
Page 1

© R. Rutenbar  2001          Fall 18-760  Page 1

(Lec 1) Advanced Boolean Algebra(Lec 1) Advanced Boolean Algebra
Assumptions

You’ve seen basic Boolean algebra, and manipulations
You’ve seen simplification-related ideas

Kmaps, Quine-McCluskey simplification, minterms, SOP, etc

What’s left...?  Actually, a lot...
Decomposition strategies

Ways of taking apart complex functions into simpler pieces
A set of standard advanced concepts, terms you need to see to be 

able to read the DeMicheli book (or the literature)
Computational strategies 

Ways to think about Boolean functions that allow them to be 
manipulated by programs

Interesting applications
When you have new tools, there are some neat new things to do

© R. Rutenbar  2001          Fall 18-760  Page 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar, 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.



Page 2

© R. Rutenbar  2001          Fall 18-760  Page 3

HandoutsHandouts
Physical

Lecture 01 -- Advanced Boolean Algebra

Electronic
Nothing today

© R. Rutenbar  2001          Fall 18-760  Page 4

Where Are We?Where Are We?
Doing the Boolean background you need...

27    28 29    30    31    
3   4     5    6    7    

M      T      W     Th    F

10   11    12    13    14    
17     18     19     20     21     
24    25    26    27    28    

Aug
Sep

Oct 1    2    3    4    5    
8   9    10    11    12   

15        16     17     18     19
22 23     24    25    26    
29    30    31    1     2    
5   6    7    8    9    Nov
12   13    14    15      16      
19     20     21    22     23     
26     27     28   29     30       
3    4     5   6   7    

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis 
Geometric data structs & apps

Dec

Thnxgive

10    11     12   13   14    16



Page 3

© R. Rutenbar  2001          Fall 18-760  Page 5

ReadingsReadings
De Micheli 

Chapter 1  -- once over, lightly
Chapter 2 -- just Section 2.7
Chapter 7 -- just Section 7.3
Don’t worry if it doesn’t all make sense yet, the  notes will explain

© R. Rutenbar  2001          Fall 18-760  Page 6

Advanced Boolean AlgebraAdvanced Boolean Algebra
Useful analogy to calculus...

At some point somebody told you that you could represent complex
functions like exp(x)  using simpler functions

If you only get to use 1,x,x2,x3,x4,... as the pieces...

...turns out exp(x) = 1 + x + x2/2! + x3/3! + ...

Later, somebody told you there was a general formula, called the 
Taylor series expansion 

f(x) = f(0) + f’(0)/1! x + f’’(0)/2! x2  + f’’’(0)/3! x3  + ...

If you took some more math, or EE, you might have found out that
there were several other ways of representing arbitrary f(x)

If it’s a periodic function, can use a Fourier series

Other polynomials, eg, Legendre polyomials

Question: Anything like this for Boolean functions?



Page 4

© R. Rutenbar  2001          Fall 18-760  Page 7

Boolean DecompositionsBoolean Decompositions
Yes.  Called the Shannon Expansion
A little refresher in notation first...

F is a Boolean function of n variables x1, x2, ..., xn
Let B = {0,1}  then we write formally:

We often refer to the variables x1,x2,..xn by lumping them together in a 
set   {x1, x2, ..., xn} called the support of F, or sup(F).

F: Bn -> B
our function F

takes any (x1,x2,...xn) in {0,1}
n

a value in {0,1}

and maps it into

© R. Rutenbar  2001          Fall 18-760  Page 8

Shannon ExpansionShannon Expansion
Suppose we have a function F(x1,x2, ..., xn)

Define a new function if we set one of the xi=constant
Example:   F(x1, x2, ..., xi=1, ..., xn)
Example:   F(x1, x2, ..., xi=0, ..., xn)

Easy to do one by hand

Important to remember that result is a new function
Note that new function no longer depends on this variable 

F(x,y,z) = xy + xz’ +y(x’z +z’)

F(x=1,y,z) = 

F(x,y=0,z) = 



Page 5

© R. Rutenbar  2001          Fall 18-760  Page 9

Shannon Expansion:  CofactorsShannon Expansion:  Cofactors

Turns out to be an incredibly useful idea
Several alternative names and notations

Shannon Cofactor with respect to xi

Write F(x1, x2, ..., xi=1, ...xn) as Fxi

Write F(x1, x2, ..., xi=0, ...xn) as Fxi ’  or Fxi

Often see as just    F(xi=1)  F(xi=0) which is easier to type

Restriction of F on variable xi

Write F(x1, x2, ..., xi=1, ...xn) as    F xi=1

Write F(x1, x2, ..., xi=0, ...xn) as    F xi=0

Why are these useful functions to get from F?

© R. Rutenbar  2001          Fall 18-760  Page 10

Shannon Expansion TheoremShannon Expansion Theorem
Shannon Expansion Theorem

Given any Boolean function F(x1, x2, ..., xn)  and
any xi in the support of F( ),   F( ) can be represented as

Pretty easy to prove...

