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(Lec05) BDDs Applied: Finite State Machine Verific(Lec05) BDDs Applied: Finite State Machine Verific

What you know
Representations:  Cube lists, BDDs

Manipulations:  URP attacks on cubes,  implementation for BDDs

Useful computations

Are these 2 blocks of logic doing the same thing for all inputs?

Build a BDD for each and see if they are identical

What you don’t know
Cool ways people apply BDDs out in real world

Example:  Verifying logic with any kind of time-varying behavior

Important application:  Finite State Machines

I give you 2 different FSM implementations

You tell me:  are they behaviorally equivalent...

...ie, for same input stream, will they make identical outputs?

This is a whole new problem...
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Where Are We?Where Are We?

Something really new, made possible by BDDs:   Formal Verif.
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HandoutsHandouts

Physical
This lecture -- Lec05 Formal Verification

Electronic
Project 1 (will be shortly…) on the web site.  In project1, we give you the 
skeleton of a BDD package in JAVA, and you get to complete it, and 
then try to apply it to a portfolio of common gate-level logic 
test/verification problems.

HW2 is also (still out) on the web site.  HW2 covers lectures 3, 4 (BDD 
basics and internals) but not lecture 5 (FSM verification).

Some HW2 bug fixes will also appear shortly
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ReadingsReadings

De Micheli
Doesn’t really do much on formal verification

Bryant’s Symbolic Analysis Paper from Comp Surveys
Does a lot of this material...

...but it’s very dense.  Go thru the lecture, work thru all the algebra, go 
back and look at Bryant’s paper.
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Some TerminologySome Terminology

Verification
You give me a logic implementation of some design, and some 
specification you guarantee is correct

I figure out -- somehow -- whether the implementation is correct

Strategy:  Simulation  
Validate that the logic implementation works for all the inputs that you 
simulate

Problem:  it might NOT work for an input you DON’T simulate!

Strategy:  Formal Verification
Prove that there DOES NOT exist an input (or a sequence of inputs 
over time) that causes the logic to make a wrong answer

Or, FIND an input that causes it to make a wrong answer



Page 4

© R. Rutenbar 2001,                  CMU 18-760, Fall 2001   7

Formal Verification:  Who Cares...?Formal Verification:  Who Cares...?

Intel, for one...
They simulated the divider a whole lot

They still missed some inputs that made errors

Result, the Pentium FDIV bug, lots of bad press,
lots and lots of money lost

Formal verification techniques are now capable
of finding errors like these in complex designs
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RAR’s Amazing (and Coincidental) Link to This..RAR’s Amazing (and Coincidental) Link to This..

Dan Atkins:
Grad student at
U Illinois publishes
paper in IEEE Trans.
Computers on how
to do this division alg.

In 1972 becomes Prof
at U Michigan, and
later Dean of Engineering.
His last Phd student:  Rob Rutenbar

1969 1994

Intel FDIV Bug:
Intel, in a mistaken
attempt to save Si
area on a Pentium,
over-simplifies a crucial
piece of logic in Atkins’
High-Radix Quotient-digit algorithm.
Result:  “the Pentium bug”

19841972
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Formal Verification:  This LectureFormal Verification:  This Lecture

Pick one significant problem: FSM verification
Review finite state machines (from basic digital designs)

Show why this is a hard problem

Show a clever attack on the verification problem that exercises a lot of 
what you know about BDDs and their capabilities

New stuff here
Dealing with temporal behavior:  we want to know the FSM works for 
all patterns of inputs, over all future clock ticks

Representing this temporal behavior using Boolean functions

Reasoning about this behavior

Turning the whole shebang into a sequence of symbolic computations 
you could do with C code + a good BDD package
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FSM Verification:  RemindersFSM Verification:  Reminders

What’s in an FSM?
States -- unique bit pattern represents each state; FFs store state

External inputs:   inputs from the outside world

Next state logic:  from current state and external inputs, this makes the 
inputs to the FFs that determine the next state at the next clock tick

Output logic:  from states (and maybe the inputs) makes combinational 
outputs for the FSM

Clock:  synchronizes everything; only states changes on clock tick 

Next State
Logic

Output Logic

D Q
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FSM Verification: What’s the Problem?FSM Verification: What’s the Problem?

