm{p}^{+}, \mathrm{q}^{+}\right)=\mathbf{R}_{\mathrm{k}}\left(\mathrm{p}^{+}, \mathrm{q}^{+}\right)+\mathbf{N E W T R A N}\left(\mathrm{p}^{+}, \mathrm{q}^{+}\right)
$$

Iterated Reachability Analysis

- Focus on the hard part here: what is "NEWTRAN" here
- Consider this function, made of pieces we know:

$$
\mathbf{R}_{k}(\mathbf{p}, \mathbf{q}) \cdot \delta\left(\mathbf{p}, \mathbf{q}, \mathbf{x}, \mathrm{p}^{+}, q^{+}\right)
$$

What conditions make this function $==I$?

Iterated Reachability Analysis

- OK, this guess is close, but...
- Why can't [$\mathbf{R}_{\mathrm{k}}(\mathrm{p}, \mathrm{q}) \cdot \delta\left(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}^{+}, \mathrm{q}^{+}\right)$] be the piece we want?
- It has to depend only on the variables $\mathrm{p}^{+}, \mathrm{q}^{+}$
- In other words, we want a function that $==1$ just for the new state patterns that are reachable in I transition from $\mathrm{R}_{\mathrm{k}} \cdots$
- ... we don't care from which exact state, or with which input

Iterated Reachability Analysis

V Quantification to the rescue!

- (Another reason we keep hammering this elusive yet powerful idea...)
- Say in English what we want:

Iterated Reachability Analysis

- OK, now say it precisely, mathematically

Iterated Reachability Analysis

- General solution for FSM 1
$\mathbf{R}_{k^{+}}\left(p^{+}, q^{+}\right)=\mathbf{R}_{k}\left(p^{+}, q^{+}\right)+\left\{(\exists p, q, x)\left[R_{k}(p, q) \cdot \delta\left(p, q, x, p^{+}, q^{+}\right)\right]\right\}\left(p^{+}, q^{+}\right)$
- In general...
R_{k+1} (next state vars) $=$
\mathbf{R}_{k} (next state vars)
$+\left\{\right.$ (\exists current state, inputs) [$R_{k}($ current state vars) \cdot
δ (current state, inputs, next state)] \}

Iterated Reachability Analysis: BDD Subtlety

Look close at R_{k} functions
$\mathbf{R}_{k+1}\left(p^{+}, q^{+}\right)=\mathbf{R}_{k}\left(p^{+}, q^{+}\right)+\left\{(\exists \mathrm{p}, \mathrm{q}, \mathrm{x})\left[\mathbf{R}_{k}(\mathrm{p}, \mathrm{q}) \cdot \delta\left(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}^{+}, \mathrm{q}^{+}\right)\right]\right\}\left(\mathrm{p}^{+}, q^{+}\right)$
This is the same function $R_{k}()$, but with 2 different sets of input variables

When you make the BDDs, you get 2 separate BDDs here, one representing $R_{k}\left(p^{+}, q^{+}\right)$, and the other representing $R_{k}(p, q)$

You can do this kind of thing with the "composition" op from the homework

Iterated Reachability Analysis

- Randy Bryant suggests we draw it like this...
- Actually think about it again like a big piece of hardware

Iterated Reachability: Example FSM1

- What's $\delta(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}+, \mathrm{q}+)$?
\square
- What's R_{0} ? Assume start state is A
\square

Example: FSM1

D Do the messy quantification part of the eqn

$$
\mathbf{R}_{1}\left(\mathbf{p}^{+}, q^{+}\right)=\mathbf{R}_{0}\left(\mathbf{p}^{+}, q^{+}\right)+\left\{(\exists \mathrm{p}, \mathrm{q}, \mathrm{x})\left[\mathbf{R}_{0}(\mathrm{p}, \mathrm{q}) \cdot \delta\left(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}^{+}, \mathrm{q}^{+}\right)\right]\right\}
$$

$(\exists \mathrm{p}, \mathrm{q}, \mathrm{x})\left[\mathbf{R}_{0}(\mathrm{p}, \mathrm{q}) \cdot \delta\left(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{p}+\mathrm{q}^{+}\right)\right]=\mathrm{OR}$ all 8 of these

Example: FSM1

\checkmark So, it works!

- Result is $R_{1}\left(p^{+}, q^{+}\right)=\left(p^{+} \cdot q^{+}\right)+\left(p^{+} \cdot q^{+}\right)+\left(p^{+} \cdot q^{+}\right)$

- If you do it again, and compute R_{2}, will find $==1$ (do it!). Why?
- Also find all subsequent R's $==\mathbf{R}_{\mathbf{2}}$. Why?

4. Cross Product Machine

Where are we?

- We can compute a Boolean function (represented as a BDD) that tells us all states in the FSM reachable in at most K ticks of the clock
- Can do this mechanically using BDDs, and the next state logic
- Where do we want to be?
- Given 2 different FSMs, can we tell if they are equivalent
∇ Now what?
- Make a new FSM that combines the 2 FSMs we which to check for equivalence....
- ...and we do the construction so that reachability analysis gives us the verification that we want.
- Construction == cross-product machine

Cross Product Machine

- Given 2 FSMs to check...
- Just FSMI, FSM2, with FSM2's states given new names...

