(Lec 1) Advanced Boolean Algebra

\checkmark Assumptions

- You've seen basic Boolean algebra, and manipulations
- You've seen simplification-related ideas
- Kmaps, Quine-McCluskey simplification, minterms, SOP, etc
- What's left...? Actually, a lot...
- Decomposition strategies
- Ways of taking apart complex functions into simpler pieces
- A set of standard advanced concepts, terms you need to see to be able to read the DeMicheli book (or the literature)
- Computational strategies
- Ways to think about Boolean functions that allow them to be manipulated by programs
- Interesting applications
- When you have new tools, there are some neat new things to do

Copyright Notice

© Rob A. Rutenbar, 2001 All rights reserved.

You may not make copies of this material in any form without my express permission.

Handouts

\checkmark Physical

- Lecture 01 -- Advanced Boolean Algebra
\checkmark Electronic
- Nothing today

Where Are We?

- Doing the Boolean background you need...

M	T	W	Th	F	
Aug 27	28	29	30	\|3]	I
Sep 3	4	5	6	7	2
10	[11	12	\|13	14	3
17	118	19	120	\|21	4
24	25	26	27	28	5
Oct 1	2	3	4	5	6
8	9	10	III	12	7
15	116	17	18	19	8
22	23	24	[25	26	9
29	130	\|31	11	2	10
Nov 5	6	7	8	9	II
12	113	14	115	116	12
Thnxgive 19	120	21	22	23	13
26	27	28	29	30	14
Dec 3	[4	5	6	7	15
10	[11	12	113	14	16

Introduction
Advanced Boolean algebra
JAVA Review
Formal verification
2-Level logic synthesis
Multi-level logic synthesis
Technology mapping
Placement
Routing
Static timing analysis
Electrical timing analysis
Geometric data structs \& apps

Readings

\checkmark De Micheli

- Chapter I -- once over, lightly
- Chapter 2 -- just Section 2.7
- Chapter 7 -- just Section 7.3
- Don't worry if it doesn't all make sense yet, the notes will explain

Advanced Boolean Algebra

Useful analogy to calculus...

- At some point somebody told you that you could represent complex functions like $\exp (x)$ using simpler functions
- If you only get to use $I, x, x^{2}, x^{3}, x^{4}, \ldots$ as the pieces...
- ...turns out $\exp (x)=I+x+x^{2} / 2!+x^{3} / 3!+\ldots$
- Later, somebody told you there was a general formula, called the Taylor series expansion
\square
- If you took some more math, or EE, you might have found out that there were several other ways of representing arbitrary $f(x)$
- If it's a periodic function, can use a Fourier series
- Other polynomials, eg, Legendre polyomials

Question: Anything like this for Boolean functions?

Boolean Decompositions

V Yes. Called the Shannon Expansion

- A little refresher in notation first...
- F is a Boolean function of n variables $x I, \times 2, \ldots, x n$
- Let $B=\{0, I\}$ then we write formally:
\square
- We often refer to the variables $\times 1, \times 2, . . \times n$ by lumping them together in a set $\{x 1, \times 2, \ldots, x n\}$ called the support of F, or $\sup (F)$.

Shannon Expansion

- Suppose we have a function $\mathrm{F}(\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn})$

D Define a new function if we set one of the $x i=$ constant

- Example: $\mathrm{F}(\mathrm{xI}, \mathrm{x} 2, \ldots, \mathrm{xi}=\mathrm{I}, \ldots, \mathrm{xn})$
- Example: $\mathrm{F}(\mathrm{xI}, \mathrm{x} 2, \ldots, \mathrm{xi}=0, \ldots, \mathrm{xn})$

I Easy to do one by hand

$$
\begin{aligned}
& F(x, y, z)=x y+x z^{\prime}+y\left(x^{\prime} z+z^{\prime}\right) \\
& F(x=1, y, z)= \\
& F(x, y=0, z)=
\end{aligned}
$$

