(Lec 4) Binary Decision Diagrams: Manipulation

- What you know
- Basic BDD data structure
\triangleright DAG representation
\triangleright How variable ordering + reduction $=$ canonical
- A few immediate applications
\triangleright eg, trivial tautology checking
\checkmark What you don't know
- Algorithms to build one efficiently
- Most useful implementation tricks for efficiency
\triangleright (Thanks to Randy Bryant \& Karl Brace for nice BDD pics+slides)

Copyright Notice

© Rob A. Rutenbar, 2001

All rights reserved.

You may not make copies of this material in any form without my express permission.

Where Are We?

\ More BDDs -- now how to actually implement them

M	T	W	Th	F	
Aug 27	28	29	30	31	I
Sep 3	14	5	6	7	2
10	\|II	12	13	114	3
17	18	19	20	[2]	4
24	125	26	27	28	5
Oct 1	2	3	4	5	6
8	9	10	II	12	7
15	16	17	18	19	8
22	23	24	25	26	9
29	130	\|3]	II	2	10
Nov 5	6	7	8	9	II
12	113	14	15	16	12
Thnxgive 19	$\underline{20}$	21	22	23	13
26	127	28	29	30	14
Dec 3	4	5	6	7	15
10	[III	12	113	14	16

Introduction

Advanced Boolean algebra
JAVA Review

Formal verification

2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps
© R. Rutenbar 2001, CMU 18-760, Fall 20013

Handouts

- Physical
- Lecture 04 -- BDD Manipulation

V Electronic

- HW2 is out on the web site.
- (Also, note all TA/Prof office hours are on web site, in "About Class")
\checkmark Assignments
- Proj3 out late today or tomorrow: Building a simple BDD package in JAVA, then using it for some example verification tasks

BDDs: Creation

\checkmark First goal
Input: a gate-level logic network

- Output: a BDD that represents Boolean function of the network
\checkmark Question: how?
- Cannot afford to do it the way we developed the BDD idea...
- ...cannot build the full decision diagram from the truth table and then do the reduction to canonical form

BDDs: Creation

So, how do we do it?

- Build up BDD incrementally, by walking the gate network
- Each input is a BDD
- Each gate becomes an operator that produces a new BDD

BDDs: Creation

\checkmark Strategy

- Represent data as set of OBDDs, all with identical variable orderings
- Express solution method as a sequence of symbolic operations
- Implement each operation by OBDD manipulation
\checkmark What exactly is a symbolic operation?
- Think of it like a C language subroutine that works on BDDs...
bdd *OPERATOR(bdd *bddInput1, bdd *bddInput2)
- ... ie, it's a routine that takes 2 pointers to BDD structures, builds a new BDD structure, and returns you a pointer to it
Algorithmic properties
- Arguments are OBDDs with identical variable orderings.
- Result is OBDD with same ordering.
- Called the "Closure Property": OBDDs go in, OBDDs come out

BDDs: Creation

v How do we do it?

- Option 1 (The obvious approach)
- Build BDD operators for all the things you can do directly on logic gate networks, or Boolean functions themselves
\triangleright Simple operators: NOT(a), AND(a,b) OR(a,b), EXOR(a,b), etc
\triangleright Complex operators: COFACTOR(F,x), CONSENSUS(F, x), etc

To build the BDD for Out... might want something like this:

BDDs: Creation

\checkmark What's wrong with this?

- Nothing, actually. Perfectly workable...
- ...but not the most elegant way of doing it
- And not the way people actually do it these days

- Option 2: (Subtle approach)

- Build a few, critical, core operators on BDDs
- Build up ALL the other operators you like using ONLY this small set of building-block operators
\checkmark Advantage
- Actually less programming work, since you only have to build a few 'complicated' routines
- Makes it much easier to add new operators later

BDDs: RESTRICT Operator

So, what are the core operators we need?