$p q=10 \quad p q=1 I$

abcd $=0010$ abcd=0001

Cross Product Machine: FSM1 \times FSM2

- What are the states in FSM1 \times FSM2? ($\times==$ "cross")
- All pairs of possible states (FSMI state, FSM2 state)

FSMI \times FSM2 has $4 * 4=16$ states

Cross Product Machine: FSM1 \times FSM2

- What are the state variables for FSM1 \times FSM2
- Easy, just "all" the state vars from FSMI and from FSM2

Cross Product Machine: FSM1 × FSM2

\checkmark So, what then is the next-state logic for FSM1 \times FSM2?

- Easy again: just the 2 separate next-state blocks from FSMI, FSM2

Cross Product Machine: FSM1 × FSM2

Vo, what is the output logic for FSM1 \times FSM2

- Now, it's different.
- The cross-product machine is really (up to now) just the 2 separate machines FSMI and FSM2 running side-by-side
- What we really want to know is, if we start them both in the same "equivalent" state, will we ever reach a "combined" state (FSMI state vars, FSM2 state vars) where the outputs of the $\mathbf{2}$ machines are actually different

Cross Product Machine: FSM1 × FSM2

V So, what is the output logic for FSM1 \times FSM2?

Cross Product Machine Reachability Analysis

- Where are we?
- We can build, mechanically, the cross product machine
- What good is this?
- FSMI and FSM2 are equivalent if, when started in the same initial "equivalent" states, it is NEVER POSSIBLE to reach a state where the output of the cross product machine $==0$
- Put another way: output of cross product machine should always be == I, for any combined state (FSMI state, FSM2 state) we can reach from (FSMI start, FSM2 start)
\checkmark How do we do this?
- We already know how...

Cross Product Reachability Analysis

\checkmark Build the cross product machine

- Means build the next state logic, and the output logic for it
\checkmark Do reachability analysis on [FSM1 \times FSM2]
- In our little example, start with $A=00, A^{\prime}=1000$ states:
\square
- Build $\mathbf{R}_{1}, \mathbf{R}_{2}, \ldots \mathbf{R}_{\mathrm{K}}$ until it stops changing
- At this point, you know pairs of states it is possible to reach from (A, A^{\prime}) start state...

Cross Product Reachability Analysis

- What does this tell you?
- Pairs of states you can get to from (A, A')
- Example

Example: 2 ticks, A->B->D

abcd $=0010 \quad$ abcd $=0001$
Example: 2 ticks, $A^{\prime}->B^{\prime}->B^{\prime}$

So, in R_{0} we have (A, A^{\prime}), and in R_{2} we will have...

Verification via Reachability

, OK, we can build R $_{\mathrm{k}}$ for this FSM1 \times FSM2
\checkmark Now what?

- Want to know if we can reach a combined state where cross-product output $==0$; consider this logic...

Verification via Reachability

Look what happens

- Build a BDD for this ckt; it has $\mathbf{6}$ inputs $p+q+a+b+c+d+$, has I output
- If the 2 FSMs are equivalent, then this output $==$ constant 0 BDD
- If these 2 FSMs NOT equivalent, this is some BDD with a I node in it
- All we have to do is see if this BDD != constant 0 BDD, and we are done!

Verification via Reachability

∇ What did we do here?

- We turned the complex temporal problem of verification of equivalence for all inputs over all subsequent clock ticks...
- ...into a series of BDD exercises, ending in a satisfiability check on a single (big, nasty) BDD; if any pattern of inputs makes this BDD $==1$, then machines not equivalent

\ Amazingly cool result

- Doable mechanically with a good BDD package
- Definitely NOT something you want to try to do by hand.
- On the HW, you get to do it for a similar pair of machines using the KBDD package to do the nasty Boolean manipulations

Simpler Example

Next state:

$$
\mathrm{p}^{+}=\mathrm{p}+\mathrm{x}
$$

Output

$z=p$

Next state:

$$
\mathbf{q}^{+}=\mathbf{q} \oplus \mathbf{x}
$$

Output
$z=q$

Simple Example: Cross Product Reachability

- What do we expect for reachability on FSM1 X FSM2?

$$
\begin{aligned}
& R 0=\{(A, C)\} \\
& R I=\text { reachable on } 0 \text { or } I \text { clock tick }= \\
& R 2=\text { reachable on } 0, I, 2 \text { clock ticks }= \\
& R 3=\text { reachable on } 0, I, 2,3 \text { clock ticks = }
\end{aligned}
$$

Cross Product Reachability Analysis

∇ So, we get $R_{k}=\{A C, B D, B C\}$... what is Boolean func?

- OK, let's make the cross product satisfiability logic

Cross Product Reachability: Satisfiable?

- Well, can you get a 1 out of this...?

Cross Product Reachability: Satisfiable?

\checkmark Aha!

- Pattern $\mathrm{p}=\mathrm{I} \mathrm{q}=0$ satisfies this BDD, makes it $==1$
- Since you can get a I here, FSMs NOT equivalent
- What does $\mathrm{p}=\mathrm{I} \mathrm{q}=0$ signify here?

State $p=0 \quad p=1$

Summary

V FSM verification is important, but different

- Have to worry about time, about equivalent outputs over all possible future inputs
- Not just simple block-to-block combinational equivalence
\checkmark Big ideas
- Symbolic representation of FSMs -- transition relation
- Reachability analysis
- Cross product machine with "special" satisfiability output
- Transforms the temporal problem into another series of do-able BDD exercises

Hugely important application of BDD analysis out in the real world these days...