Several scenarios
You have a “trusted” implementation of the machine that you know is 
correct (but maybe not optimal as hardware) and a “real” 
implementation as gates.  Are they the same?

You have an “old” implementation in one technology, and a “new” 
implementation in another technology (eg, a different tech library). Is 
old == new?

Why is this hard?
Because of what “same” means here

Has to do with behavior over time -- this temporal dependence is new 
for us...

We need to be more precise
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Equivalent FSMsEquivalent FSMs

Means this:
Start them in some known “equivalent” states; clock starts running

For every possible combination of inputs over future clock ticks, two 
machines will have identical outputs

(Doesn’t say anything about logic delays or low level stuff like that; just 
think about ideal clock ticks here...)

FSM 1 FSM 2

Next State
Logic

Output Logic

D Q
Next State

Logic

Output Logic

D Q
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FSM Equivalence: Easy CaseFSM Equivalence: Easy Case

Sometimes this isn’t too hard:  special case
Suppose 2 FSMs have identical state encodings: same #bits, same unique 
bit pattern for each state, same kinds of FFs

Then this reduces to combinational equiv. checking

FSM 1 FSM 2

Next State
Logic

Output Logic

D Q
Next State

Logic

Output Logic

D Q
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Combinational Equivalence CheckingCombinational Equivalence Checking

Reminder
This is the easiest “formal verification” sort of problem

You have 2 different implementations of the same function

They have identical input and output variables

Your task:  determine if they give identical outputs over all possible 
inputs, or find a counterexample where the outputs differ

Why is this easy?
Build a BDD for each function.  If they are identical, you get the 
identical same BDD pointer for each one.

If not identical, build BDD for  (function F) ⊕ (function G) and find 
satisfying inputs for this new function.  These inputs make F != G!

Easy since it uses all the standard BDD stuff.

No notion of time in here, no sequences of inputs over clock ticks
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FSM Equivalence:  Hard CaseFSM Equivalence:  Hard Case
FSMs not always so easy to check.  More general case:

4 states.  2 state variables p,q.   1 input x.  1 output z.  D FFs.

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

Input    PS  NS
x pq  p+q+
0       0 0

0 1
1 0
1 1

1       0 0
0 1
1 0
1 1

pq
x 00    01   11    10

0

1

pq
x 00    01   11    10

0

1

p+  (= D input on p FF) q+  (= D input on q FF)

p
q 0     1

0

1
z
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FSM1 ImplementationFSM1 Implementation

It looks like this...

D Q

D Q

Next State Logic

Output Logic

State Logic
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FSM2:  Same Behavior, Different ImplementationFSM2:  Same Behavior, Different Implementation

Let’s implement it as a 1-hot machine
Now, 4 state variables: abcd;  again D FFs, but now 4 of them

A/0 B/0

C/0

State: abcd=1000 abcd=0100

abcd = 0010

D/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1

Can just read off the NS logic

1 hot example transition...
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FSM 2 ImplementationFSM 2 Implementation

It looks like this

D Q

D Q

Next State Logic

Output Logic

State Logic

D Q

D Q
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FSM Equivalance CheckingFSM Equivalance Checking

This is why it’s hard
Can’t just look at the logic now and say “yeah, they’re the same”

Need a whole new, systematic method that deals with temporal aspect 
of things here, and the possible differences in encodings

Next State Logic
a+ = d

b+ = ax’ + bx’
c+ = ax + c

d+ = bx

Output Logic
z = d

FSM 2 Logic

Next State Logic
p+ = pq’ + p’x
q+ = p’q + p’x’

Output Logic
z = pq

FSM 1 Logic

p
q

z

p+
q+

z

a+
b+
c+
d+

a
b
c
d

x

x
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FSM Formal Verification StrategyFSM Formal Verification Strategy

4 Big Ideas

Sets as Boolean functions
Use BDDs to represent sets of things

Symbolic representation of FSMs
Represent them as sets of allowable transitions

Reachability analysis
Represents the sets of FSM states you can get to from the start state on 
0 clock ticks, 1 clock tick, 2 ticks, etc.