- Surprisingly, there are only 2: RESTRICT, ITE
- RESTRICT(function F, variable v, constant k)
- This is just the Shannon cofactor of F wrt variable v
- Example: RESTRICT(F, v, 0) == F_{v}, $\operatorname{RESTRICT}(F, v, I)==F_{v}$
- Remember: F is represented as a BDD, result of RESTRICT is another BDD
- ie, we are really implementing something like this:

```
bdd *RESTRICT(bdd *F, variable v, int k)
```


BDDs: ITE If_Then_Else Operator

- ITE(function F, function G, function H)
- Called the IF-THEN-ELSE operator
- ITE(F,G, H) is itself another Boolean function
- Couple of different ways to describe just what ITE is...
- In pseudo-C...

```
ITE (F,G,H) (x1, ...,xn) {
        if (F(x1, ..., xn)==1 )
        then return ( G(x1,..., xn) )
        else return ( H(x1,..., xn) )
    }
```

V In Boolean algebra...

- Let $X=x I, \times 2, \ldots x n$, just for convenience of notation

$$
\operatorname{ITE}(F, G, H)(X)=F(X) \cdot G(X)+F(X) \cdot H(X)
$$

BDDs: ITE

- As hardware...

- This one is also pretty easy to remember
- ITE is like an IF-THEN-ELSE in software, or a MUX in hardware
\checkmark Critical things to remember are:
- ITE(F,G,H) IS A NEW FUNCTION
- $\mathrm{F}, \mathrm{G}, \mathrm{H}$ are inputs to ITE operator, represented as BDDs
- ITE(F,G,H) creates (is) a new BDD

BDDs: ITE

- Conventions

- Usually see the input functions to ITE written like this:
ITE(I, T, E)
- ...just for convenience in remembering that the first is the IF function, the second is the THEN function, last is ELSE function
- Back to BDD core operators
- Sort of easy to see why you need RESTRICT -
\triangleright Lots of useful things you can build out of cofactors
- What good is ITE? What can you do with it?
\triangleright Actually, almost everything...

BDDs: Uses of ITE

Can make any basic 2-input gate out of ITE
Not

BDDs: Uses of ITE

Vet's be precise abut how we intend to use ITE

We do this by calling the ITE routine on the BDD data structures for function F, for function G, and for constant BDD== ' 0 '

ITE returns as value a pointer to a new BDD, which $==(F \cdot G)$

BDDs: Creation

- If you can implement RESTRICT, ITE...
- You can build up basically anything useful you need to manipulate Boolean functions, or build BDDs of actual gate networks

V New question

- How do we actually implement RESTRICT and ITE as algorithms?

Answers

- Shannon cofactoring to the rescue, again!
- Recursive divide and conquer, again!
- Need a couple of special data structures to make it efficienct
- Start by looking at ITE

BDDs: Implementing ITE

\checkmark Assumptions

- There is a global variable ordering: $\mathrm{x} \mid<\mathrm{x} 2<\mathrm{x} 3<\ldots<\mathrm{xn}$
\triangleright If I give you a few variables, you can tell me which is "smallest"
\triangleright Example: Input: $\times 2, \times 7 \quad$ smaller $(x 2, x 7)==\times 2$
- We will use multi-rooted DAGs (MRDAGs) for the BDDs
\triangleright Amazingly enough, it's simpler to implement
\triangleright Newly created BDDs always try to share nodes in existing BDDs
- Example: what is MRDAG BDD for functions $F(a, b)=a+b, G(a, b)=b \quad ?$

BDDs: Implementing ITE

V Key implementation idea: Use Shannon expansion

- Suppose $\mathbf{X = x I}$, x2, ... x, ... xn
- Suppose we have 3 functions I(X), $T(X), E(X)$, then...

- ...ie, ITE can itself be decomposed recursively!
- And, if you want to think BDDs...

BDDs: Implementing ITE

- So, what do we need to do recursive ITE?
- Termination conditions: when can we recognize answer and quit?
- Splitting criterion: which variable (x?) do you pick to split on?
- Cofactoring: how hard is it to get $\mathrm{I}_{\mathrm{x}}, \mathrm{T}_{\mathrm{x}}, \mathrm{E}_{\mathrm{x}}$, etc. from their BDDs?
- Efficiency concerns: how fast is this, how big is the recursion?
- Reduction: how do we guarantee the BDD we produce is reduced?

- Solutions

- Turns these thing are actually all interdependent
- Let's start walking thru these issues and see what we get...

