(Lec 3) Binary Decision Diagrams: Representation

X 'What you know
» Lots of useful, advanced techniques from Boolean algebra
» Lots of cofactor-related manipulations
» A little bit of computational strategy
» Cubelists, positional cube notation
» Unate recursive paradigm

X What you don’t know
» The “right” data structure for dealing with Boolean functions: BDDs
» Properties of BDDs
» Graph representation of a Boolean function
» Canonical representation
» Efficient algorithms for creating, manipulating BDDs
» Again based on recursive divide&conquer strategy
(Thanks to Randy Bryant for nice BDD pics+slides)
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N Physical
» Lecture 03 -- BDDs: Representation

» Paper: Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams, ACM Computing Surveys, Sept 1992.

N Electronic
» Nothing today

N Reminder
» HW!I is due Thu in class
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Where Are We?

N Still doing Boolean background, now focussed on data structs
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N In De Micheli book
» pp 75-85 does BDDs, but not in as much depth as the notes

N Randy Bryant paper
» Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams, ACM Computing Surveys, Sept 1992.

» Lots more detail (some of it you don’t need just yet) but very complete,
if a bit terse.
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BDD History

N A little history...

» Original idea for Binary Decision Diagrams due to
Lee (1959) and Akers (1978)

» Critical refinement—-Ordered BDDs—due to Bryant (1986)
» Refinement imposes some restrictions on structure

» Restrictions needed to make result canonical representation

A little terminology
» A BDD is a directed acyclic graph
» Graph: vertices connected by edges
» Directed: edges have direction (draw them with an arrow)
» Acyclic: no cycles possible by following arrows in graph

» Often see this shortened to “DAG”
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N DAGSs -- a reminder of some technicalities...

f vertex
O\O

X B4 O+q
\ ", |._directed j \
}) edge }) edge })
O 0L O\‘O
A graph A directed graph A directed acyclic graph
vertices + edges ---but not acyclic ...note that a “loop” is

not a directed cycle,
you are only allowed to
follow edges along
direction that the
arrow points
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Binary Decision Diagrams

N Big Idea #1: Binary Decision Diagram

» Turn a truth table for the Boolean function into a Decision Diagram
Vertices =

Edges =

Leaf nodes =

» In simplest case, resulting graph is just a tree

N Aside

» Convention is that we don’t actually draw arrows on the edges in the
DAG representing a decision diagram

» Everybody knows which way they point, implicitly
» Point from parent to child in the decision tree

N Look at a simple example...
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Binary Decision Diagrams

Truth Table Decision Tree

B
g
B
~

()

——— D D D @
—— D - D
—_— - D - D -
LR}

OooOoonon

* Vertex represents a decision

* Follow green (dashed) line for value 0
* Follow red (solid) line for value |

* Function value determined by leaf value.
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Binary Decision Diagrams

N Some terminology

A ‘variable’ vertex
The ‘lo’ pointer

to ‘lo’ son or The ‘hi’ pointer
child of the ¥ Ll to *hi’ son or
vertex Y child of the

@ B @ vertex

A ‘constant’ vertex
R at the bottom
m m n m m n / leaves of the tree

The ‘variable ordering’, which is the
order in which decisions about vars
are made. Here, it’s X1 X2 X3
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X Note: Different variable orders are possible

Order for this subtree is
X2 then X3

Here, it’s
X3 then X2

o
.
o
.
0
0
. .
o o
o+ o+
> o
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Binary Decision Diagrams

N Observations
» Each path from root to leaf traverses variables in a some order

» Each such path constitutes a row of the truth table, ie, a decision about
what output is when vars take particular values

» But we have not yet specified anything about the order of decisions
» This decision diagram is not canonical for this function

Y Reminder: canonical forms

» Representation that does not depend on the logic gate implementation
of a Boolean function

» Same function (ie, truth table) of same vars always produces this exact
same representation

» Example: a truth table is canonical
a minterm list, for our function f = X m(3,5,7), is canonical
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Binary Decision Diagrams

X What’s wrong with this representation?
» It’s not canonical,
» Way too big to be useful
» ...in fact it’s every bit as big as a truth table: 1 leaf per row

N Big idea #2: Ordering

» Restrict global ordering of variables

Means:

» Note

» It’s OK to omit a variable if you don’t need to check it to decide
which leaf node to reach for final value of function
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Total Ordering

W Assign arbitrary total ordering to variables
| 2 X»] < X2 < X3
» Variables must appear in this specific order along all paths

oK

N Properties

» No conflicting variable assignments along path (see each
var at most once walking down the path).

