
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

(Lec 3) Binary Decision Diagrams: Representation(Lec 3) Binary Decision Diagrams: Representation
What you know

Lots of useful, advanced techniques from Boolean algebra
Lots of cofactor-related manipulations
A little bit of computational strategy

Cubelists, positional cube notation
Unate recursive paradigm

What you don’t know
The “right” data structure for dealing with Boolean functions: BDDs
Properties of BDDs

Graph representation of a Boolean function
Canonical representation

Efficient algorithms for creating, manipulating BDDs
Again based on recursive divide&conquer strategy

(Thanks to Randy Bryant for nice BDD pics+slides)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

HandoutsHandouts
Physical

Lecture 03 -- BDDs: Representation
Paper: Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams, ACM Computing Surveys, Sept 1992.

Electronic
Nothing today

Reminder
HW1 is due Thu in class

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Where Are We?Where Are We?
Still doing Boolean background, now focussed on data structs

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs & apps

Dec

Thnxgive

10 11 12 13 14 16

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

ReadingsReadings
In De Micheli book

pp 75-85 does BDDs, but not in as much depth as the notes

Randy Bryant paper
Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams, ACM Computing Surveys, Sept 1992.
Lots more detail (some of it you don’t need just yet) but very complete,
if a bit terse.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

BDD HistoryBDD History
A little history...

Original idea for Binary Decision Diagrams due to
Lee (1959) and Akers (1978)
Critical refinement–Ordered BDDs–due to Bryant (1986)

Refinement imposes some restrictions on structure
Restrictions needed to make result canonical representation

A little terminology
A BDD is a directed acyclic graph
Graph: vertices connected by edges
Directed: edges have direction (draw them with an arrow)
Acyclic: no cycles possible by following arrows in graph

Often see this shortened to “DAG”

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

GraphsGraphs
DAGs -- a reminder of some technicalities...

A graph
vertices + edges

A directed graph
...but not acyclic

A directed acyclic graph
...note that a “loop” is
not a directed cycle,
you are only allowed to
follow edges along
direction that the
arrow points

vertex

edge
directed
edge

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Binary Decision DiagramsBinary Decision Diagrams
Big Idea #1: Binary Decision Diagram

Turn a truth table for the Boolean function into a Decision Diagram
Vertices =
Edges =

Leaf nodes =
In simplest case, resulting graph is just a tree

Aside
Convention is that we don’t actually draw arrows on the edges in the
DAG representing a decision diagram
Everybody knows which way they point, implicitly

Point from parent to child in the decision tree

Look at a simple example...

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

Binary Decision DiagramsBinary Decision Diagrams

Truth Table Decision Tree

• Vertex represents a decision

• Follow green (dashed) line for value 0

• Follow red (solid) line for value 1

• Function value determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

x1 x2 x3 f

x3 x3

x2

x3 x3

x2

x1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Binary Decision DiagramsBinary Decision Diagrams
Some terminology

A ‘variable’ vertex
The ‘lo’ pointer
to ‘lo’ son or
child of the
vertex

The ‘hi’ pointer
to ‘hi’ son or

child of the
vertex

A ‘constant’ vertex
at the bottom
leaves of the tree

The ‘variable ordering’, which is the
order in which decisions about vars
are made. Here, it’s X1 X2 X3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

OrderingOrdering
Note: Different variable orders are possible

0 0

x3

1 1

x2 x2

Order for this subtree is
X2 then X3

Here, it’s
X3 then X2

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Binary Decision DiagramsBinary Decision Diagrams
Observations

Each path from root to leaf traverses variables in a some order
Each such path constitutes a row of the truth table, ie, a decision about
what output is when vars take particular values
But we have not yet specified anything about the order of decisions
This decision diagram is not canonical for this function

Reminder: canonical forms
Representation that does not depend on the logic gate implementation
of a Boolean function
Same function (ie, truth table) of same vars always produces this exact
same representation
Example: a truth table is canonical

a minterm list, for our function f = Σ m(3,5,7), is canonical

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Binary Decision DiagramsBinary Decision Diagrams
What’s wrong with this representation?