F(x1, x2, ..., xn)  = xi • F(xi=1)  + xi ’ • F(xi=0)



Page 6

© R. Rutenbar  2001          Fall 18-760  Page 11

Shannon Expansion: Another ViewShannon Expansion: Another View

function
F

a
b

z

•
•
•

function
F0 x

function
F1 x

F

mux

same as

x

0
1

sel

© R. Rutenbar  2001          Fall 18-760  Page 12

F(x=1)  = y • F(x=1, y=1)  +  y ’ • F(x=1,y=0)

F(x=0)  = y • F(x=1, y=1)  +  y ’ • F(x=1,y=0)

Shannon Expansion:  Multiple VariablesShannon Expansion:  Multiple Variables
Can do it on more than one variable, too

Just keep on applying the theorem
Example

F(x,y,z,w) = x • F(x=1)  +  x ’ • F(x=0)   expanded around x

Expand each
cofactor

around y

F(x,y,z,w) = xy • F(x=1,y=1)  + x’y • F(x=0,y=1)        
+ xy’ • F(x=1,y=0)  + x’y’ • F(x=0,y=0) 

=  expanded around variables x and y  



Page 7

© R. Rutenbar  2001          Fall 18-760  Page 13

Shannon Cofactors:  Multiple VariablesShannon Cofactors:  Multiple Variables
BTW, there’s notation for these as well

Shannon Cofactor with respect to xi and xj
Write F(x1, x2, ..., xi=1, ..., xj=0, ..., xn) as Fxi xj’  or Fxi xj
Ditto for any number of variables xi, xj, xk, ...
Notice also that order doesn’t matter:  (Fx )y  = (Fy)x = Fxy

For our example

Again, remember:  each of the cofactors is a function, not a number

F(x,y,z,w) = xy • Fxy + x’y • Fx’y + xy’ • Fxy’ + x’y’ • Fx’y’

Fxy = F(x=1, y=1, z, w) = a Boolean function of z and w

© R. Rutenbar  2001          Fall 18-760  Page 14

Properties of CofactorsProperties of Cofactors
What else can you do with cofactors?

Suppose you have 2 functions F(X) and G(X), where  X=(x1,x2,...xn)
Suppose you make a new function H, from F and G, say

H = F
H = (F•G) ie,   H(X) = F(X) • G(X)
H = (F + G) ie,   H(X) = F(X) + G(X)
H = (F ⊕ G) ie,   H(X) = F(X) ⊕ G(X)

Interesting question
Can you tell anything about H’s cofactors from those of F, G?
For example, 

(F•G)x = what? (F ’)x = what? etc.



Page 8

© R. Rutenbar  2001          Fall 18-760  Page 15

Properties of CofactorsProperties of Cofactors
More nice properties...

Cofactors of F and G tell you everything you need to know

Complements
(F ’)x =  (Fx) ’           
In English:   cofactor of complement is complement of cofactor

Binary boolean operators
(F • G)x = Fx • Gx                cofactor of AND  is AND of cofactors
(F + G)x = Fx + Gx               cofactor of OR  is OR of cofactors

(F ⊕ G)x = Fx ⊕ Gx              cofactor of EXOR  is EXOR of cofactors

In fact, true for ANY binary operator on Boolean functions
Very useful:  can often help in getting cofactors of complex formulas

© R. Rutenbar  2001          Fall 18-760  Page 16

Combinations of CofactorsCombinations of Cofactors
OK, now consider operations on cofactors themselves
Suppose we have F(X), and get Fx  and Fx’

Fx ⊕ Fx’   = ?
Fx • Fx’   =  ?
Fx + Fx’   = ?

Turns out these are all useful new functions
We’ll start with most obvious one to get...
Need to remember some more calculus...



Page 9

© R. Rutenbar  2001          Fall 18-760  Page 17

DerivativesDerivatives
Remember way back to how you defined derivatives?

Suppose you have y = f(x)

x

y=f(x)

defined as slope of curve as
a function of point x

Considered    f(x + ∆) - f(x)
∆

x x+∆

f(x+∆)
f(x)

Let ∆ go to 0 in the limit and you got df(x)
dx

© R. Rutenbar  2001          Fall 18-760  Page 18

Boolean DerivativesBoolean Derivatives
OK, do Boolean functions have derivatives?

Actually, yes.  Trick is how to define them...