Cross-product FSMs
Take 2 FSMs you want to compare for equivalence, and make 1 single 
new special machine, on which reachability analysis == verification
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1.  Sets as Boolean Functions1.  Sets as Boolean Functions

We already saw this idea on an early HW
Suppose your objects in your sets are:  a b c d e f 

Assume these are now  Boolean vars; var = 1 means “an object in set”

Represent set as function;  value = 1 for patterns that == one obj in set

a b c d e  f  S
0 0 0 0 0 0  0
0 0 0 0 0 1  1
0 0 0 0 1 1  0
0 0 0 1 0 0  0
.
0 1 0 0 0 0  1
.
1 0 0 0 0 0  1
1 1 0 0 0 0  0
.
.
.

let S = {a, b, f}

Since it’s a Boolean function,
we can also represent this as
a BDD, even for very large sets
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Sets as Boolean FunctionsSets as Boolean Functions

BDD representation lets you do some neat stuff
Suppose A(a,b,c,d,e,f), B(a,b,c,d,e,f) are sets represented as BDDs

What is A U B? What is A ∩ B?

Is A       B? Is A the empty set? 
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2. Symbolic Representation of FSMs2. Symbolic Representation of FSMs

Idea is to represent the set of all legal transitions

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=0,1

x=1x=0,1

Legal transitions

FROM     ON Input      TO
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Symbolic FSM RepresentationSymbolic FSM Representation

How do we do this
First, what NOT to do:   can’t do it by enumerating all transitions and 
“adding logic” to represent each one

A machine with 100 FFs + 10 inputs has approx. 1000 • 2100 transitions!

What do we want?
A new Boolean function, called δ( ), the “transition relation”

Let’s look at some examples

δ( state vars for current state,  
input vars,                                  =
state vars for next state)            

0  if transition not legal

1 if transition is legal
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Transition Relation ExamplesTransition Relation Examples

Look at FSM 1:  it will be δ(p, q, x, p+, q+)

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

δ(p=0, q=0, x=0, p+=0, q+=1) =

δ(p=0, q=0, x=1, p+=1, q+=0) =

δ(p=1, q=1, x=1, p+=1, q+=1) =

δ(p=0, q=1, x=1, p+=0, q+=1) =
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Transition Relation ExamplesTransition Relation Examples

OK, now FSM 2:  it will be:  δ(a,b,c,d,x,a+,b+,c+,d+)

δ(a=0, b=0, c=0, d=1, x=0, a+=0, b+=0, c+=0, d+=1) =

δ(a=1, b=0, c=0, d=0, x=0, a+=0, b+=1, c+=0, d+=0) =

A/0 B/0

C/0

State: abcd=1000 abcd=0100

abcd = 0010

D/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1
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Constructing the Transition RelationConstructing the Transition Relation

What do we want?    a BDD for δ( )
There is a great, simple trick here

The next state logic is already most of the logic you need

FSM 1
Next State Logic

“Logic” for δ(p, q, x, p+, q+)

p+

q+

p

q

x

p+ = next p

q+ = next q

δ(p, q, x, p+, q+)
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About the Transition RelationAbout the Transition Relation

Bryant reports that, as a BDD, it can be very big
Much bigger than then next state logic itself, which is inside of it

Various tricks to get around having the build the whole thing

For us though, we’ll just press on
Knowing how to do this in the most straightforward, “frontal assault” is 
fine for now.
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About the Transition RelationAbout the Transition Relation

One subtlety:  May be some “bogus” stuff in δ
What happens if not all bit patterns are legal states?

Will find also all the δ( illegal old state,  input,  illegal new state) too

δ tells you everything about FSM.  Ignores legal start state assumptions.