V Important to remember that result is a new function

- Note that new function no longer depends on this variable

Shannon Expansion: Cofactors

Turns out to be an incredibly useful idea

- Several alternative names and notations
- Shannon Cofactor with respect to xi
- Write $F(x I, x 2, \ldots, x i=I, \ldots x n)$ as
- Write $F(x I, x 2, \ldots, x i=0, \ldots x n)$ as
- Often see as just \square which is easier to type
- Restriction of F on variable $x i$
- Write $F(x 1, x 2, \ldots, x i=1, \ldots x n)$ as
- Write $F(x 1, x 2, \ldots, x i=0, \ldots x n)$ as \square

Why are these useful functions to get from F?

Shannon Expansion Theorem

- Shannon Expansion Theorem
- Given any Boolean function $F(x 1, x 2, \ldots, x n)$ and any xi in the support of $F(), F()$ can be represented as
\square
- Pretty easy to prove...

Shannon Expansion: Another View

same as

Shannon Expansion: Multiple Variables

- Can do it on more than one variable, too
- Just keep on applying the theorem
- Example

$F(x, y, z, w)=$
$=$ expanded around variables x and y

Shannon Cofactors: Multiple Variables

V BTW, there's notation for these as well

- Shannon Cofactor with respect to xi and xj
- Write $F(x 1, x 2, \ldots, x i=1, \ldots, x j=0, \ldots, x n)$ as $F_{x i x j}$ or $F_{x i x j}$
- Ditto for any number of variables $\mathbf{x i}, \mathbf{x j}, \mathbf{x k}, \ldots$
- Notice also that order doesn't matter: $\left(F_{x}\right)_{y}=\left(F_{y}\right)_{x}=F_{x y}$
- For our example

$$
F(x, y, z, w)=
$$

- Again, remember: each of the cofactors is a function, not a number

$$
F_{x y}=F(x=1, y=1, z, w)=a \text { Boolean function of } z \text { and } w
$$

Properties of Cofactors

- What else can you do with cofactors?
- Suppose you have 2 functions $F(X)$ and $G(X)$, where $X=(x 1, x 2, \ldots \times n)$
- Suppose you make a new function H, from F and G, say

$$
\begin{array}{ll}
\rightarrow H=F \\
\rightarrow H=(F \cdot G) & \text { ie, } H(X)=F(X) \cdot G(X) \\
-H=(F+G) & \text { ie, } H(X)=F(X)+G(X) \\
\rightarrow H=(F \oplus G) & \text { ie, } H(X)=F(X) \oplus G(X)
\end{array}
$$

\square

- Interesting question
- Can you tell anything about H's cofactors from those of F, G ?
- For example,

$$
(F \cdot G)_{x}=\text { what } ? \quad\left(F^{\prime}\right)_{x}=\text { what? } \quad \text { etc. }
$$

Properties of Cofactors

More nice properties...

- Cofactors of F and G tell you everything you need to know
- Complements

- In English: cofactor of complement is complement of cofactor
- Binary boolean operators

	cofactor of AND is AND of cofactors
\square	cofactor of OR is OR of cofactors
cofactor of EXOR is EXOR of cofactors	

- In fact, true for ANY binary operator on Boolean functions
- Very useful: can often help in getting cofactors of complex formulas

Combinations of Cofactors

- OK, now consider operations on cofactors themselves
∇ Suppose we have $F(X)$, and get F_{x} and F_{x},
- $\mathrm{F}_{\mathrm{x}} \oplus \mathrm{F}_{\mathrm{x}^{\prime}}=$?
- $\mathrm{F}_{\mathrm{x}} \cdot \mathrm{F}_{\mathrm{x}^{\prime}}=$?
- $\mathrm{F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}^{\prime}}=$?

V Turns out these are all useful new functions

- We'll start with most obvious one to get...
- Need to remember some more calculus...

Derivatives

Vemember way back to how you defined derivatives?