Basic idea
For real-valued f(x), df/dx tell hows f changes when x changes
For 0,1-valued Boolean function, we can’t change x by small ∆
Can only change 0 <-> 1, but can still ask how f changes with x ... 

f(x + ∆) - f(x)
∆

df/dx = f(x=0) ⊕ f(x=1)

Real-valued f(x): Binary-valued f(x):

Compares value of f( ) when
x=0 against when x=1 ;
==1 just if these are different

df/dx = lim
∆−>0



Page 10

© R. Rutenbar  2001          Fall 18-760  Page 19

Boolean DifferenceBoolean Difference
Hey, we’ve seen these pieces before!

df/dx = exor of the Shannon cofactors with respect to x
Also often written as  ∂f/∂x
Called the Boolean Difference of function f wrt variable x

It also behaves sort of like regular derivatives...
Order of vars doesn’t matter

∂f / ∂x ∂y = ∂f / ∂y ∂x
Derivative of exor is exor of derivatives

∂( f ⊕ g ) / ∂x  = ∂f / ∂x ⊕ ∂g / ∂x
If function f is actually constant (f=1 or f=0, always, for all inputs)

∂f / ∂x  = 0  for any x 
If function f doesn’t depend on var x  (ie change x, f never changes)

∂f / ∂x  = 0
∂( f • g ) / ∂x  = f •  ∂g / ∂x
∂( f + g ) / ∂x  = f ’ +  ∂g / ∂x

© R. Rutenbar  2001          Fall 18-760  Page 20

Boolean DifferenceBoolean Difference
continued...

If f is a function only of x  (only changing x can change f)
∂f / ∂x  = 1

But some things are just more complex, though...
Derivatives of (f •g) and (f + g) don’t work the same...

∂( f • g ) / ∂x  = f • ∂g / ∂x  ⊕ g • ∂f / ∂x ⊕ ( ∂f / ∂x • ∂g / ∂x )

∂( f + g ) / ∂x = f ’ • ∂g / ∂x  ⊕ g ’ • ∂f / ∂x ⊕ ( ∂f / ∂x • ∂g / ∂x )

Why?  
Because AND and OR on Boolean values don’t always behave like 
ADDITION and MULTIPLICATION on real numbers



Page 11

© R. Rutenbar  2001          Fall 18-760  Page 21

Boolean Difference: Gate-level ViewBoolean Difference: Gate-level View

Try the obvious “simple” examples for ∂f / ∂x  

x f x
fy

x
fy

x
y f

Interpretation:  when ∂f / ∂x  = 1, then f changes as x changes

© R. Rutenbar  2001          Fall 18-760  Page 22

Interpreting the Boolean DifferenceInterpreting the Boolean Difference

A BIG
BLOB OF

LOGIC

F(a,b,c,....,w, x)•
•
•

a
b
c

x
w

When ∂F / ∂x (a,b,c, ..., w)  = 1, it means that ...



Page 12

© R. Rutenbar  2001          Fall 18-760  Page 23

Boolean Difference: ExampleBoolean Difference: Example
Try another example

1 bit
full add

a
b

cin
s
cout

s       = a ⊕ b ⊕ cin
cout  = ab + (a + b)cin

∂s / ∂a  = 

∂cout / ∂cin  = 

© R. Rutenbar  2001          Fall 18-760  Page 24

Boolean Difference:  ExampleBoolean Difference:  Example
Example

2:1 mux

a

b
out out  = as ’  + bs

∂out / ∂s  =

∂out / ∂a  = 

0

1

sel

s



Page 13

© R. Rutenbar  2001          Fall 18-760  Page 25

Boolean DifferenceBoolean Difference
Things to remember about Boolean Difference

Not as easy to assign a physical interpretation like ordinary derivative 
(ie, no “slope of the curve” sort of stuff)

∂f / ∂x is another Boolean function, but it does not depend on x

It can’t, it’s made out of the cofactors wrt x, and they eliminate all 

the x and x’ terms by setting them to constants

OK, it’s cute, but is it useful...?
Sure, let’s look at a simplified application in testing

© R. Rutenbar  2001          Fall 18-760  Page 26

Application:  TestingApplication:  Testing
Suppose you want to test some logic

You want to figure out what inputs to apply to figure out if it works

So, you look at the manufacturing process and try to figure out what 
actually breaks

These are called defects
The effect of the defect is called a fault
How you model it in your testing procedure is the fault model

f(X)X
You can’t afford to apply all possible inputs

Example: 50 inputs = 1000 trillion patterns



Page 14

© R. Rutenbar  2001          Fall 18-760  Page 27

Testing Testing 
Most common fault model is stuck-at model

Assume individual wires are stuck at logic 1 (sa1) or logic 0 (sa0)

a
b

c
d
e

f(a,b,c,d,e)

a
b

c
d is sa1

e

f(a,b,c,d,e)

This line is stuck at 1

1

© R. Rutenbar  2001          Fall 18-760  Page 28

TestingTesting
So, what’s a test here?

A pattern of inputs that makes an output that is wrong, ie, different 
what it should be if the fault was not present

Usually try to generate tests to detect specific faults

If you have a big list of possible faults, you generate a test set and ask 
what fraction of all the faults will get detected, called the fault coverage

a = ?
b = ?

c = ?
d = 0

e = ?

f(a,b,c,d,e)

If this line is to be tested for sa1, 
you have to apply a 0 to it...

...then see if you get an output f that 
was wrong, ie, it still looks like d was 1, 
though we know it was 0



Page 15

© R. Rutenbar  2001          Fall 18-760  Page 29

TestingTesting
OK, so how do you do it?

For this simplified problem, easy
What do you want...?