BDDs: Implementing ITE

General algorithm

```
ITE( bdd I, bdd T, bdd E ) {
    if (terminal case) {
        return computed result ;
    }
    else {
        let x be splitting variable;
        PosFactor = ITE( IX , T T , E E })\mathrm{ ;
```



```
        R = new node for var x;
        R.loson = NegFactor ;
        R.hison = Posfactor ;
        Do reductions;
        return( R );
    }
}
```


BDDs: ITE Implementation

\checkmark ITE(I, T, E) terminal cases

- If $\mathrm{I}=1$
- if $\mathrm{I}=0$
- If $T=1 \& \& E=0$
- If $\mathrm{T}=\mathrm{E}$
\square

- Examples

BDDs: ITE Implementation

- Some subtlety about termination

- A concern raised earlier was: how do we keep answer reduced?
- At least for the termination conditions, easy in a multi-rooted DAG
- When you terminate, you just return a pointer to something that already exists in the MRDAG
\rightarrow Since the MRDAG is a BDD, it's already reduced
\triangleright ie, No extra work
Note: so, when ITE is called and terminates, it really looks like this...

Each of the inputs -I, T, E are really represented by a ptr to some root node in this big MRDAG. Result ITE(I,T,E) ultimately ends up another node in here. For termination conditions, the result is always an existing node.

BDDs: ITE Implementation

- Splitting variable selection

- There's actually only one right choice
- Split on smallest var among roots of I, T, E

\checkmark Why?
- Because it makes the cofactoring trivial to implement!
- Remember, we now have to compute $\mathrm{I}_{\mathrm{x}}, \mathrm{T}_{\mathrm{x}}, \mathrm{E}_{\mathrm{x}}, \mathrm{I}_{\mathrm{x}^{\prime}}, \mathrm{T}_{\mathrm{x}^{\prime}}, \mathrm{E}_{\mathrm{x}}$,

BDDs: ITE Implementation

RESTRICT(F,v,k)

\rightarrow Remember, this is the operator that does the cofactor on BDDs

Restrict (bdd F, var \boldsymbol{x}, const k):

- In general, it's a bit complicated
- Trouble is when you cofactor wrt a var "down deep" inside the BDD
- Example: Restrict variable b to I

Bypass any nodes for variable x /* set to const */

- Choose Hi child for $k=1$ - Choose Lo child for $k=0$ Reduce result

BDDs: ITE Implementation

V ..but there's some useful special cases here

- If we always pick splitting var as: smallest(roots of I, T, E)...
- ...then we are always doing one of these 2 cases

Case I: Restrict on root node variable

Case 2: Restrict on variable less than root node variable

$$
- \text { E.g., } x<y
$$

Restrict($0, x, 1$)
(L)
(H)

BDDs: ITE Implementation

- OK -- that last one was subtle...
- Let's look at a concrete example to see "the idea" here.

BDDs: ITE Implementation

- Why that works
- Always pick a variable at or above the root of I, T, E
- Never then have to cofactor "down deep" in BDD
- Result is always a pointer to some node that already exists in the multirooted DAG of our BDDs
- So, again, the reduction step takes care of itself here
\triangleright ie, the MRDAG is reduced at all times, we just return a pointer to a subDAG inside it, which is also reduced

In a multirooted DAG, these special cases of RESTRICT will always return a pointer to some node that is already in DAG

BDDs: ITE Example

Vet's try a little ITE example

- Capital letters = functions, small letters = variables
- Var order is a $<\mathrm{b}<\mathrm{c}<\mathrm{d}$
- We want to compute ITE (I(a,b,c,d) , T(a,b,c,d) , E(a,b,c,d))
- Assume it's a MRDAG, we use function names to ID nodes...
notation is
"E" for this node, ie, we will label the Boolean function for each node

BDD: ITE Example

ITE(I, T, E) = ?
smallest var among roots is a

\checkmark Can we terminate these new ITEs right away?

- ...ie, will we recurse more, or do we know the answers now?
- Let's remember the special cases for ITE termination

BDD: ITE Example

$\operatorname{ITE}\left(B_{b}, 0_{b}, E_{b},\right) \quad \operatorname{ITE}\left(B_{b}, 0_{b}, E_{b}\right)$

BDD: ITE Example

And we are done!

- Recursion tree naturally traces out the resulting BDD for ITE(I,T,E)
- We set up termination conditions so that leaves are always nodes that already exist in the original multi-rooted DAG for
- So, we can just "plug" our result back into our MRDAG...