» Simplifies manipulation
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Binary Decision Diagrams

N OK, now what’s wrong with it?
» Variable ordering simplifies things...
» ...but representation still too big
» ...and still not necessarily canonical

' Original decision diagram

Equivalent, but
different diagram

o
.
o
5
0
0
. .
o o
o+ o+
> o
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Binary Decision Diagrams

N Big Idea #3: Reduction

» Identify redundancies in the DAG that can remove unnecessary nodes
and edges

» Removal of X2 node and its children, replacement with X3 node is an
example of this sort of reduction

X Why are we doing this?
» To combat size problem: want DAGs as small as possible

» To achieve canonical form: for same function, given total variable
order, want there to be exactly one
graph that represents this function
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Reduction Rules

Y Reduction Rule 1: Merge equivalent leaves

\/.

» ‘a’ is either a constant | or constant 0 here
» Just keep one copy of the leaf node

» Redirect all edges that went into the redundant leaves
into this one kept node
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Reduction Rules

Apply Rule 1 to our example...
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Reduction Rules

N Reduction Rule 2: Merge isomorphic nodes

)

)
.

foy

» Isomorphic: Means 2 nodes with same var and identical children

» You cannot tell these nodes apart from how they contribute to
decisions as you decend thru DAG

» Note: means exact same physical child nodes,
not just children with same labels

» Remove redundant node (extra ‘x’ node here)
» Redirect all edges that went into the redundant node into the one copy
that you kept (edges into right ‘<’ node now into left as well)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Reduction Rules

N Apply Rule 2 to our example
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Reduction Rules

N Reduction Rule #3: Eliminate Redundant Tests

» Test: means a variable node here...
» It’s redundant since both of its children go to same node...
> ...so we don’t care what value x node takes in this diagram
» Remove redundant node

» Redirect all edges into the redundant node (x) into the one child node
(y) of the removed node
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Reduction Rules

N Apply Rule #3 to our example
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Binary Decision Diagrams

X How to apply the rules?

» For now, just iteratively, keep trying to find places the rules “match”
and do the reduction

» When you can’t find any more matches, the graph is reduced

s this how programs really do it?

» Nope, there’s some magic one can do with a clever hash table, but more
about that later, when we start doing algorithms to manipulate BDDs

» Roughly speaking, in real programs you build the BDDs correctly on the
fly--you never build a bad, noncanonical one then try to fix it.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

BDDs: Big Results

N Recap: what did we do?
» Start with any old BDD
» ...ordered the variables => Ordered BDD (OBDD)
» ...reduced the DAG => Reduced Ordered BDD (ROBDD)

N Big result

» Same function always generates exactly same DAG...
» ...for a given variable ordering

» ie, they are identically the same graph
» Nice property to have: simplest form of DAG is canonical
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BDDs: Representing Simple Things

X Note: can represent any function as a ROBDD
» Here is the ROBDD for the function f(x1,x2,...xn) = 0

» Here is the ROBDD for the function f(x1,x2,...xn) = |

» Here is the ROBDD for the function f(xl, ..., X, ..., xn) = x
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Binary Decision Diagrams

N Assume variable order is X1, X2, X3, X4

Typical Function Odd Parity
@ < (X txy )%y
/
@ * No vertex labeled x, .
Linear
— independent of x, representation

* Many subgraphs shared
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Sharing in BDDs

N Technical aside

» Every node in a BDD (in addition to the root) represents some Boolean
function in a canonical way

X DX, ODX;D X,

» BDDs are incredibly good at extracting and representing this kind of
sharing of subfunctions in subgraphs
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BDD Applications

W Aside: some nice, immediate applications
» Tautology checking

» Was complex with the cubelist representation, required divide
&conquer algorithm, lots of manipulation

» With BDDs, it’s trivial. Just see if the BDD for function ==

» Satisfiability == can you find assignment of 0s & |s to vars to make the
function == I?