An input pattern abcde...
...where abc0e  makes f output one value
...and     abc1e makes the f output a different value
...which means you can see if the line is stuck
Note: to test sa1 you apply ab0de, for sa0 you apply ab1de

We already know how to write this more clearly
Want an input pattern where F(a,b,c,d=0,e) != F(a,b,c,d=1,e)

Same as asking for ∂f / ∂d = 1

Really want a pattern that makes cofactors wrt d different

© R. Rutenbar  2001          Fall 18-760  Page 30

TestingTesting
For our example...

a =  
b =  

c =  
d = 0
e =  

f(a,b,c,d,e)=

f(a,b,c,d,e) = ab + cd’e’

∂f / ∂d = 

sa1



Page 16

© R. Rutenbar  2001          Fall 18-760  Page 31

Back to Combinations of CofactorsBack to Combinations of Cofactors
Other combinations of cofactors also important

Fx • Fx’   =  ?
Fx + Fx’   = ?

Look at example to get some insight
f(a,b,c) = ab + bc + ac
fa= fa’ =
fa • fa’   = fa + fa’   =

f(a,b,c) fa fa ’ fa • fa ’ fa+ fa ’

0 0 0
0 1 0
0 1 0
1 1 1
0 0 0
1 1 0
1 1 0

a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 1 1 1

© R. Rutenbar  2001          Fall 18-760  Page 32

Combinations of CofactorsCombinations of Cofactors
Observe

fa • fa’   =  1 just in places where f would be 1 independent of value of a
fa + fa’   = 1 if either f(a=0,b,c)=1      or        f(a=1,b,c)=1 

But...this idea is hard to see in a truth table

f(a,b,c) fa fa ’ fa • fa ’ fa+ fa ’

0 0 0
0 1 0
0 1 0
1 1 1
0 0 0
1 1 0
1 1 0

a b c

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1 1 1 1



Page 17

© R. Rutenbar  2001          Fall 18-760  Page 33

Understanding Combinations of CofactorsUnderstanding Combinations of Cofactors
Alternative perspective that offers some more insight

Recall Boolean cubes
You can plot a real function y=f(x)

You can also “plot” a Boolean function f(a,b,c)
Of course, each axis only goes from 0 to 1
And, the only points are at the corners of this cube

y

x

a
b

c

000 100

110010

001 101

111011

Corners that differ by just
1 bit are called adjacent

© R. Rutenbar  2001          Fall 18-760  Page 34

Boolean CubesBoolean Cubes
Represent a function by corners where f=1

f(a,b,c) = ab + bc + ac

Note that product terms appear on cube as sets of 2k adjacent corners
product = 0 literals, eg “1” => all 8 corners
product = 1 literal eg  a =>  4 corners
product = 2 literals eg  ab’  => 2 corners
product = 3 literals eg  ab’c’  =>  1 corner, ie, a minterm

a
b

c

000 100

110010

001 101

111011



Page 18

© R. Rutenbar  2001          Fall 18-760  Page 35

Aside:  Literals and other TermsAside:  Literals and other Terms
Consider this function:

ab’c + a’bc + acd + e + af’

How many literals are there?

How many product terms?

Is this SOP or POS?

© R. Rutenbar  2001          Fall 18-760  Page 36

Plotting the CofactorsPlotting the Cofactors
Look at cubes here...

f = ab + bc + ac
fa =  b+c
fa’   =  bc

a
b

c

000 100

110010

001 101

111011 000 100

110010

001 101

111011

000 100

110010

001 101

111011

f(a,b,c)

fa

fa’

Remember that
this is ‘a’ axis



Page 19

© R. Rutenbar  2001          Fall 18-760  Page 37

Plotting Combinations of CofactorsPlotting Combinations of Cofactors
Look at cubes here...

f = ab + bc + ac
fa • fa’   =  bc
fa + fa’   =  b+c

a
b

c

000 100

110010

001 101

111011 000 100

110010

001 101

111011

000 100

110010

001 101

111011

f(a,b,c)

fa • fa’

fa + fa’

Remember that
this is ‘a’ axis

© R. Rutenbar  2001          Fall 18-760  Page 38

Interpreting Combinations of CofactorsInterpreting Combinations of Cofactors
Nice geometric interpretation

a
b

c

000 100

110010

001 101

111011

000 100

110010

001 101

111011

fa • fa’  is called the consensus
of f wrt a, Ca( f )(b,c)

fa + fa’  is called the smoothing
of f wrt a, Sa( f )(b,c)

Interpretation: keep corners
where f=1 independent of “a”

Interpretation: add corners
where adjacent “a” corner = 1



Page 20

© R. Rutenbar  2001          Fall 18-760  Page 39

Containment Props for Combinations of CofacContainment Props for Combinations of Cofac

One more perspective on Cx(f) , Sx(f) , and ∂f / ∂x

Containment properties
Remember basic set theory...?   

a   b   c

d   e   f

b   c    x   y

set P

set Q

a   b   c

d   e   f

x   y

intersection P ∩ Q 

a   b   c

d   e   f

x   y

union P ∪ Q 

a   b   c

d   e   f

x   y

difference P − Q 

© R. Rutenbar  2001          Fall 18-760  Page 40

Containment PropertiesContainment Properties
Think about Boolean functions as sets of minterms