BDD: ITE Implementation

V Reduction, revisited

- In our little example, the resulting function ITE was new, not already existing in the MRDAG, and all the leaf nodes were already there.
- What happens if the resulting function is NOT new, if it already exists in the MRDAG?
- Example
- Suppose that, for whatever reason, ITE returns the " $B=b$ " function

BDDs: ITE Implementation

- Following prior examples, we build MRDAG as...

BDDs: ITE Implementation

\checkmark Easy to create a new BDD that's not reduced

- In our ‘ $B=b$ ' example, we made a redundant ' b ' var node
- How to fix?

V Clever trick: The "Unique" Table

- New notation: make key for each node as (var, lo, hi)
- Make a hash table (called the Unique table) that maps (var, lo, hi) for each node into actual pointer address of the node in the MRDAG

BDDs: ITE Implementation

\checkmark Trick

- Never, ever just create a node, like a ' $B=b$ ' node, without checking to see if the node you want to create already exists in the Unique table
- This is the "big idea" for how we avoid redundancy

\ Need a new function, called FindOrCreateNode

- FindOrCreateNode checks to see if the node you want to make already exists in the MRDAG.
- If so, it just returns a pointer to that node, instead of making a new node
- FindOrCreateNode also can check to make sure you don't do something stupid to make an unreduced DAG
- Helpful to see a picture of what FindOrCreateNode does...

BDDs: ITE Reduction

\checkmark Case 1: Trying to make a constant node

- If you invoke FindOrCreate(constant, null, null) and the MRDAG already has that constant, you return a pointer to it

Ex: FindOrCreateNode(1, null, null)

- Note: this handles the first reduction rule we gave...

BDDs: ITE Reduction

- Case 2: Trying to duplicate an existing var node
- If you invoke FindOrCreate(var, loson, hison) and the MRDAG already has this node, you just return a pointer to it

Ex: FindOrCreateNode $(a, 10,16)=$

- Note: this handles the second reduction rule we gave...

BDDs: ITE Reduction

- Case 3: Trying to make an unnecessary test node
- If you invoke FindOrCreate(var, loson, hison) and loson = = hison, then you just return loson, and don't even try to look in DAG

Ex: FindOrCreateNode(b, 15, 15) =

- Note: this handles the last reduction rule we gave...

BDDs: ITE Reduction

V Case 4: None of the above

- Well, you can't find it in the existing MRDAG, and it's not stupid to create it, so go ahead and create the node, and then remember to insert it in the unique table

Ex: FindOrCreateNode(b, 15, 16) = ?

Unique Table Hash index Address (b, 15, 16) 20

ITE: FindOrCreateNode

Algorithm looks like this

```
FindOrCreateNode(var v, bdd loson, bdd hison) {
    if (v is actually a constant ) {
        if( this constant NOT already in Unique table )
            install this constant in UNIQUE table;
        return ( pointer to constant );
    }
    else if (loson == hison)
        return (loson) ;
    else if ( (v, loson, hison) already in Unique table )
        return ( pointer to (v, loson, hison) from Unique table);
    else {
        create new node = (v, loson, hison);
        install this node in Unique table;
        return (pointer to (v, loson, hison) );
    }
}
```


BDDs: Reduction

- What's really going on here?
- Instead of building a nonreduced BDD, then going back to reduce it...
- ...instead, we check each node as we try to create it during recursive divide\&conquer...
- ...if it would create a redundant node, we don't allow it to happen.
- Instead, we return an existing node of the BDD whenever we can.

This is actually how ALL reductions get done on BDDs

- All algorithms that manipulate or create BDDs call FindOrCreateNode, to ensure things always stay reduced
- Never, ever create an unreduced DAG

ITE: Implementation

- One more essential trick for efficiency

- Turns out that on bigger problems, it's very easy for the recursion to try to recompute the same intermediate result - ITE $(\cdot, \cdot \bullet \cdot \bullet)$ called on intermediate functions - many times
- In fact, can be exponential number of calls to ITE in the recursion, but not all of them are unique computations
- Turns out there is a really easy fix...
- But let's convince ourselves that this is a real problem, first...

ITE: Recursive Calls

- Compute ITE(I, T, E) for BDDs below (alphabet var order)

Argument I Argument T Argument E

ITE Recursive Calls

$\operatorname{ITE}(r, 1, y)$

$\operatorname{ITE}(s, 1, z) \quad \operatorname{ITE}(1,1, z) \quad \operatorname{ITE}(s, 1,1)$
$d=0$ * \quad d $=1$
$\operatorname{ITE}(0,1,0) \operatorname{ITE}(1,1,1)$

BDDs: ITE Recursive Calls

Recursive call tree tells us a lot...