It’s not canonical,
Way too big to be useful
...in fact it’s every bit as big as a truth table: 1 leaf per row

Big idea #2: Ordering
Restrict global ordering of variables
Means:

Note
It’s OK to omit a variable if you don’t need to check it to decide
which leaf node to reach for final value of function

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Total OrderingTotal Ordering

Properties
No conflicting variable assignments along path (see each
var at most once walking down the path).
Simplifies manipulation

OK Not OK
x1

x2

x3

x1

x3

x3

x2

x1

x1

x1

Assign arbitrary total ordering to variables

Variables must appear in this specific order along all paths
x1 < x2 < x3

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Binary Decision DiagramsBinary Decision Diagrams
OK, now what’s wrong with it?

Variable ordering simplifies things...
...but representation still too big
...and still not necessarily canonical

1

Original decision diagram

Equivalent, but
different diagram

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Binary Decision DiagramsBinary Decision Diagrams
Big Idea #3: Reduction

Identify redundancies in the DAG that can remove unnecessary nodes
and edges
Removal of X2 node and its children, replacement with X3 node is an
example of this sort of reduction

Why are we doing this?
To combat size problem: want DAGs as small as possible
To achieve canonical form: for same function, given total variable

order, want there to be exactly one
graph that represents this function

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Reduction RulesReduction Rules
Reduction Rule 1: Merge equivalent leaves

‘a’ is either a constant 1 or constant 0 here
Just keep one copy of the leaf node
Redirect all edges that went into the redundant leaves
into this one kept node

aa a

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Reduction RulesReduction Rules
Apply Rule 1 to our example...

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Reduction RulesReduction Rules
Reduction Rule 2: Merge isomorphic nodes

Isomorphic: Means 2 nodes with same var and identical children
You cannot tell these nodes apart from how they contribute to
decisions as you decend thru DAG
Note: means exact same physical child nodes,

not just children with same labels
Remove redundant node (extra ‘x’ node here)
Redirect all edges that went into the redundant node into the one copy
that you kept (edges into right ‘x’ node now into left as well)

y

x

z

x

y

x

z

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Reduction RulesReduction Rules
Apply Rule 2 to our example

x3 x3

x2

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Reduction RulesReduction Rules
Reduction Rule #3: Eliminate Redundant Tests

Test: means a variable node here...
It’s redundant since both of its children go to same node...
...so we don’t care what value x node takes in this diagram

Remove redundant node
Redirect all edges into the redundant node (x) into the one child node
(y) of the removed node

y

x

y

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

x2

0 1

x3

x1

Reduction RulesReduction Rules
Apply Rule #3 to our example

x3

x2

0 1

x3

x2

x1

x3

x2

0 1

x3

x2

x1

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

Binary Decision DiagramsBinary Decision Diagrams
How to apply the rules?

For now, just iteratively, keep trying to find places the rules “match”
and do the reduction
When you can’t find any more matches, the graph is reduced

Is this how programs really do it?
Nope, there’s some magic one can do with a clever hash table, but more
about that later, when we start doing algorithms to manipulate BDDs
Roughly speaking, in real programs you build the BDDs correctly on the
fly--you never build a bad, noncanonical one then try to fix it.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

BDDs: Big ResultsBDDs: Big Results
Recap: what did we do?