Not entirely unfamiliar, you should have seen somewhere notation like:

Now, we just explicitly reformulate this as 

Who cares?
We can now ask containment questions about functions... 
Like:   is f “bigger than” g, ie,  f ⊇ g

f(a,b,c) = Σ m(0,3,5,7) = m0 + m3 + m5 + m7
= a’b’c’ + a’bc + ab’c + abc

f(a,b,c) = {m0, m3, m5, m7}
=  set of minterms
=  set of corners of the cube when f plotted



Page 21

© R. Rutenbar  2001          Fall 18-760  Page 41

Containment PropertiesContainment Properties

Interesting containment property:  Ca(f)   f     Sa(f)

a
b

c

000 100

110010

001 101

111011

000 100

110010

001 101

111011

Consensus Ca( f ) is smaller Smoothing Sa( f ) is bigger

Actually: consensus is biggest
function independent
of var ‘a’ that’s still ‘inside’ f

Actually: smoothing is smallest
function independent 
of var ‘a’ that contains f

© R. Rutenbar  2001          Fall 18-760  Page 42

Containment PropertiesContainment Properties
How would you prove something like this...?

Consensus is biggest function independent of var ‘a’ that’s still ‘inside’ f



Page 22

© R. Rutenbar  2001          Fall 18-760  Page 43

Containment PropertiesContainment Properties
How would you prove something like this...?   cont.

© R. Rutenbar  2001          Fall 18-760  Page 44

Consensus and SmoothingConsensus and Smoothing
Additional properties

Like Boolean difference, can do with respect to more than 1 var
Example: Cxy(f) =Cy ( Cx(f) ) = fxy’ • fx’y’ • fxy • fx’y

Example: Sxy(f) =Sy ( Sx(f) ) = fxy’ + fx’y’ + fxy + fx’y

Alternative names:  Quantification
In logic (predicate calculus over truth values) when you have a formula 
and want to get rid of a variable, the term is “quantification”
Two kinds of quantifiers

“For all x”   ∀ x called universal quantification
“There exists x”   ∃ x       called existential quantification

Back to cofactors...
Consensus Cx(f) is also written (∀ xf), called 
universal quantification of function f wrt variable x. 
Smoothing Sx(f) is also written  (∃ xf), called 
existential quantification of function f wrt variable x
Both of these things -- (∀ xf), (∃ xf) -- are new functions



Page 23

© R. Rutenbar  2001          Fall 18-760  Page 45

Quantification...?Quantification...?
What does this really mean?  Look at Universal quantify

function
F

a
b

z

•
•
•

function
F0 x

function
F1 x

F

and

quantify

(∀ x F) ( all original vars but x)  

© R. Rutenbar  2001          Fall 18-760  Page 46

QuantificationQuantification
Why “quantification”...?

Quantification is about “abstracting away” variables

Ponder the names a little...
(∀ x F)(vars except x)

(∃ x F) (vars except x)



Page 24

© R. Rutenbar  2001          Fall 18-760  Page 47

QuantificationQuantification

F(x=0)0 x

F(x=1)1 x

and

F(x=0)0 x

F(x=1)1 x

or

(∀ x F) ( all original vars but x)  ==1

(∃  x F)   ( all original vars but x)  ==1

© R. Rutenbar  2001          Fall 18-760  Page 48

QuantificationQuantification
Remember!

Cx(f) , Sx(f) , and ∂f / ∂x  are all functions...
..but they are functions of all the vars in support of f except x

There are no ‘x’ vars anywhere in expressions for Cx(f) , Sx(f) , ∂f / ∂x
We got rid of variable x and made 3 new functions

So, are these any good for anything...?
Sure, look at an example in logic network debugging



Page 25

© R. Rutenbar  2001          Fall 18-760  Page 49

Application: Network RepairApplication: Network Repair
Suppose ...

I specified a logic block for you to implement
...but you implemented it wrong.
In particular, you got ONE gate wrong

Goal
Can we deduce how precisely to change this gate to restore the correct 
functionality?
Let’s go with this very trivial test case to see how mechanics work...

f(a,b)
a

b

Specified

F(a,b)
a

b

Got

??

© R. Rutenbar  2001          Fall 18-760  Page 50

Network RepairNetwork Repair
Clever trick

Replace our suspect gate by a 4:1 mux with 4 arbitrary new vars
By cleverly assigning values to d0 d1 d2 d3, we can fake any gate
Question is:  what are the right values of d’s so F is repaired (==f)

F(a,b)
a

b

Repair with...

??

F(a,b,d0,d1,d2,d3)

a
b

Replace with

mux

d0
d1
d2
d3

00

01

10
11

s1 s0



Page 26

© R. Rutenbar  2001          Fall 18-760  Page 51

Aside:  Faking a Gate with a MUXAside:  Faking a Gate with a MUX
Remember...