A/0 B/0

C/0

State: abcd=1000 abcd=0100

abcd = 0010

D/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1

Legal = 1000, 0100, 0010, 0001
All others illegal

Next State Logic
a+ = d

b+ = ax’ + bx’
c+ = ax + c

d+ = bx

Output Logic
z = d

FSM 2 Logic

z

a+
b+
c+
d+

a
b
c
d

x
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3. Reachability Analysis3. Reachability Analysis
What’s the idea?

Build a Boolean function that represents all the FSM states you can 
reach in up to K clock ticks, starting from a known initial state at clock 
tick 0

Sets called “reachability” sets: R0, R1, R2, ... RK

Example of what we expect to happen.

A/0 B/0

C/0 D/1

x=0

x=1

x=0

x=0,1

x=1x=0,1

R0 = fixed initial state = { A }

R1 = states you can reach on 0 or 1 tick
= {                  }

R2 = states you can reach on 0, 1, or 2 ticks
= {                  }

R3 = states you can reach on 0,1,2 or 3 ticks
= {                  }

R4 = 0,1,2,3 or 4 ticks = {              }  =
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Reachability AnalysisReachability Analysis

Observations
Rk is a function only of the state variables, since all you want to know is if 
the state bit pattern you input can be reached from the start state in 
not more than k clock ticks

R0 is easy to compute, since there is only 1 state in it, the assumed initial 
(reset) state for the FSM.  

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

Reachability functions

Assume A is initial state;  then R0 for this FSM =
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Reachability AnalysisReachability Analysis

The hard part:  going from Rk to Rk+1

What do we know to start?  Ex: FSM 1
Transition relation:  δ(p, q, x, p+, q+)   (we have a BDD for this)

R0 = R0 (p+, q+) = (p+’ )• (q+’)  (we have a BDD for this too)

What do we want to do?
Compute R1(p+, q+) using R0 and δ(p,q,x,p+,q+)

Then, compute R2(p+, q+) using R1(p+, q+) and δ(p,q,x,p+,q+)

Then R3(p+, q+) from R2(p+q+) and δ(p,q,x,p+,q+) ...

...keep going until Rk+1 = Rk for some k, and we are done

Note:  easy to tell if Rk = Rk+1 given BDDs!

Called iterated reachability analysis
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Iterated Reachability AnalysisIterated Reachability Analysis

Mechanically, how?
Need to look close at the structure of the R sets

Think about sets like Venn diagrams:  what’s inside what?

If you know Rk, what else is there to get to R k+1...?

Rk

Rk+1

Observation #1
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Iterated Reachability AnalysisIterated Reachability Analysis

Observation #2

Rk

Rk+1
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Iterated Reachability AnalysisIterated Reachability Analysis

So, for FSM1 example we can write Rk like this:

Rk

Rk+1

S T

input x

R k+1(p+, q+) = Rk(p+, q+) +  NEWTRAN(p+, q+)
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Iterated Reachability AnalysisIterated Reachability Analysis

Focus on the hard part here: what is “NEWTRAN” here
Consider this function, made of pieces we know:

R k+1(p+, q+) = Rk(p+, q+) +  NEWTRAN(p+, q+)

Rk

Rk+1

S T

input x

Rk(p, q) •  δ(p, q, x, p+, q+)

What conditions make this function == 1?
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Iterated Reachability AnalysisIterated Reachability Analysis

OK, this guess is close, but...
Why can’t [ Rk(p, q) •  δ(p, q, x, p+, q+) ] be the piece we want?

It has to depend only on the variables p+, q+

In other words, we want a function that  == 1 just for the new state 
patterns that are reachable in 1 transition from Rk...

... we don’t care from which exact state, or with which input

R k+1(p+, q+) = Rk(p+, q+) + [ Rk(p, q) •  δ(p, q, x, p+, q+) ]

Rk

Rk+1

S T

input x
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Iterated Reachability AnalysisIterated Reachability Analysis

Quantification to the rescue!
(Another reason we keep hammering this elusive yet powerful idea...)