- Suppose you have $y=f(x)$

Let Δ go to 0 in the limit and you got $\frac{d f(x)}{d x}$
$d x$

Boolean Derivatives

- OK, do Boolean functions have derivatives?
- Actually, yes. Trick is how to define them...

- Basic idea

- For real-valued $f(x)$, df/dx tell hows f changes when x changes
- For 0,I-valued Boolean function, we can't change \mathbf{x} by small Δ
- Can only change 0 <-> I, but can still ask how f changes with x...

$$
\begin{array}{ll}
\text { Real-valued } f(x): & \text { Binary-valued } f(x): \\
d f / d x=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta} & d f / d x= \\
& \\
& \\
& \\
& \\
& \\
& ==1 \text { Compares value of } f() \text { when if these are different }
\end{array}
$$

Boolean Difference

- Hey, we've seen these pieces before!
- df/dx = exor of the Shannon cofactors with respect to x
- Also often written as $\partial f / \partial x$
- Called the Boolean Difference of function f wrt variable x
- It also behaves sort of like regular derivatives...
- Order of vars doesn't matter
$\partial \mathbf{f} / \partial \mathbf{x} \partial \mathbf{y}=$ \qquad
- Derivative of exor is exor of derivatives $\partial(\mathbf{f} \oplus \mathbf{g}) / \partial \mathbf{x}=$ \qquad
- If function f is actually constant ($f=1$ or $f=0$, always, for all inputs) $\partial \mathbf{f} / \partial \mathbf{x}=$ \qquad
- If function f doesn't depend on var x (ie change x, f never changes) $\partial \mathbf{f} / \partial \mathbf{x}=$ \qquad $\partial(\mathbf{f} \cdot \mathbf{g}) / \partial \mathbf{x}=$ $\partial(\mathbf{f}+\mathbf{g}) / \partial \mathbf{x}=$

Boolean Difference

V continued...

- If f is a function only of x (only changing x can change f)
- $\partial \mathrm{f} / \partial \mathbf{x}=$ \qquad

But some things are just more complex, though...

- Derivatives of ($\mathrm{f} \cdot \mathrm{g}$) and ($\mathrm{f}+\mathrm{g}$) don't work the same...

```
\partial(f`g)/\partialx =
\partial(f+g)/\partialx=
```

- Why?
- Because AND and OR on Boolean values don't always behave like ADDITION and MULTIPLICATION on real numbers

Boolean Difference: Gate-level View

∇ Try the obvious "simple" examples for $\partial \mathrm{f} / \partial \mathrm{x}$

Interpretation: when $\partial \mathrm{f} / \partial \mathrm{x}=1$, then f changes as x changes

Interpreting the Boolean Difference

When $\partial \mathrm{F} / \partial \mathbf{X}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{w})=1$, it means that \ldots

Boolean Difference: Example

Try another example

$\mathbf{s} / \partial \mathbf{a}=$		
	$\mathbf{c o u t} / \partial \mathbf{c i n}=$	

Boolean Difference: Example

Example

∂ out $/ \partial \mathrm{s}=$

Boolean Difference

Things to remember about Boolean Difference

- Not as easy to assign a physical interpretation like ordinary derivative (ie, no "slope of the curve" sort of stuff)
- $\partial \mathbf{f} / \partial \mathbf{x}$ is another Boolean function, but it does not depend on \mathbf{x}
- It can't, it's made out of the cofactors wrt x, and they eliminate all the x and x ' terms by setting them to constants
- OK, it's cute, but is it useful...?
- Sure, let's look at a simplified application in testing

Application: Testing

, Suppose you want to test some logic

- You want to figure out what inputs to apply to figure out if it works

- So, you look at the manufacturing process and try to figure out what actually breaks
- These are called defects
- The effect of the defect is called a fault
- How you model it in your testing procedure is the fault model

Testing

Most common fault model is stuck-at model

- Assume individual wires are stuck at logic I (sal) or logic 0 (sa0)

Testing

- So, what's a test here?
- A pattern of inputs that makes an output that is wrong, ie, different what it should be if the fault was not present
- Usually try to generate tests to detect specific faults
- If you have a big list of possible faults, you generate a test set and ask what fraction of all the faults will get detected, called the fault coverage

If this line is to be tested for sa1, you have to apply a 0 to it...
...then see if you get an output f that was wrong, ie, it still looks like d was 1 , though we know it was 0

Testing

- OK, so how do you do it?
- For this simplified problem, easy
- What do you want...?
- An input pattern abcde...