You can do any function of 2 vars with one 4 input MUX

F(a,b) = a AND b

a
b

mux

0
0
0
1

00

01

10
11

s1 s0

F(a,b) = a EXOR b

a
b

mux

0
1
1
0

00

01

10
11

s1 s0

© R. Rutenbar  2001          Fall 18-760  Page 52

Network Repair:  Using QuantificationNetwork Repair:  Using Quantification
Next trick

Make new function Z(a,b,d0,d1,d2,d3) that =1 just when F==f

F(a,b,d0,d1,d2,d3)

a
b

mux

d0
d1
d2
d3

00

01

10
11

s1 s0

a

b
f(a,b)

exnor
(==)

Z(a,b,d0,d1,d2,d3)

known good version
of logic network



Page 27

© R. Rutenbar  2001          Fall 18-760  Page 53

Using QuantificationUsing Quantification
What now?

Think hard about exactly what we want:

Want to know values for (d0 d1 d2 d3) that,
independent of whatever a, b are, force Z(a,b,d0,d1,d2,d3) = 1

But this is something we’ve seen!
Consensus of function Z wrt variables a,b!  

This is just  any pattern of (d0 d1 d2 d3) that makes
Cab( Z )(d0 d1 d2 d3) == 1        (do you know where a, b went??)

Can also write as quantification:    (∀ ab Z)(d0,d1,d2,d3)

Note: these are both functions of just the d’s

We want any pattern of d’s that makes Cab( Z ) == 1

This pattern is guaranteed to make the mux behave like the correct 
gate, independent of what’s going on with a,b

© R. Rutenbar  2001          Fall 18-760  Page 54

Network Repair via Quantification: ExampleNetwork Repair via Quantification: Example
Don’t believe it...?  Try it...  It’s all mechanics

F(a,b,d0,d1,d2,d3)

a
b

mux

d0
d1
d2
d3

00

01

10
11

s1 s0

a

b
f(a,b)

exnor
(==)

Z(a,b,d0,d1,d2,d3)



Page 28

© R. Rutenbar  2001          Fall 18-760  Page 55

Network Repair via Quantification: ExampleNetwork Repair via Quantification: Example
...mechanics, cont.

© R. Rutenbar  2001          Fall 18-760  Page 56

Repair via QuantificationRepair via Quantification
Mechanical foo, cont.



Page 29

© R. Rutenbar  2001          Fall 18-760  Page 57

Network RepairNetwork Repair
Does it work?  What do these d’s represent?

This example is small...
But in a real example, you have a big network-- 500 inputs, 50,000 gates
When it doesn’t work, it’s a major hassle to go thru in detail
This is a mechanical procedure that can answer this:

Is there a way to change this one gate to make it right?

mux

d0=
d1=
d2=
d3=

00

01

10
11

F(a,b,d0,d1,d2,d3)

a
b

mux

d0
d1
d2
d3

00

01

10
11

s1 s0

a

b
f(a,b)

exnor
(==)

Z(a,b,d0,d1,d2,d3)

© R. Rutenbar  2001          Fall 18-760  Page 58

Network RepairNetwork Repair
Realistic Case

Oops, it doesn’t work!  Let us guess there is a one-gate error 
someplace..but we don’t know where...

For each gate in network, try to do this repair procedure..

d0 d1 d2 d3

mux

exnor
(==)

Z(real input vars,d0,d1,d2,d3)

correct implementation

buggy implementation

Find input d0 d1 d2 d3 
that makes (∀ real vars Z)(d0,d1,d2,d3)=1

Want...



Page 30

© R. Rutenbar  2001          Fall 18-760  Page 59

Computational StrategiesComputational Strategies

What haven’t we seen yet?  Computational strategies
In several places we sort of assumed you could figure something out 
once you got the right function...

Example:  find inputs to make ∂f / ∂x ==1 for testing

Example:  find inputs to make Cab(Z) ==1 for gate debug

This computation is called satisfiability

We’ll see a bunch of such strategies later in course

Common computation theme: divide & conquer
You want to do something hard on a Boolean function...

...so you try to do it with the cofactors, glue answer back together

Let’s look at one simplified example to get some experience...

© R. Rutenbar  2001          Fall 18-760  Page 60

Representation IssuesRepresentation Issues
First, let’s look at a simple, historically early representation
scheme for functions

Represent a function as a set of OR’ed product terms
Remember: each product term is a cube with 2k corners when plotted 

a
b

c

000 100

110

001 101

111011

010



Page 31

© R. Rutenbar  2001          Fall 18-760  Page 61

Positional Cube NotationPositional Cube Notation
Remember, we say “cube” and mean “product term”

So, how to represent each cube?
Positional cube notation:  one slot per variable, 2 bits per slot
Can write down each cube very simply by just noting which variables are 
true, complemented, or absent

In slot for var x:  put 01  if product term has ...x... in it
In slot for var x:  put 10 if product term has ...x’... in it
In slot for var x:  put 11 if product terms has no x or x’ in it

a
b

c

000 100

110

001 101

111011

010

© R. Rutenbar  2001          Fall 18-760  Page 62

Positional Cube Notation:  TautologyPositional Cube Notation:  Tautology
So, we represent a cover of a function... 