Aside: Remember What ITE Is Doing...

- Each call to ITE starts with 3 BDDs, returns a BDD

ITE ($p, 1, x$)
$\operatorname{ITE}\left(q, \frac{1}{1, z}\right)$
$b=0 * \quad \mathrm{~b}=1 \quad \mathrm{a}=$

* $\operatorname{ITE}(r, 1, z) \operatorname{ITE}(r, 1, y)$
$\operatorname{ITE}(s, 1, z) \operatorname{ITE}(1,1, z) \quad \operatorname{ITE}(s, 1,1)$
$\operatorname{ITE}(0,1,0) \operatorname{ITE}(1,1,1)$

BDDs: Reduction Revisited

- Also, can see that reduction is important
- Recursive calls to ITE naturally trace out an unreduced BDD
- Reduction "on the fly" via FindOrCreateNode prevents this

BDDs: ITE Operation Table

- How to prevent recomputation during ITE recursion?

- Every time you return from ITE, you store your computed answer in a table, called the Operation Table. Key is (I,T,E), value is address of computed node in BDD returned
- Every time you enter ITE, you look in the table first to see if the answer has already been computed earlier in recursion
- Nice, simple solution, trades some memory (table) for time

Recursion

Operation Table

Hash Value	Address
$(p, 1, r)$	bddNodel
$(q, 1, d)$	bddNodeJ
$(s, 1, z)$	bddNodeK
$\mathbf{0}$	
-	

BDDs: ITE Complexity

V Efficiency

- Without Operation Table
\triangleright Exponential Complexity
\triangleright Effectively expand out decision trees
- With Operation Table
\triangleright Worst case = product of graph sizes for I, T, and E
\triangleright At worst, will fill table with all possible keys

V Interaction with multi-root DAG assumption

- If all BDDs use shared nodes...
\triangleright Maintain global Operation Table, across ALL BDDs
\triangleright More possibilities for quick termination

BDDs: ITE

- Final ITE algorithm

```
ITE(bdd I, bdd T, bdd E) {
    if (terminal case applies to I, T, E) {
        return( immediate computed result );
    }
    else if ( Operation Table has entry for (I,T,E) ) {
        return( result bdd node from operation table );
    }
    else {
        let x be smallest var from among roots of I, T, E ;
        PosFactor = ITE( I , , T
        Negfactor = ITE( ( }\mp@subsup{\mathbf{x}}{}{\prime},\mp@subsup{T}{\mathbf{x}}{
        R = FindOrCreateNode(x, NegFactor, PosFactor);
        InsertIntoOperationTable( hash value (I, T, E), address R) ;
        return(R);
    }
}
```


BDDs: Manipulation

- There is a similar algorithm for general RESTRICT
- Another recursive descent, uses FindOrCreateNode again
- Trick is to replace all the nodes that have the variable you are cofactoring out, and get the loson, hison pointers right
- We won't look at this in detail
- If you can implement ITE, and RESTRICT...
- You can basically implement everything interesting
- Several useful properties too
\triangleright Closure: if you start with ROBDDs with a particular var order, results of ITE and RESTRICT (properly implemented) are again ROBDDs with same var order
\triangleright Complexity: polynomial in size of input BDDs

BDDs: Manipulation

\checkmark Summary

- Implement 2 core operators on BDD data structures
\triangleright RESTRICT(bdd F, var x , constant k) = Shannon cofactor
\triangleright ITE(bdd I, bdd T, bdd E) $=$ IF-THEN-ELSE operator
\triangleright Each of these takes BDDs as inputs, returns a new BDD
- From ITE \& RESTRICT,you can implement lots of stuff
\triangleright Cofactoring, quantification, derivatives
\triangleright All the basic gate types: NOT, AND, OR, EXOR, etc
\triangleright Other more exotic stuff (see homework)
- Given an efficient BDD software package, can do lots of nice practical engineering applications
\triangleright Satisfiability: trace BDD from root to ' I ' node to find inputs that make the function $==1$
\triangleright Equivalence: if 2 functions are same over ALL inputs, their BDDs end up itentical, ie, 2 pointers to same node in the MRDAG