Say in English what we want:

[ Rk(p, q) •  δ(p, q, x, p+, q+) ]

Rk

Rk+1

S T

input x
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Iterated Reachability AnalysisIterated Reachability Analysis

OK, now say it precisely, mathematically

[ Rk(p, q) •  δ(p, q, x, p+, q+) ]

Rk

Rk+1

S T

input x
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Iterated Reachability AnalysisIterated Reachability Analysis

General solution for FSM 1

In general...

Rk+1(p+, q+) = Rk(p+, q+) + {(∃ p,q,x) [ Rk(p, q) • δ(p, q, x, p+, q+) ]}(p+,q+)

R k+1(next state vars) =

Rk(next state vars) 

+ { (∃ current state, inputs) [ Rk(current state vars) •  

                                                             δ(current state, inputs, next state) ] }
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Iterated Reachability Analysis: BDD SubtletyIterated Reachability Analysis: BDD Subtlety

Look close at Rk functions

Rk+1(p+, q+) = Rk(p+, q+) + {(∃ p,q,x) [ Rk(p, q) • δ(p, q, x, p+, q+) ]}(p+,q+)

This is the same function Rk( ), but
with 2 different sets of input variables

When you make the BDDs, you get 2
separate BDDs here, one representing
Rk(p+, q+) , and the other representing Rk(p, q) 

You can do this kind of thing with the
“composition” op from the homework
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Iterated Reachability AnalysisIterated Reachability Analysis

Randy Bryant suggests we draw it like this...
Actually think about it again like a big piece of hardware

Rk

Rk

δ

Rk+1

current state

state

current state

input

next state

state
pattern

∃
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Iterated Reachability:  Example FSM1Iterated Reachability:  Example FSM1

What’s δ(p,q,x,p+,q+)?

What’s R0?  Assume start state is A

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

Next State Logic

Output Logic
z = pq

FSM 1 Logic

p
q

z

p+
q+

x
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Example: FSM1Example: FSM1

Do the messy quantification part of the eqn

R 1(p+, q+) = R0(p+, q+) + { (∃ p,q,x) [ R0(p, q) •  δ(p, q, x, p+, q+) ] }

p q x      [p’ q’] • [p+  ⊕ (pq’ + p’x) ] • [q+ ⊕ (p’q + p’x’) ]

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

(∃ p,q,x) [ R0(p, q) •  δ(p, q, x, p+, q+) ] = OR all 8 of these

==

co
fa

ct
o

rs
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Example: FSM1Example: FSM1

So, it works!
Result is  R1(p+, q+) = (p+’ • q+’) + (p+’ • q+) + (p+ • q+’)

If you do it again, and compute R2, will find == 1 (do it!).  Why?

Also find all subsequent R’s == R2.   Why?

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1
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4. Cross Product Machine4. Cross Product Machine

Where are we?
We can compute a Boolean function (represented as a BDD) that tells 
us all states in the FSM reachable in at most K ticks of the clock

Can do this mechanically using BDDs, and the next state logic

Where do we want to be?
Given 2 different FSMs, can we tell if they are equivalent

Now what?
Make a new FSM that combines the 2 FSMs we which to check for 
equivalence....

...and we do the construction so that reachability analysis gives us the 
verification that we want.

Construction == cross-product machine
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Cross Product MachineCross Product Machine

Given 2 FSMs to check...
Just FSM1, FSM2, with FSM2’s states given new names...

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

Next State Logic

Output Logic
z = pq

FSM 1 Logic

p
q

z

p+
q+

x

A’/0 B’/0

C’/0

State: abcd=1000 abcd=0100

abcd = 0010

D’/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1

Next State Logic
a+ = d

b+ = ax’ + bx’
c+ = ax + c

d+ = bx

Output Logic
z = d

FSM 2 Logic

z

a+
b+
c+
d+

a
b
c
d

x
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Cross Product Machine: FSM1 × FSM2Cross Product Machine: FSM1 × FSM2

What are the states in FSM1 × FSM2?  (× == “cross”)
All pairs of possible states (FSM1 state, FSM2 state)

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

A’/0 B’/0

C’/0

State: abcd=1000 abcd=0100

abcd = 0010

D’/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1

FSM1 × FSM2 has 4*4=16 states
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Cross Product Machine: FSM1 × FSM2Cross Product Machine: FSM1 × FSM2

What are the state variables for FSM1 × FSM2
Easy, just “all” the state vars from FSM1 and from FSM2

D Q

D Q

Next State Logic

???