...as a list of cubes in positional cube notation
Ex:   f(a,b,c)=a +bc +ac’  => [01 11 11],[11 01 01],[01 11 10]

Look at an application:  Tautology testing
We say a function f is a tautology when f == 1 for all inputs
Turns out to be many computational uses for this
But you might be thinking  “Hey, how hard can this be...?”

Actually, pretty hard for a big complex function represented in 
some POS form like a cube-list

Ex:   f(a,b,c) = ab + ac + ab’c’ + a’      
is it or isn’t it == 1 always?



Page 32

© R. Rutenbar  2001          Fall 18-760  Page 63

Tautology CheckingTautology Checking
How do we approach tautology as a computation?

Input = cube-list representing products in an SOP form of f
Output = yes/no, f ==1 always or not

Cofactors to the rescue
Nice result:  f is a tautology if and only if fx and fx’ are both tautologies
Proof again not too hard:

© R. Rutenbar  2001          Fall 18-760  Page 64

Recursive Tautology CheckingRecursive Tautology Checking
Suggests a recursive strategy:

If you can’t tell immediately that f==1
...go try to see if each cofactor == 1  !

What else do we need here?
Selection rules:        which x is good to pick to split on?
Termination rules:   how do we know when to quit splitting, so  we can 

answer ==1  or  !=1  for function at this node of tree?
Mechanics:        how hard is it to actually represent the cofactors?

f=1??f=1?? split on x
(fx =1 AND fx’ =1)??

split on x
(fx =1 AND fx’ =1)??

fx=1??fx=1?? fx’=1??fx’=1??

y/n y/n



Page 33

© R. Rutenbar  2001          Fall 18-760  Page 65

Recursive CofactoringRecursive Cofactoring
Do mechanics first -- they’re easy

For each cube in your list
If you want cofactor wrt var x=1, look at x slot in each cube:

[... 10 ...]  => just remove this cube from list, since it’s a term with an x’
[... 01 ...] => just make this slot 11 == don’t care, strike the x from product term
[... 11 ...] => just leave this alone, this term doesn’t have any x in it

If you want cofactor wrt var x=0, look at x slot in each cube:
[...01 ...]  => just remove this cube from list, since it’s a term with an x
[...10 ...] => just make this slot 11 == don’t care, strike the x’ from product term
[...11 ...] => just leave this alone, this term doesn’t have any x in it

Examples

f = ab+ac’d+bc’

[01 01 11 11]
[01 11 10 01]
[11 01 10 11]

f a f c

© R. Rutenbar  2001          Fall 18-760  Page 66

Unate FunctionsUnate Functions
Selection / termination, another trick: Unate functions

Special class of Boolean functions
f is unate if a SOP representation only has each literal appearing in 
exactly one polarity,  either all true,  or all complemented

Ex: ab + ac’d + c’de’     is ...unate
Ex: xy + x’y + xyz’ + z’   is ... not -- x appears in both forms.

This function is unate in vars y and z, but not in x.

f is positive unate in variable x if changing x 0-->1 keeps f constant or 
makes it change 0->1
f is negative unate in variable x if changing x 0->1 keeps f constant or 
makes it change 1->0

Function that’s not unate is called binate



Page 34

© R. Rutenbar  2001          Fall 18-760  Page 67

Unate FunctionsUnate Functions
Analogous to monotone continuous functions

Boolean function positive unate in x

x

y
This function is monotone increasing,
whenever x2 > x1, f(x2) > f(x1)

Boolean
function

f
variable x

f( ... x ...)

Really just same idea as above...

© R. Rutenbar  2001          Fall 18-760  Page 68

Using Unate Functions For ComputationUsing Unate Functions For Computation
Who cares?

Unate schmunate--we need easy tautology checking!
But this helps...

Suppose you have a cube-list for f
That cube-list is unate if each var in each cube only appears in one 
polarity, but not both 
Ex:  f(a,b,c)=a +bc +ac  => [01 11 11],[11 01 01],[01 11 01] is unate
Ex:  f(a,b,c)=a +b’c +bc  => [01 11 11],[11 10 01],[11 01 01] is not
Easier to see if draw vertically

a+b’c+ac UNATE

[01 11 11]
[11 10 01]
[01 11 01]

a+b’c+bc NOT

[01 11 11]
[11 10 01]
[11 01 01]

a b c b , b’



Page 35

© R. Rutenbar  2001          Fall 18-760  Page 69

Using Unate Functions in Tautology CheckingUsing Unate Functions in Tautology Checking
Nice result

It’s pretty easy to check a unate cube-list for tautology
A unate cube-list for function f is a tautology iff
it contains the all don’t care cube = [11 11 11 ... 11]

Reminder: what exactly is [11 11 11 ... 11] as a product term?

This result actually makes sense...
You can’t make a “1” 
with only product terms 
where all literals are 
in just one polarity 
Try to do it on a Kmap...