- ...which means you can see if the line is stuck
- Note: to test sal you apply ab0de, for sa0 you apply ablde
- We already know how to write this more clearly
- Want an input pattern where $F(a, b, c, d=0, e)!=F(a, b, c, d=l, e)$

Same as asking for

Really want a pattern that makes cofactors wrt d different

Testing

- For our example...
$f(a, b, c, d, e)=a b+c d^{\prime} e^{\prime}$
$\partial \mathbf{f} / \partial \mathbf{d}=$

Back to Combinations of Cofactors

V Other combinations of cofactors also important

- $\mathrm{F}_{\mathrm{x}} \cdot \mathrm{F}_{\mathrm{x}^{\prime}}=$?
- $\mathrm{F}_{\mathrm{x}}+\mathrm{F}_{\mathrm{x}^{\prime}}=$?
- Look at example to get some insight

$$
\begin{array}{ll}
f(a, b, c)=a b+b c+a c & \\
f_{a}= & f_{a^{\prime}}= \\
f_{a} \cdot f_{a^{\prime}}= & f_{a}+f_{a^{\prime}}=
\end{array}
$$

$a b c$	$f(a, b, c)$	f_{a}	f_{a},	$f_{a} \cdot f_{a}$,	$f_{a}+f_{a}$,
000	0	0	0		
001	0	1	0		
010	0	1	0		
011	1	1	1		
100	0	0	0		
101	1	1	0		
110	1	1	0		
111	1	1	1		

Combinations of Cofactors

\checkmark Observe

- $f_{a} \cdot f_{a^{\prime}}=I$ just in places where f would be I independent of value of a
- $f_{a}+f_{a^{\prime}}=1$ if either $f(a=0, b, c)=1 \quad$ or $f(a=1, b, c)=1$

$a b c$	$f(a, b, c)$	f_{a}	f_{a},	$f_{a} \cdot f_{a}$,	$f_{a}+f_{a}$,
000	0	0	0		
001	0	1	0		
010	0	1	0		
011	1	1	1		
100	0	0	0		
101	1	1	0		
110	1	1	0		
111	1	1	1		

But...this idea is hard to see in a truth table

Understanding Combinations of Cofactors

V Alternative perspective that offers some more insight

- Recall Boolean cubes
- You can plot a real function $\mathrm{y}=\mathrm{f}(\mathrm{x})$

- You can also "plot" a Boolean function $f(a, b, c)$
- Of course, each axis only goes from 0 to I
- And, the only points are at the corners of this cube

Boolean Cubes

Represent a function by corners where $\mathrm{f}=1$

- $f(a, b, c)=a b+b c+a c$

- Note that product terms appear on cube as sets of $\mathbf{2}^{\mathbf{k}}$ adjacent corners
- product $=0$ literals, eg " I " => all 8 corners
- product $=1$ literal eg a => 4 corners
- product = 2 literals eg ab' => 2 corners
- product = 3 literals eg ab'c' => | corner, ie, a minterm

Aside: Literals and other Terms

V Consider this function:
$a b \prime c+a \prime b c+a c d+e+a f$

- How many literals are there?

- How many product terms?
\square
- Is this SOP or POS?

Plotting the Cofactors

- Look at cubes here...
- $\mathrm{f}=\mathrm{ab}+\mathrm{bc}+\mathrm{ac}$
- $f_{a}=b+c$
- $f_{a^{\prime}}=b c$

Plotting Combinations of Cofactors

V Look at cubes here...