» No idea how to do it with cubelists
» With BDDs, any path to node from root is a solution

Satisfiability: X, X, X; X, =

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Page 14




BDD Variable Ordering

N Question: Does variable ordering matter? YES!

ay by +a, by +aszby

Good Ordering Bad Ordering

Linear Growth Exponential Growth

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

Variable Ordering: Consequences

N Interesting problem

» Some problems that are known to be exponentially hard to solve
work out to be very easy on BDDs

» Trouble is, they are only easy when the size of the BDD that
represents the problem is “reasonable”

» Some input problems make nice (small) BDDs,
others make pathological (large) BDDs

» No universal solution (or else we’d always be able to solve
exponentially hard problems easily)

N How to handle?

» Variable ordering heuristics: make nice BDDs for reasonable probs
» Basic characterization of which problems never make nice BDDs
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Variable Ordering

W Analogy to “bit-serial” computing useful here...

f(xl, x2, x3, ..., xn) K-Bit

Memory

—> Bit-Serial —> or
Processor 1

N Operation
» Suppose this machine reads your function inputs 1 bit at a time...
» ...ie, in a certain variable order.

» Stores information about previous inputs to correctly deduce function
value from remaining inputs.

N Relation to OBDD Size

» If this ‘machine’ requires K bits of memory at step i...
» ...then the OBDD has ~ 2X branches crossing level i.
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Variable Ordering: Example

ay bytaybytazbs

at level 3
8 edges cross

at level 3
3 edges cross
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Variable Ordering: Intuition

W Idea: Local Computability

» Inputs that are closely related should be kept near each other in the
variable order

» Groups of inputs that can determine the function value by themselves
should be close together

ay by +a; by +aszb;
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Variable Ordering: Intuition

NIdea: Power to control the output

» The inputs that “greatly affect” the output should be early in the
variable order

» “Greatly affect” means almost always changes the output when this
input changes

» Example: multiplexer

order: S <D0 <DI order: DI <D0<S
DO »

DI» —> out

s
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Variable Ordering

X 'What use is any of this? Suggests ordering heuristic...

» Suppose | have a logic network like this...

X, —»

X, —» ::D-» —>D—>

X; —>
X, —» TS —

_’ _»
X, —» —>|:|

» Now, redraw to represent circuit as linear arrangement of its gates

— output

» Constraint: all the output-to-input wires go left-to-right in this order
» Called a topological ordering

w=4

A N
(/ﬂ'

Primary inputs represented by ‘“source” blocks
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> function output

A4

Variable Ordering

> | > function output
EH

N Parameters
» Number of primary inputs = n
» “Bandwidth” = w = number of wires cut at widest point

N Useful result: Size upper bound [Berman, IBM]
» Can represent with OBDD with <= n 2" nodes
» Order variables in reverse of source block ordering
» Means list vars right to left in the above picture...
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Variable Ordering

X Reasoning here goes like this...
» All info about vars > i encoded in w bits...

> ...so at most 2" distinct decisions, which bounds number of branch
destinations from levels < i to levels <= i

i
-
-

—>
> — >
N Bf -~

<=2W
ﬂ' ||
BDD \@t

leaves . BDD root
fix of
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Variable Ordering

N Linear circuit example: 4 bit adder sum, MSB

» How to order vars for a simple 4-bit carry ripple adder, Sum MSB?

a;b; a,b, a/b, ayb,
Wt W N

4 bit ripple adder
s,”

W Answer: Use nice property of our adder circuit
» It has Constant bandwidth => Linear OBDD size

mﬁ_:w Eﬁ—;m EE-> 213 %D
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Aside: Variable Ordering

N Generalization
» Many carry chain circuits have constant bandwidth
» Examples
» Comparators
» Priority encoders
» ALUs
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Variable Ordering Heuristics

N Heuristic ordering methods
» Take advantage of this “linear ordering” idea
» Input:  gate-level logic network we want to build a BDD for
» Output: global variable ordering to use
» Method: topological analysis, aka, ‘“walking’’ the network graph...