Output Logic

???

State Logic

D Q

D Q

D Q

D Q

p

q

a

b

c

d
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Cross Product Machine: FSM1 × FSM2Cross Product Machine: FSM1 × FSM2

So, what then is the next-state logic for FSM1 × FSM2?
Easy again: just the 2 separate next-state blocks from FSM1, FSM2

D Q

D Q

Next State Logic

Output Logic

???

State Logic

D Q

D Q

D Q

D Q

p

q

a

b

c

d

FSM1 Next State
Logic

FSM2 Next State
Logic
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Cross Product Machine: FSM1 × FSM2Cross Product Machine: FSM1 × FSM2

So, what is the output logic for FSM1 × FSM2
Now, it’s different.

The cross-product machine is really (up to now) just the 2 separate 
machines FSM1 and FSM2 running side-by-side

What we really want to know is, if we start them both in the same
“equivalent” state, will we ever reach a “combined” state
(FSM1 state vars, FSM2 state vars) where the outputs of the 2 machines 
are actually different

FSM 1

FSM 2

inputs

clock

== ?

FSM1 outputs

FSM2 outputs

Should always
be == 1 if
FSM1 = FSM2
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Cross Product Machine: FSM1 × FSM2Cross Product Machine: FSM1 × FSM2

So, what is the output logic for FSM1 × FSM2?

D Q

D Q

Next State Logic

Output Logic

State Logic

D Q

D Q

D Q

D Q

p

q

a

b

c

d

FSM1 Next State
Logic

FSM2 Next State
Logic

FSM1 Output Logic

FSM2 Output Logic
=?
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Cross Product Machine Reachability AnalysisCross Product Machine Reachability Analysis

Where are we?
We can build, mechanically, the cross product machine

What good is this?
FSM1 and FSM2 are equivalent if, when started in the same initial 
“equivalent” states, it is NEVER POSSIBLE to reach a state where the 
output of the cross product machine == 0

Put another way:  output of cross product machine should always be 
==1, for any combined state (FSM1 state, FSM2 state) we can reach 
from (FSM1 start, FSM2 start)

How do we do this?
We already know how...
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Cross Product Reachability AnalysisCross Product Reachability Analysis

Build the cross product machine
Means build the next state logic, and the output logic for it

Do reachability analysis on  [ FSM1 × FSM2 ]
In our little example, start with A=00,  A’ = 1000 states:

R0(p+,q+,a+,b+,c+,d+) = (p+’ )(q+’)( a+)(b+’)(c+’){d+’) 

Build R1, R2, ... RK until it stops changing

At this point, you know pairs of states it is possible to reach from (A, A’) 
start state...



Page 28

© R. Rutenbar 2001,                  CMU 18-760, Fall 2001   55

Cross Product Reachability AnalysisCross Product Reachability Analysis

What does this tell you?
Pairs of states you can get to from (A, A’)

Example

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

A’/0 B’/0

C’/0

State: abcd=1000 abcd=0100

abcd = 0010

D’/1

abcd=0001

x=0

x=1

x=0

x=0,1

x=1x=0,1

Example: 2 ticks, A->B->D Example: 2 ticks, A’->B’->B’

So, in R0 we have (A, A’), and in R2 we will have...
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Verification via ReachabilityVerification via Reachability

OK, we can build Rk for this FSM1 × FSM2

Now what?
Want to know if we can reach a combined state where cross-product 
output ==0;  consider this logic...

Output Logic

FSM1 Output Logic

FSM2 Output Logic
=?