- $\mathrm{f}=\mathrm{ab}+\mathrm{bc}+\mathrm{ac}$
$-f_{a} \cdot f_{a^{\prime}}=b c$
$-f_{a}+f_{a}=b+c$

Interpreting Combinations of Cofactors

, Nice geometric interpretation
$f_{a} \cdot f_{a}$, is called the consensus of f wrt $a, C_{a}(f)(b, c)$

Interpretation: keep corners
where $f=1$ independent of " a "
$f_{a}+f_{a}$, is called the smoothing of f wrt $a, S_{a}(f)(b, c)$

Interpretation: add corners where adjacent "a" corner = 1

Containment Props for Combinations of Cofac

V One more perspective on $\mathrm{C}_{\mathrm{x}}(\mathrm{f}), \mathrm{S}_{\mathrm{x}}(\mathrm{f})$, and $\partial \mathrm{f} / \partial \mathrm{x}$
Containment properties

- Remember basic set theory...?

Containment Properties

Think about Boolean functions as sets of minterms

- Not entirely unfamiliar, you should have seen somewhere notation like:

$$
\begin{aligned}
f(a, b, c) & =\Sigma m(0,3,5,7)=m 0+m 3+m 5+m 7 \\
& =a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b c+a b \prime c+a b c
\end{aligned}
$$

- Now, we just explicitly reformulate this as

Who cares?

- We can now ask containment questions about functions...
- Like: is f "bigger than" g, ie, $f \supseteq g$

Containment Properties

\checkmark Interesting containment property: $\mathrm{C}_{\mathrm{a}}(\mathrm{f}) \subseteq \mathrm{f} \subseteq \mathrm{S}_{\mathrm{a}}(\mathrm{f})$

Actually: consensus is function independent of var 'a' that's still 'inside' f

Actually: smoothing is function independent of var 'a' that contains f

Containment Properties

- How would you prove something like this...?

Consensus is biggest function independent of var ' a ' that's still 'inside' f

Containment Properties

- How would you prove something like this...? cont.
\square

Consensus and Smoothing

- Additional properties

- Like Boolean difference, can do with respect to more than I var
- Example: $C_{x y}(f)=C_{y}\left(C_{x}(f)\right)=f_{x y^{\prime}} \cdot f_{x^{\prime} y^{\prime}} \bullet f_{x y} \bullet f_{x^{\prime} y}$
\rightarrow Example: $S_{x y}(f)=S_{y}\left(S_{x}(f)\right)=f_{x y^{\prime}}+f_{x^{\prime} y^{\prime}}+f_{x y}+f_{x^{\prime} y}$
Alternative names: Quantification
- In logic (predicate calculus over truth values) when you have a formula and want to get rid of a variable, the term is "quantification"
- Two kinds of quantifiers
- "For all x " $\forall \mathrm{x} \quad$ called universal quantification
- "There exists x " $\exists x \quad$ called existential quantification
- Back to cofactors...
\rightarrow Consensus $\mathbf{C}_{\mathrm{x}}(\mathrm{f})$ is also written ($\forall \mathrm{xf}$), called universal quantification of function f wrt variable x.
- Smoothing $S_{x}(f)$ is also written ($\exists \mathrm{xf}$), called existential quantification of function f wrt variable x
- Both of these things -- ($\forall \mathbf{x f}$), ($\exists \mathrm{xf}$) -- are new functions

Quantification...?

- What does this really mean? Look at Universal quantify

and

Quantification

V Why "quantification"...?

- Quantification is about "abstracting away" variables
- Ponder the names a little...
- ($\forall \mathrm{x}$ F)(vars except x$)$
- ($\exists \mathrm{x}$ F) (vars except x)

Quantification

$$
(\forall \times F)(\text { all original vars but } x)==I
$$

$(\exists \times F) \quad($ all original vars but $x)==1$

Quantification

V Remember!
$-C_{x}(f), S_{x}(f)$, and $\partial f / \partial x$ are all functions...