Input Netlist Ordering

o

b<a<d<c<e?

c D a<b<c<d<e?
d E e<d<c<b<a?
€

o
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Example: Dynamic Weight Assignment Heuristic

N Concrete example: Minato’s heuristic
» Pick a primary output; put a weight “1” there

» For each gate with weights on its output but not its input, “push” the
weight thru to the inputs, dividing by the number of inputs. Each input
gets equal weight.

» If there is fanout (one wire goes to >= 2 inputs) then ADD the weights
to get the new weight for this wire.

» If there is more than 1 output, start with the one that has the deepest
logic depth from the inputs

» Continue till all primary inputs are labeled

' D . ° D
e ) >— : ) >—
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Dynamic Weight Assignment

N Minato’s heuristic
» Pick the primary input with the biggest weight. Put it first in var order.

» Erase the subcircuit (wires, input pins, entire gates if they have only one
‘‘active” pin left) that are reachable only from this primary input we
selected.

» Go back and reassign the weights again in the new, smaller circuit.

I . b D
D
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Dynamic Weight Assignment

N Just continue
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Dynamic Weight Assignment

N Minato’s method

» Iteratively picks the next variable in the order using the simple weight
propagation idea

» Tries to order all vars starting from the ‘“deepest” output

» Deletes the ordered var, erases wires/gates, repeats till all ordered

N How well does it work?
» Fairly well. Very simple to do. Lots better than random order.
» OK complexity == O( #gates * #primary inputs)

N Notes
» There are other, better, more complex heuristics

» Also, the ordering does NOT have to be static, it can change dynamically
as the BDD is used
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Variable Ordering Heuristics

Alternative: Suppose your network is a tree

» Start at the output

» Do a postorder traversal of tree

» Write down variables in order visited by the tree walk
N Remember postorder walk?

» Visits the nodes, ie, gates, in a
deterministic order

» Ignore primary inputs (for now) A:E
B

postorder (TreeNode) { | B5

if (TreeNode.TopChild != null) C _E \
postorder( TreeNode.TopChild) root

if (TreeNode.BotChild != null) : D—1Bé B8
postorder( TreeNode.BotChild) B3 /

. F :|
write out TreeNode name c—B7

} =0

Nodes finished as:
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Variable Ordering Heuristics

N In our case

A
» Tree might not be binary -- not a bigdeal p :EI
B5

» Just use some consistent order for
exploring the children nodes

» Visits variables in reverse order
X Why is this a good heuristic?
» It makes a linear ordering of ckt

» Bandwidth is O(logN) for N blocks
» OBDD size is O(N’)

o
C

AB
Highest <

EF D HI G

Lowest
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Variable Ordering Heuristics

X What if network is not a tree?
» More general, more common case
» Some terminology: Reconvergent fanout

» When one input or intermediate output has multiple paths to the
final network output, fanout is called reconvergent

» If you don’t have a tree, you have this

Q Bl
B5 Reconvergent fanout

c B2

D1 B6 B8
E B3
F N

G—1B7
"
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Variable Ordering Heuristics

N For general logic networks

» Still try to do a depth-first walk of the graph, output to inputs

» Try to walk the graph like it was a tree, giving priority
to nets that have multiple fanouts

SEN
:E\% /E_

— I mm

An ordering...
B<A<C<D<E<F<G<H<I
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Ordering: Results

Function Class Best Worst
Addition linear exponential
Symmetric linear quadratic
Multiplication exponential exponential

N General Experience
» Many tasks have reasonable OBDD representations
» Algorithms remain practical for up to millions of OBDD nodes.