Rk

p+
q+

a+
b+
c+
d+

==1 if  (p+ q+, a+ b+ c+ d+) 
is a reachable pair

==1 if output from p+ q+
same as output from 
a+ b+ c+ d+

final
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Verification via ReachabilityVerification via Reachability

Look what happens
Build a BDD for this ckt;  it has 6 inputs p+ q+ a+ b+ c+ d+,  has 1 output

If the 2 FSMs are equivalent, then this output == constant 0 BDD

If these 2 FSMs NOT equivalent, this is some  BDD with a 1 node in it

All we have to do is see if this BDD != constant 0 BDD, and we are done!

Output Logic

FSM1 Output Logic

FSM2 Output Logic
=?

Rk

p+
q+

a+
b+
c+
d+

==1 if  (p+ q+, a+ b+ c+ d+) 
       is a reachable pair

==1 if output from p+ q+
same as output from 
a+ b+ c+ d+

final
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Verification via ReachabilityVerification via Reachability

What did we do here?
We turned the complex temporal problem of verification of equivalence 
for all inputs over all subsequent clock ticks...

...into a series of BDD exercises, ending in a satisfiability check on a 
single (big, nasty) BDD;  if any pattern of inputs makes this BDD ==1, 
then machines not equivalent

Amazingly cool result
Doable mechanically with a good BDD package

Definitely NOT something you want to try to do by hand.

On the HW, you get to do it for a similar pair of machines using the 
KBDD package to do the nasty Boolean  manipulations
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Simpler ExampleSimpler Example

A/0 B/1

x=0

x=1
x=0,1

C/0 D/1

x=0

x=1
x=0

x=1

FSM 1 FSM 2

State p=0 p=1 State q=0 q=1

Next state:
p+  = p+x

Output
z = p

Next state:
q+  = q ⊕ x

Output
z = q
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Simple Example: Cross Product ReachabilitySimple Example: Cross Product Reachability

What do we expect for reachability on FSM1 X FSM2?

A/0 B/1

x=0

x=1
x=0,1

C/0 D/1

x=0

x=1
x=0

x=1

FSM 1 FSM 2

R0 = { (A,C) }

R1 = reachable on 0 or 1 clock tick =

R2 = reachable on 0, 1, 2 clock ticks =

R3 = reachable on 0, 1, 2, 3 clock ticks =
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Cross Product Reachability AnalysisCross Product Reachability Analysis

So, we get Rk = { AC, BD, BC } ... what is Boolean func?

OK, let’s make the cross product satisfiability logic

Output Logic

FSM1:    z = p

FSM2:    z = q
=?

Rk                 
p+
q+

==1 if  (p+,q+) reachable

==1 if output from p+
same as output from q+
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Cross Product Reachability: Satisfiable?Cross Product Reachability: Satisfiable?

Well, can you get a 1 out of this...?

Output Logic

FSM1:    z = p

FSM2:    z = q
=?

R
p+
q+

==1 if  (p+,q+) 
reachable

==1 if output from p+
same as output from q+

k                 



Page 32

© R. Rutenbar 2001,                  CMU 18-760, Fall 2001   63

Cross Product Reachability: Satisfiable?Cross Product Reachability: Satisfiable?

Aha!
Pattern p=1 q=0 satisfies this BDD, makes it ==1

Since you can get a 1 here, FSMs NOT equivalent

What does p= 1 q=0 signify here?

A/0 B/1

x=0

x=1
x=0,1

C/0 D/1

x=0

x=1
x=0

x=1

FSM 1 FSM 2

State p=0 p=1 State q=0 q=1
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SummarySummary

FSM verification is important, but different
Have to worry about time, about equivalent outputs over all possible 
future inputs

Not just simple block-to-block combinational equivalence

Big ideas
Symbolic representation of FSMs  -- transition relation

Reachability analysis

Cross product machine with “special” satisfiability output

Transforms the temporal problem into another series of do-able BDD 
exercises

Hugely important application of BDD analysis out in the real 
world these days...


