(Lec 1) Advanced Boolean Algebra

Assumptions

- > You've seen basic Boolean algebra, and manipulations
- You've seen simplification-related ideas
 - ▶ Kmaps, Quine-McCluskey simplification, minterms, SOP, etc

■ What's left...? Actually, a lot...

Decomposition strategies

- ► Ways of taking apart complex functions into simpler pieces
- ► A set of standard advanced concepts, terms you need to see to be able to read the DeMicheli book (or the literature)
- Computational strategies
 - Ways to think about Boolean functions that allow them to be manipulated by programs
- Interesting applications
 - > When you have new tools, there are some neat new things to do

© R. Rutenbar 2001 Fall 18-760 Page 1

Where Are We?										
■ Doing	g tł	ne B	oole	an b	ackg	round you need				
1	1	T	W	Th	F					
Aug 2	/	28	29	30	31	I Introduction				
Sep	3	4	5	6	7	² Advanced Boolean algebra				
1	0		12	13	14	³ IAVA Review				
1	7	18	19	20	21	4 Formal verification				
2	4	25	26	27	28	5 2 Lovel logic synthesis				
Oct		2	3	4	5	6 A Level logic synthesis				
	8	9	10		12	7 Multi-level logic synthesis				
	5	16	17	1.8	10	Technology mapping				
-	2	22	24	25	24	o Placement				
2	2	23	24	25	20	Routing				
2	9	30	31		2	10 Static timing analysis				
	5	6	7	8	9	Flectrical timing analysis				
1	2	13	14	15	16	12 Compatibility analysis				
Thnxgive	9	20	21	22	23	13 Geometric data structs & apps				
2	6	27	28	29	30	14				
Dec	3	4	5	6	7	15				
	0		12	13	14	- 16				
_	-					© R. Rutenbar 2001 Fall 18-760 Page 4				

Back to Combinations of Cofactors

▼ Other combinations of cofactors also important

Quantification Remember! C_x(f), S_x(f), and ∂f / ∂x are all functions... ..but they are functions of all the vars in support of f except x There are no 'x' vars anywhere in expressions for C_x(f), S_x(f), ∂f / ∂x We got rid of variable x and made 3 new functions So, are these any good for anything...? Sure, look at an example in logic network debugging

mechanics, cont.	

Rep	air via Quantification	
■ Me	chanical foo, cont.	
	© R. Rutenbar 2001	Fall 18-760 Page

Computational Strategies

▼ What haven't we seen yet? *Computational strategies*

- In several places we sort of assumed you could figure something out once you got the right function...
 - **Example:** find inputs to make $\partial f / \partial x == 1$ for testing
 - **Example:** find inputs to make $C_{ab}(Z) == I$ for gate debug
 - ► This computation is called satisfiability
 - We'll see a bunch of such strategies later in course

Common computation theme: *divide & conquer*

- > You want to do something hard on a Boolean function...
- ...so you try to do it with the cofactors, glue answer back together
- Let's look at one simplified example to get some experience...

© R. Rutenbar 2001 Fall 18-760 Page 59

Recursive Tautology Checking

Recursive Tautology Checking: Example

Advanced Boolean Algebra

■ Summary

- ► Cofactors, and functions of cofactors interesting and useful
 - ► Boolean difference, consensus, smoothing (quantification)
 - ▶ Real applications: test, gate debugging, etc.
- ▶ Representation for Boolean functions will end up being critical
 - > Truth tables, Kmaps, equations not manipulable by software
 - Saw one real representation: cube-list, positional cube notation
- Emphasis on computational strategies to answer questions about Boolean functions
 - Ex: is f==1? does f cover this product term? what values of inputs makes f==1?
 - Saw an example of a strategy: Unate Recursive Paradigm

© R. Rutenbar 2001 Fall 18-760 Page 77