[01 01 01] = abc    [01 01 11] = ab    [01 11 11] = a    [11 11 11] =

abcd

© R. Rutenbar  2001          Fall 18-760  Page 70

Recursive Tautology CheckingRecursive Tautology Checking
So, unateness gives us some termination rules

We can look for  tautology directly, if we have a unate cube-list 
If match rule, know immediately if ==1, or not

Rule 1:  ==1 if cube-list has all don’t care cube [11 11 ... 11]
Why:    function at this leaf is (stuff + 1 + stuff) == 1
Rule 2:  !=1 if cube-list unate and all don’t care cube missing
Why: unate ==1 if and only if has [11 11 ... 11] cube

f==1?f==1?

...
11 11 ... 11
...

...
11 11 ... 11
...

split
fx=1??

==1 YES
Rule 1

f==1?f==1?

01 11 10
11 01 10
01 01 10

01 11 10
11 01 10
01 01 10

split
fx=1??

==1 NO
Rule 2 -
it’s unate but
all don’t care
cube is not here



Page 36

© R. Rutenbar  2001          Fall 18-760  Page 71

Recursive Tautology CheckingRecursive Tautology Checking
Lots more rules...

Rule 3:  ==1 if cube list has single var cube that appears in
both polarities

Why:     function at this leaf is (stuff + x + x’ + stuff) == 1
You get the idea...

f==1?f==1?

01 11 11
10 11 11
11 11 10

01 11 11
10 11 11
11 11 10

split
fx=1??

==1 YES
Rule 3 -
= ... + x + x’ + ...

© R. Rutenbar  2001          Fall 18-760  Page 72

Recursive Tautology CheckingRecursive Tautology Checking
But can’t use easy termination rules unless unate cubelist

Selection rule...?
Hey, pick the splitting var to try to make unate cofactors!
Strategy:   pick “most not-unate” (binate) var as split var

Implementation
Pick binate var with most product terms dependent on it
If a tie, pick one with min | true var - complement var |
x  y  z  w

A 01 01 01 01
B 10 11 01 01
C 10 11 11 10
D 01 01 11 01

binate, in 4 cubes, | true - compl | = 3-1 = 2
unate

binate, in 4 cubes, | true - compl | = 2-2 = 0
unate



Page 37

© R. Rutenbar  2001          Fall 18-760  Page 73

Recursive Tautology CheckingRecursive Tautology Checking
And that’s it!

Algorithm

tautology( f represented as cubelist) {
/* check if we can terminate recursion */
if (f is unate)  {

apply unate tautology termination rules directly
if (==1) return (1)
else return (0)

}
else if (any other termination rules, like rule 3, work) {

return the appropriate value if ==1 or ==0
}
else { /* can’t tell from this -- find splitting variable */

x = most-not-unate variable in f
return (  tautology( fx ) && tautology( fx’ )   )

}
}

© R. Rutenbar  2001          Fall 18-760  Page 74

Recursive Tautology Checking: ExampleRecursive Tautology Checking: Example
Tautology example:  f = ab + ac + ab’c’ + a’

a  b  c
ab    01 01 11
ac    01 11 01
ab’c’ 01 10 10 
a’    10 11 11 

All vars are binate, var a
affects most implicants, so
split on a...

fa
fa’

b    11 01 11
c    11 11 01
b’c’ 11 10 10 

=
‘1’    11 11 11=

= tautology YES



Page 38

© R. Rutenbar  2001          Fall 18-760  Page 75

Recursive Tautology Checking: ExampleRecursive Tautology Checking: Example

So we are done:
Our tree has tautologies
at all the leaves!
Note - if any leaf ends up
!=1, then f != 1 too, this
is how tautology fails

b    11 01 11
c    11 11 01
b’c’ 11 10 10 

No unate vars yet, no simplifications.  
Let’s split again, now on b.

fab
fab’

c  11 11 01
c’ 11 11 10 ‘1’  11 11 11

c   11 11 01 

f

fab ==1 fab’ ==1

fa’ ==1fa

© R. Rutenbar  2001          Fall 18-760  Page 76

Computational Boolean AlgebraComputational Boolean Algebra
Computational philosophy revisited

This strategy is so general and useful it has a name

Paradigm:  a general strategy of broad application, power
Recursive:  use Shannon cofactoring as basis for progress
Unate:        strive to make cofactors unate, since unate = simpler,

and lots of properties are just easier to find with unate f’s

Unate Recursive Paradigm



Page 39

© R. Rutenbar  2001          Fall 18-760  Page 77

Advanced Boolean AlgebraAdvanced Boolean Algebra
Summary

Cofactors, and functions of cofactors interesting and useful
Boolean difference, consensus, smoothing (quantification)
Real applications: test, gate debugging, etc.

Representation for Boolean functions will end up being critical
Truth tables, Kmaps, equations not manipulable by software
Saw one real representation:  cube-list, positional cube notation

Emphasis on computational strategies to answer questions about 
Boolean functions

Ex:  is f==1?   does f cover this product term?   
what values of inputs makes f==1?

Saw an example of a strategy: Unate Recursive Paradigm