- ..but they are functions of all the vars in support of f except x
- There are no ' x ' vars anywhere in expressions for $\mathbf{C}_{\mathbf{x}}(f), \mathbf{S}_{\mathrm{x}}(\mathbf{f}), \partial \mathbf{f} / \partial \mathbf{x}$
- We got rid of variable x and made 3 new functions

So, are these any good for anything...?

- Sure, look at an example in logic network debugging

Application: Network Repair

V Suppose ...

- I specified a logic block for you to implement
- ...but you implemented it wrong.
- In particular, you got ONE gate wrong

- Goal

- Can we deduce how precisely to change this gate to restore the correct functionality?
- Let's go with this very trivial test case to see how mechanics work...

Network Repair

, Clever trick

- Replace our suspect gate by a 4 :I mux with 4 arbitrary new vars
- By cleverly assigning values to d0 dI d2 d3, we can fake any gate
- Question is: what are the right values of d's so F is repaired (==f)

Aside: Faking a Gate with a MUX

- Remember...
- You can do any function of 2 vars with one 4 input MUX

Network Repair: Using Quantification

- Next trick
- Make new function $Z(a, b, d 0, d l$, $d 2, d 3)$ that $=1$ just when $F==f$

Using Quantification

\checkmark What now?

- Think hard about exactly what we want:
\square
- But this is something we've seen!
- Consensus of function \mathbf{Z} wrt variables a, b !
- This is just any pattern of (d 0 dl d 2 d 3) that makes $C_{a b}(Z)(d 0 d 1 d 2 d 3)==1 \quad$ (do you know where a, b went??)
- Can also write as quantification: ($\left.\forall_{a b} \mathbf{Z}\right)(\mathrm{d} 0, \mathrm{~d} \mathrm{l}, \mathrm{d} 2, \mathrm{~d} 3)$
- Note: these are both functions of just the d's
- We want any pattern of d's that makes $\mathrm{C}_{\mathrm{ab}}(\mathbf{Z})==\mathrm{I}$
- This pattern is guaranteed to make the mux behave like the correct gate, independent of what's going on with a, b

Network Repair via Quantification: Example

- Don't believe it...? Try it... It's all mechanics

Network Repair via Quantification: Example

V ...mechanics, cont.
\square

Repair via Quantification

- Mechanical foo, cont.

Network Repair

V Does it work? What do these d's represent?

- This example is small...
- But in a real example, you have a big network-- 500 inputs, 50,000 gates
- When it doesn't work, it's a major hassle to go thru in detail
- This is a mechanical procedure that can answer this:
- Is there a way to change this one gate to make it right?

Network Repair

V Realistic Case

- Oops, it doesn't work! Let us guess there is a one-gate error someplace..but we don't know where...
- For each gate in network, try to do this repair procedure..
d0 dl d2 d3

correct implementation

Computational Strategies

- What haven't we seen yet? Computational strategies
- In several places we sort of assumed you could figure something out once you got the right function...
- Example: find inputs to make $\partial \mathrm{f} / \partial \mathrm{x}==\mathrm{I}$ for testing
- Example: find inputs to make $C_{a b}(Z)==I$ for gate debug
- This computation is called satisfiability
- We'll see a bunch of such strategies later in course
\checkmark Common computation theme: divide $\mathcal{\&}$ conquer
- You want to do something hard on a Boolean function...
- ...so you try to do it with the cofactors, glue answer back together
- Let's look at one simplified example to get some experience...