Start with any old BDD
...ordered the variables => Ordered BDD (OBDD)
...reduced the DAG => Reduced Ordered BDD (ROBDD)

Big result
ROBDD is a canonical form for Boolean function

Same function always generates exactly same DAG...
...for a given variable ordering

Two functions identical if and only if ROBDD DAGs isomorphic

ie, they are identically the same graph
Nice property to have: simplest form of DAG is canonical

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

BDDs: Representing Simple ThingsBDDs: Representing Simple Things
Note: can represent any function as a ROBDD

Here is the ROBDD for the function f(x1,x2,...xn) = 0

Here is the ROBDD for the function f(x1,x2,...xn) = 1

Here is the ROBDD for the function f(x1, ..., x, ..., xn) = x

Unique unsatisfiable function

Unique tautology function

Treat variable
as function

1

0

0 1

x

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Binary Decision DiagramsBinary Decision Diagrams
Assume variable order is X1, X2, X3, X4

Odd Parity

Linear
representation

Typical Function

x2

x3

x4

10

x4

x3

x2

x1

x2

0 1

x4

x1 • (x1 + x2)x4

• No vertex labeled x3

– independent of x3

• Many subgraphs shared

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Sharing in BDDsSharing in BDDs
Technical aside

Every node in a BDD (in addition to the root) represents some Boolean
function in a canonical way

BDDs are incredibly good at extracting and representing this kind of
sharing of subfunctions in subgraphs

x2

0 1

x4

x1

x2 •x4

(x1 + x2)x4

x2

x3

x4

10

x4

x3

x2

x1

(x3 ⊕ x4) ’

x1 ⊕ x2 ⊕ x3 ⊕ x4

x3 ⊕ x4

x4 ‘

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

BDD ApplicationsBDD Applications
Aside: some nice, immediate applications

Tautology checking
Was complex with the cubelist representation, required divide
&conquer algorithm, lots of manipulation
With BDDs, it’s trivial. Just see if the BDD for function ==

Satisfiability == can you find assignment of 0s & 1s to vars to make the
function == 1?

No idea how to do it with cubelists
With BDDs, any path to node from root is a solution

1

1

x2

0 1

x4

x1

Satisfiability: X1 X2 X3 X4 =

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

BDD Variable OrderingBDD Variable Ordering
Question: Does variable ordering matter? YES!

Good Ordering Bad Ordering

Linear Growth Exponential Growth

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Variable Ordering: ConsequencesVariable Ordering: Consequences
Interesting problem

Some problems that are known to be exponentially hard to solve
work out to be very easy on BDDs
Trouble is, they are only easy when the size of the BDD that
represents the problem is “reasonable”
Some input problems make nice (small) BDDs,
others make pathological (large) BDDs
No universal solution (or else we’d always be able to solve
exponentially hard problems easily)

How to handle?
Variable ordering heuristics: make nice BDDs for reasonable probs
Basic characterization of which problems never make nice BDDs

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Variable OrderingVariable Ordering
Analogy to “bit-serial” computing useful here...

Operation
Suppose this machine reads your function inputs 1 bit at a time...
...ie, in a certain variable order.
Stores information about previous inputs to correctly deduce function
value from remaining inputs.

Relation to OBDD Size
If this ‘machine’ requires K bits of memory at step i...
...then the OBDD has ~ 2K branches crossing level i.

K-Bit
Memory

Bit-Serial
Processor

0
or
1

000
x1x2xn

f(x1, x2, x3, ..., xn)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Variable Ordering: ExampleVariable Ordering: Example

at level 3
3 edges cross

at level 3
8 edges cross

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

Variable Ordering: IntuitionVariable Ordering: Intuition
Idea: Local Computability

Inputs that are closely related should be kept near each other in the
variable order
Groups of inputs that can determine the function value by themselves
should be close together

0

b3

a3

b2

a2

1

b1

a1

a3 a3

a2

b1 b1

a3

b2

b1

0

b3

b2

1

b1

a3

a2

a1

a1 b1 + a2 b2 + a3 b3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

Variable Ordering: IntuitionVariable Ordering: Intuition
Idea: Power to control the output

The inputs that “greatly affect” the output should be early in the
variable order
“Greatly affect” means almost always changes the output when this
input changes
Example: multiplexer

D0

D1

S

out

sel

order: S < D0 < D1 order: D1 < D0 < S
0

1

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

Variable OrderingVariable Ordering
What use is any of this? Suggests ordering heuristic...

Suppose I have a logic network like this...