» Heuristic ordering methods are generally OK, though it may take
effort to find a heuristic that works well for your problem

» So-called dynamic variable ordering -- reordering your BDD vars as
your BDD gets used, to improve the size -- is essential today
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Binary Decision Diagrams

Variants and optimizations
» Refinements to OBDD representation
» Do not change fundamental properties
N Primary Objective
» Reduce memory requirement
» Critical resource
» Constant factors matter
N Secondary Objective
» Improve Algorithmic Efficiency
» Make commonly performed operations faster

N Common Optimizations
» Share nodes among multiple functions
» Negated arcs
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Binary Decision Diagrams: Sharing

N Sharing, revisited

» We mentioned BDDs good at representing shared subfunctions

» Consider this example from a 4 bit adder: sum msb and carry out

Positive

Negative -
e
C

arty Chain

Chain

Cout
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Sharing: Multi-rooted DAG

N Don’t need to
represent it twice

» A BDD can have multiple
‘entry points’, or roots

» Called a multi-rooted DAG

N Recall

» Every node in a BDD
represents some Boolean
function

» This multi-rooting idea just
explicitly exploits this to
better share stuff
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Sharing: Multi-rooted DAG

X Why stop at 2 roots?

» For many collections of functions,
there is considerable sharing

» Idea is to minimize size wrt several
separate BDDs by max sharing

N Example: Adders

» Separately
» 51 nodes for 4-bit adder
» 12,481 for 64-bit adder
» Quadratic growth

» Shared
» 31 nodes for 4-bit adder
» 571 nodes for 64-bit adder
» Linear growth
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BDD Sharing: Issues

N Storage model
» Single, multi-rooted DAG
» Function represented by pointer to node in DAG
» Be careful to apply reduction ops globally to keep all canonical

» Every time you create a new function, gotta go look in your big
multi-rooted DAG to see if it already exists, inside, somewhere

N Storage management
» User cannot know when storage for node can be freed
» Must implement automatic garbage collection...
» ...or not try to free any storage
» Significantly more complex programming task
W Algorithmic efficiency
» Functions equivalent if and only if pointers equal
» if (pl ==p2) ...
» Can test in constant time
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Optimization: Negation Arcs

X Concept
» Dot on arc represents complement operator
» Inverts function value of BDD reachable “below the dot”

» Can appear on internal or external arc
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Canonical Form

N Must have conventions for use of negative arcs
» Express as series of transformation rules

» These are really nothing more than DeMorgan laws

Rule #1 Rule #2

No Double Negations No Negated Hi Pointers
$ = | Q{ — q
4
, 4
~’ »’
4
U \ 4 \
5’ 5’
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Aside: Why Does This Work...?

Just like Shannon expansion, applied again

» ..with prudent use of the basic DeMorgan laws.

No Negated Hi Pointers

o
o 4
Q o
O o
K D
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Aside: Why Does This Work...?

Just like Shannon expansion, applied again

No Negated Hi Pointers

:_d&
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Transformation Rules (Cont.)

Rule #3 Rule #4

No Negated Constants No Hi Pointers to 0

Sh peg
A A
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Transformation Example

N Example of applying the rules
» Tends to get ‘“nand-like” DAGs

~a+~b
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Negation Arc Examples
All Adder Functions

MSB of Sum
S3 Cout

Odd Parity
@)
0y

© R. Rutenbar 2001, CMU 18-760, Fall 2001 61

Effect of Negation Arcs

N Storage savings
» At most 2X reduction in number of nodes

W Aside: can people really do this “negation” thing in their
heads by looking at a normal BDD?

» Nope
» Takes lots of practice even to be able read these things

» Just useful because of the 2X space efficiency

N Algorithmic improvement
» Can complement function in constant time
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Y OBDD

» Reduced graph representation of Boolean function
» Canonical for given variable ordering

N Selecting good variable ordering critical
» Minimize OBDD size
» Circuit embeddings provide effective guidance

N Variants and optimizations
» Reduce storage requirements
» Improve algorithmic efficiency
» Complicate programming and debugging
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