Representation Issues

- First, let's look at a simple, historically early representation scheme for functions
- Represent a function as a set of OR'ed product terms
\rightarrow Remember: each product term is a cube with 2^{k} corners when plotted

Positional Cube Notation

V Remember, we say "cube" and mean "product term"

- So, how to represent each cube?
- Positional cube notation: one slot per variable, 2 bits per slot
- Can write down each cube very simply by just noting which variables are true, complemented, or absent
- In slot for var x : put 01 if product term has ...x... in it
- In slot for var x : put 10 if product term has ...x'... in it
- In slot for var x : put II if product terms has no x or x ' in it

Positional Cube Notation: Tautology

- So, we represent a cover of a function...
- ...as a list of cubes in positional cube notation
- Ex: $f(a, b, c)=a+b c+a c^{\prime}=>$ \square
Vook at an application: Tautology testing
- We say a function f is a tautology when $f==I$ for all inputs
- Turns out to be many computational uses for this
- But you might be thinking "Hey, how hard can this be...?"

Actually, pretty hard for a big complex function represented in some POS form like a cube-list

Ex: $f(a, b, c)=a b+a c+a b c^{\prime}+a^{\prime}$ is it or isn't it == I always?

Tautology Checking

\checkmark How do we approach tautology as a computation?

- Input = cube-list representing products in an SOP form of f
- Output $=$ yes/no, $\mathrm{f}=\mathrm{I}$ always or not

V Cofactors to the rescue
Nice result: f is a tautology if and only if f_{x} and f_{x}, are both tautologies
Proof again not too hard:

Recursive Tautology Checking

- Suggests a recursive strategy:
- If you can't tell immediately that $\mathrm{f}=\mathrm{=}$
- ...go try to see if each cofactor $=$ I !
$f=1 ? ?$

V What else do we need here?

- Selection rules: which x is good to pick to split on?
- Termination rules: how do we know when to quit splitting, so we can answer $==\mid$ or $!=\mid$ for function at this node of tree?
Mechanics: how hard is it to actually represent the cofactors?

Recursive Cofactoring

\checkmark Do mechanics first -- they're easy

- For each cube in your list
- If you want cofactor wrt var $x=I$, look at x slot in each cube:
- [... 10 ...] => just remove this cube from list, since it's a term with an x '
- [... 01 ...] => just make this slot II == don't care, strike the x from product term
. [... II ...] => just leave this alone, this term doesn't have any \mathbf{x} in it
If you want cofactor wrt var $\mathbf{x}=\mathbf{0}$, look at x slot in each cube:
- [... 01 ...] => just remove this cube from list, since it's a term with an x
- [... 10 ...] => just make this slot II == don't care, strike the x^{\prime} from product term
- [... I I ...] => just leave this alone, this term doesn't have any x in it

- Examples

$\mathrm{f}=\mathrm{ab}+\mathrm{ac}{ }^{\prime} \mathrm{d}^{\prime}+\mathrm{bc}$ '	f_{a}
[01 0111 11]	
[01 1110 01]	
[11 0110 11]	

Unate Functions

Selection / termination, another trick: Unate functions

- Special class of Boolean functions
- f is unate if a SOP representation only has each literal appearing in exactly one polarity, either all true, or all complemented
\square
- f is positive unate in variable x if changing $\times 0-->\mid$ keeps f constant or makes it change 0 -> I
$-f$ is negative unate in variable x if changing $x 0->I$ keeps f constant or makes it change I->0
- Function that's not unate is called binate

Unate Functions

- Analogous to monotone continuous functions

\checkmark Boolean function positive unate in x

Using Unate Functions For Computation

∇ Who cares?

- Unate schmunate--we need easy tautology checking!
- But this helps...

V Suppose you have a cube-list for f

- That cube-list is unate if each var in each cube only appears in one polarity, but not both

- Ex: $f(a, b, c)=a+b ’ c+b c=>[0| ||l|],[1 \mid 1001],[1|0| 01]$ is not
- Easier to see if draw vertically

a+b'c+ac UNATE	a+b'c+bc NOT
[01 11 11]	[01 11 11]
[11 10 01]	[11 10 01]
[01 11 01]	[1101 01]
	b^{\prime}

Using Unate Functions in Tautology Checking

\checkmark Nice result

- It's pretty easy to check a unate cube-list for tautology

Reminder: what exactly is [II II II ... II] as a product term?

$$
\left[0101 \text { 01] }=a b c \quad\left[\begin{array}{lll}
01 & 01 & 11
\end{array}\right]=a b \quad\left[\begin{array}{lll}
01 & 11 & 11
\end{array}\right]=a \quad\left[\begin{array}{lll}
11 & 11 & 11
\end{array}\right]=\right.
$$

- This result actually makes sense...
- You can't make a " \mid " with only product terms where all literals are in just one polarity
- Try to do it on a Kmap...