Now, redraw to represent circuit as linear arrangement of its gates
Constraint: all the output-to-input wires go left-to-right in this order
Called a topological ordering

w = 4

function output

x4

x5
x3 x2 x1

X1
X2
X3

X4

X5

output

Primary inputs represented by “source” blocks

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Variable OrderingVariable Ordering

Parameters
Number of primary inputs = n
“Bandwidth” = w = number of wires cut at widest point

Useful result: Size upper bound [Berman, IBM]
Can represent with OBDD with <= n 2w nodes
Order variables in reverse of source block ordering

Means list vars right to left in the above picture...

w = 4

function output

x4

x5
x3 x2 x1

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

Variable OrderingVariable Ordering
Reasoning here goes like this...

All info about vars > i encoded in w bits...
...so at most 2

w
distinct decisions, which bounds number of branch

destinations from levels < i to levels <= i

xi

xi

•
•
•

0

1

<= 2w

BDD root

BDD
leaves

xn
x1xi

w

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

Variable OrderingVariable Ordering
Linear circuit example: 4 bit adder sum, MSB

How to order vars for a simple 4-bit carry ripple adder, Sum MSB?

Answer: Use nice property of our adder circuit
It has Constant bandwidth => Linear OBDD size

w = 3

b0

a0
b1

a1
b2

a2
b3

a32/3 2/3 2/3
S 3

0

4 bit ripple adder

a3 b3 a0 b0a1 b1a2 b2

S3

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Aside: Variable OrderingAside: Variable Ordering
Generalization

Many carry chain circuits have constant bandwidth
Examples

Comparators
Priority encoders
ALUs

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

Variable Ordering HeuristicsVariable Ordering Heuristics
Heuristic ordering methods

Take advantage of this “linear ordering” idea
Input: gate-level logic network we want to build a BDD for
Output: global variable ordering to use
Method: topological analysis, aka, “walking” the network graph...

a

b
c

d

e

Input Netlist Ordering

b < a < d < c < e?

a < b < c < d < e?

e < d < c < b < a?

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

Example: Dynamic Weight Assignment HeuristicExample: Dynamic Weight Assignment Heuristic
Concrete example: Minato’s heuristic

Pick a primary output; put a weight “1” there
For each gate with weights on its output but not its input, “push” the
weight thru to the inputs, dividing by the number of inputs. Each input
gets equal weight.
If there is fanout (one wire goes to >= 2 inputs) then ADD the weights
to get the new weight for this wire.
If there is more than 1 output, start with the one that has the deepest
logic depth from the inputs
Continue till all primary inputs are labeled

a

b
c

d

e

a

b

c

d

e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Dynamic Weight AssignmentDynamic Weight Assignment
Minato’s heuristic

Pick the primary input with the biggest weight. Put it first in var order.
Erase the subcircuit (wires, input pins, entire gates if they have only one
“active” pin left) that are reachable only from this primary input we
selected.
Go back and reassign the weights again in the new, smaller circuit.

a

b
c

d

e

1

1/2

1/2

1/4

1/6
5/12

a

b

c

d

e1

4/6

1/2

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

Dynamic Weight AssignmentDynamic Weight Assignment
Just continue

a

b

c

d

e

a

b
c

d

e

a

b
c

d

e

a

b

c

d

e

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

Dynamic Weight AssignmentDynamic Weight Assignment
Minato’s method

Iteratively picks the next variable in the order using the simple weight
propagation idea
Tries to order all vars starting from the “deepest” output
Deletes the ordered var, erases wires/gates, repeats till all ordered

How well does it work?
Fairly well. Very simple to do. Lots better than random order.
OK complexity == O(#gates • #primary inputs)

Notes
There are other, better, more complex heuristics
Also, the ordering does NOT have to be static, it can change dynamically
as the BDD is used

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

Variable Ordering HeuristicsVariable Ordering Heuristics
Alternative: Suppose your network is a tree

Start at the output
Do a postorder traversal of tree
Write down variables in order visited by the tree walk