Recursive Tautology Checking

- So, unateness gives us some termination rules
- We can look for tautology directly, if we have a unate cube-list
- If match rule, know immediately if $==1$, or not
- Rule I: ==1 if cube-list has all don't care cube [l| |l ... |I] Why: function at this leaf is (stuff $+\mathrm{I}+$ stuff) $==1$
- Rule 2: $!=1$ if cube-list unate and all don't care cube missing Why: unate $==1$ if and only if has [II I I ... I I] cube

Recursive Tautology Checking

- Lots more rules...

Rule 3: ==I if cube list has single var cube that appears in both polarities
Why: function at this leaf is (stuff $\left.+x+x^{\prime}+s t u f f\right)==1$
You get the idea...

Recursive Tautology Checking

- But can't use easy termination rules unless unate cubelist
- Selection rule...?
- Hey, pick the splitting var to try to make unate cofactors!
- Strategy: pick "most not-unate" (binate) var as split var

Implementation

- Pick binate var with most product terms dependent on it
- If a tie, pick one with min | true var - complement var |
$\begin{array}{llll}x & y & z & w\end{array}$
01010101
$\begin{array}{llll}10 & 11 & 01 & 01\end{array}$
$\begin{array}{llll}10 & 11 & 11 & 10\end{array}$
01011101 binate, in 4 cubes, \mid true - compl $\mid=3-1=2$
\rightarrow unate
\rightarrow unate
binate, in 4 cubes, \mid true - compl $\mid=2-2=0$

Recursive Tautology Checking

V And that's it!
Algorithm

```
tautology( f represented as cubelist) {
    /* check if we can terminate recursion */
    if (f is unate) {
        apply unate tautology termination rules directly
        if (==1) return (1)
        else return (0)
    }
    else if (any other termination rules, like rule 3, work) {
        return the appropriate value if ==1 or ==0
    }
    else { /* can't tell from this -- find splitting variable */
        x= most-not-unate variable in f
        return (tautology( }\mp@subsup{\textrm{f}}{\textrm{x}}{})&&&tautology(\mp@subsup{\textrm{f}}{\mp@subsup{\textrm{x}}{}{\prime}}{\prime}) 
    }
}
```


Recursive Tautology Checking: Example

Tautology example: $f=a b+a c+a b{ }^{\prime} c^{\prime}+a^{\prime}$

Recursive Tautology Checking: Example

- So we are done:
- Our tree has tautologies at all the leaves!
- Note - if any leaf ends up ! $=$ I, then $\mathrm{f}!=\mathrm{I}$ too, this is how tautology fails

Computational Boolean Algebra

- Computational philosophy revisited
- This strategy is so general and useful it has a name

Paradigm: a general strategy of broad application, power

- Recursive: use Shannon cofactoring as basis for progress
- Unate: strive to make cofactors unate, since unate $=$ simpler, and lots of properties are just easier to find with unate fs

Advanced Boolean Algebra

\checkmark Summary

- Cofactors, and functions of cofactors interesting and useful
- Boolean difference, consensus, smoothing (quantification)
- Real applications: test, gate debugging, etc.
- Representation for Boolean functions will end up being critical
- Truth tables, Kmaps, equations not manipulable by software
- Saw one real representation: cube-list, positional cube notation
- Emphasis on computational strategies to answer questions about Boolean functions
- Ex: is $f==1$? does f cover this product term?
what values of inputs makes $f==1$?
Saw an example of a strategy: Unate Recursive Paradigm