Remember postorder walk?
Visits the nodes, ie, gates, in a
deterministic order
Ignore primary inputs (for now)

postorder (TreeNode) {
if (TreeNode.TopChild != null)

postorder(TreeNode.TopChild)
if (TreeNode.BotChild != null)

postorder(TreeNode.BotChild)
write out TreeNode name

}

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8
root

Nodes finished as:

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

Variable Ordering HeuristicsVariable Ordering Heuristics
In our case

Tree might not be binary -- not a big deal
Just use some consistent order for
exploring the children nodes
Visits variables in reverse order

Why is this a good heuristic?
It makes a linear ordering of ckt
Bandwidth is O(logN) for N blocks
OBDD size is O(N

2
)

LowestHighest

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8

A B C DE F GH I

B1 B2 B3 B4B5 B6 B7 B8

Page 24

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Variable Ordering HeuristicsVariable Ordering Heuristics
What if network is not a tree?

More general, more common case
Some terminology: Reconvergent fanout

When one input or intermediate output has multiple paths to the
final network output, fanout is called reconvergent
If you don’t have a tree, you have this

Reconvergent fanout

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

Variable Ordering HeuristicsVariable Ordering Heuristics
For general logic networks

Still try to do a depth-first walk of the graph, output to inputs
Try to walk the graph like it was a tree, giving priority
to nets that have multiple fanouts

An ordering...
B < A < C < D < E < F < G < H < I

A
B

C

D
E
F

GH
I

B1

B2

B3

B4

B5

B6

B7

B8

Page 25

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

Ordering: ResultsOrdering: Results

General Experience
Many tasks have reasonable OBDD representations
Algorithms remain practical for up to millions of OBDD nodes.
Heuristic ordering methods are generally OK, though it may take
effort to find a heuristic that works well for your problem
So-called dynamic variable ordering -- reordering your BDD vars as
your BDD gets used, to improve the size -- is essential today

Function Class Best Worst

Addition linear exponential

Symmetric linear quadratic

Multiplication exponential exponential

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

Binary Decision DiagramsBinary Decision Diagrams
Variants and optimizations

Refinements to OBDD representation
Do not change fundamental properties

Primary Objective
Reduce memory requirement
Critical resource
Constant factors matter

Secondary Objective
Improve Algorithmic Efficiency
Make commonly performed operations faster

Common Optimizations
Share nodes among multiple functions
Negated arcs

Page 26

© R. Rutenbar 2001, CMU 18-760, Fall 2001 51

Binary Decision Diagrams: SharingBinary Decision Diagrams: Sharing
Sharing, revisited

We mentioned BDDs good at representing shared subfunctions
Consider this example from a 4 bit adder: sum msb and carry out

b3

b2

b1

0

b0

a0

b1

a1

b2

a2

1

b3

a3

Cout

b3

b2

b1

b0

a0

b1

a1

b2

a2

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

XorNegative
Logic
Carry
Chain

Positive
Logic
Carry
Chain

Basically same
shared

subfunction

© R. Rutenbar 2001, CMU 18-760, Fall 2001 52

Sharing: Multi-rooted DAGSharing: Multi-rooted DAG
Don’t need to
represent it twice

A BDD can have multiple
‘entry points’, or roots
Called a multi-rooted DAG

Recall
Every node in a BDD
represents some Boolean
function
This multi-rooting idea just
explicitly exploits this to
better share stuff

b3 b3

a3

Cout

b3

b2

b1

b0

a0

b1

a1

b2

a2

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

Positive
Logic
Carry
Chain

2 roots

Page 27

© R. Rutenbar 2001, CMU 18-760, Fall 2001 53

Sharing: Multi-rooted DAGSharing: Multi-rooted DAG
Why stop at 2 roots?

For many collections of functions,
there is considerable sharing
Idea is to minimize size wrt several
separate BDDs by max sharing

Example: Adders
Separately

51 nodes for 4-bit adder
12,481 for 64-bit adder
Quadratic growth

Shared
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S 3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S 2

b1

a0 a0

b1

a1

S 1

b0

10

b0

a0

S 0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 54

BDD Sharing: IssuesBDD Sharing: Issues
Storage model

Single, multi-rooted DAG
Function represented by pointer to node in DAG
Be careful to apply reduction ops globally to keep all canonical

Every time you create a new function, gotta go look in your big
multi-rooted DAG to see if it already exists, inside, somewhere

Storage management
User cannot know when storage for node can be freed
Must implement automatic garbage collection...

...or not try to free any storage
Significantly more complex programming task

Algorithmic efficiency
Functions equivalent if and only if pointers equal

if (p1 == p2) …
Can test in constant time

Page 28

© R. Rutenbar 2001, CMU 18-760, Fall 2001 55

Optimization: Negation ArcsOptimization: Negation Arcs
Concept

Dot on arc represents complement operator
Inverts function value of BDD reachable “below the dot”

Can appear on internal or external arc

negation

a+b

0

b

1

a

~(a+b)a+b

0

b

1

a

~(a+b)

0

b

1

a

a+~b

0

b

1

a

a+~b

© R. Rutenbar 2001, CMU 18-760, Fall 2001 56

Canonical FormCanonical Form

⇒
No Double Negations

Rule #1 Rule #2

No Negated Hi Pointers

Must have conventions for use of negative arcs
Express as series of transformation rules
These are really nothing more than DeMorgan laws

x x⇒

x x⇒

x x⇒

x x⇒

Page 29

© R. Rutenbar 2001, CMU 18-760, Fall 2001 57

Aside: Why Does This Work...?Aside: Why Does This Work...?
Just like Shannon expansion, applied again

..with prudent use of the basic DeMorgan laws.

No Negated Hi Pointers

x x⇒

© R. Rutenbar 2001, CMU 18-760, Fall 2001 58

Aside: Why Does This Work...?Aside: Why Does This Work...?
Just like Shannon expansion, applied again

No Negated Hi Pointers

x x⇒

Page 30

© R. Rutenbar 2001, CMU 18-760, Fall 2001 59

Transformation Rules (Cont.)Transformation Rules (Cont.)

Rule #3

No Negated Constants

Rule #4

No Hi Pointers to 0

a ~a
⇒x x

0 1

x x⇒
0 1

⇒x x

0 1

x x⇒
0 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 60

Transformation ExampleTransformation Example
Example of applying the rules

Tends to get “nand-like” DAGs

0 1

b

a

~a+~b

0 1

b

a
⇒

0 1

b

a

~(a · b)

⇒

0 1

b

a
⇒

k ~k
⇒x x⇒

Page 31

© R. Rutenbar 2001, CMU 18-760, Fall 2001 61

Negation Arc ExamplesNegation Arc Examples

b2

b1

0

b0

a0

b1

a1

1

b2

a2

b3

a3

S 3

b3 b3

a3

Cout

b2 b2

a2

b3

a3

S 3

b1 b1

a1

b2

a2

S 2

a0

b1

a1

S 1

0 1

b0

a0

S 00 1

x4

x3

x2

x1

Odd Parity

MSB of Sum All Adder Functions

© R. Rutenbar 2001, CMU 18-760, Fall 2001 62

Effect of Negation ArcsEffect of Negation Arcs
Storage savings

At most 2X reduction in number of nodes

Aside: can people really do this “negation” thing in their
heads by looking at a normal BDD?

Nope
Takes lots of practice even to be able read these things
Just useful because of the 2X space efficiency

Algorithmic improvement
Can complement function in constant time

Page 32

© R. Rutenbar 2001, CMU 18-760, Fall 2001 63

SummarySummary

OBDD
Reduced graph representation of Boolean function
Canonical for given variable ordering

Selecting good variable ordering critical
Minimize OBDD size
Circuit embeddings provide effective guidance

Variants and optimizations
Reduce storage requirements
Improve algorithmic efficiency
Complicate programming and debugging

