(Lec 1) Advanced Boolean Algebra

N Assumptions
» You’ve seen basic Boolean algebra, and manipulations
» You’ve seen simplification-related ideas
» Kmaps, Quine-McCluskey simplification, minterms, SOP, etc

X What’s left...? Actually, a lot...

» Decomposition strategies
» Ways of taking apart complex functions into simpler pieces

» A set of standard advanced concepts, terms you need to see to be
able to read the DeMicheli book (or the literature)

» Computational strategies

» Ways to think about Boolean functions that allow them to be
manipulated by programs

» Interesting applications

» When you have new tools, there are some neat new things to do
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N Physical
» Lecture 01l -- Advanced Boolean Algebra

N Electronic
» Nothing today
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Where Are We?

N Doing the Boolean background you need...
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N De Micheli
» Chapter | -- once over, lightly
» Chapter 2 -- just Section 2.7
» Chapter 7 -- just Section 7.3
» Don’t worry if it doesn’t all make sense yet, the notes will explain
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Advanced Boolean Algebra

N Useful analogy to calculus...

» At some point somebody told you that you could represent complex
functions like exp(x) using simpler functions

» If you only get to use |,x,x%,x3,x4,... as the pieces...

» ...turns out exp(x) = | + x + x2/2! + x3/3! + ...

» Later, somebody told you there was a general formula, called the
Taylor series expansion

» If you took some more math, or EE, you might have found out that
there were several other ways of representing arbitrary f(x)

» If it’s a periodic function, can use a Fourier series

» Other polynomials, eg, Legendre polyomials

N Question: Anything like this for Boolean functions?
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Boolean Decompositions

Yes. Called the Shannon Expansion

A little refresher in notation first...

» F is a Boolean function of n variables xI, x2, ..., xn
» Let B ={0,1} then we write formally:

» We often refer to the variables x1,x2,..xn by lumping them together in a
set {xl, x2, ..., xn} called the support of F, or sup(F).
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Shannon Expansion

N Suppose we have a function F(x1,x2, ..., xn)
N Define a new function if we set one of the xi=constant
» Example: F(xl, x2, ..., xi=I, ..., xn)

» Example: F(xl, x2, ..., xi=0, ..., xn)

N Easy to do one by hand

F(x,y,z) = xy + x2’ +y(x’z +2’)

F(x=1,y,2) =

F(x,y=0,2) =

N Important to remember that result is a new function

» Note that new function no longer depends on this variable
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Shannon Expansion: Cofactors

N Turns out to be an incredibly useful idea

» Several alternative names and notations

» Shannon Cofactor with respect to xi

» Write F(xI, x2, ..., xi=l, ...xn) as
» Write F(xI, x2, ..., xi=0, ...xn) as
» Often see as just | which is easier to type

» Restriction of F on variable xi

> Write F(xI, x2, .., xi=l, .xn)as| |
» Write F(xI, x2, ..., xi=0, ...xn) as:]

N Why are these useful functions to get from F?
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Shannon Expansion Theorem

N Shannon Expansion Theorem

» Given any Boolean function F(xI, x2, ..., xn) and
any xi in the support of F(), F() can be represented as

» Pretty easy to prove...
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Shannon Expansion: Another View

.| function
— F

', function

0 L mux

—
— ) function
I—Px F
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Shannon Expansion: Multiple Variables

N Can do it on more than one variable, too
» Just keep on applying the theorem
» Example

F(x,y,z,w) = x *|F(x=1) [+ x’¢|F(x=0)| expanded around x

/

Expand each
cofactor
around y

F(x.y,z,w) =

= expanded around variables x and y
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Shannon Cofactors: Multiple Variables

N BTW, there’s notation for these as well
» Shannon Cofactor with respect to xi and xj
» Write F(xI, x2, ..., xi=l, ..., xj=0, ..., xn) as F
» Ditto for any number of variables xi, xj, xk, ...
» Notice also that order doesn’t matter: (F,), =(F)), =F,,

. or F_ =

Xi Xj Xi Xj

» For our example

F(x,y,z,w) =

» Again, remember: each of the cofactors is a function, not a number

ny = F(x=1, y=1, z, w) = a Boolean function of z and w
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Properties of Cofactors

X What else can you do with cofactors?
» Suppose you have 2 functions F(X) and G(X), where X=(xI,x2,...xn)
» Suppose you make a new function H, from F and G, say
»H=F
» H = (FG) ie, H(X)=F(X) * G(X)
» H=(F+G) ie, H(X)=F(X)+ G(X)
»H=FDG) ie, H(X)=F(X)® G(X)

nteresting question
» Can you tell anything about H’s cofactors from those of F, G?
» For example,

(FG), = what? (F’), = what? etc.
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Properties of Cofactors

N More nice properties...

» Cofactors of F and G tell you everything you need to know

» Complements

» In English: cofactor of complement is complement of cofactor

» Binary boolean operators

| | cofactor of AND is AND of cofactors
| | cofactor of OR is OR of cofactors
| |  cofactor of EXOR is EXOR of cofactors

» In fact, true for ANY binary operator on Boolean functions

» Very useful: can often help in getting cofactors of complex formulas
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Combinations of Cofactors

N OK, now consider operations on cofactors themselves
N Suppose we have F(X), and get F_and F,,

» F,®F, =17
» F . °F, =?
» F +F, =?

N Turns out these are all useful new functions
» We’'ll start with most obvious one to get...

» Need to remember some more calculus...
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Derivatives

Y Remember way back to how you defined derivatives?
» Suppose you have y = f(x)

y=f(x) 4

defined as slope of curve as

a function of point x

> X
Considered f(x + A) - f(x) Q/ ..... f(x+A)
— S f(x)

Let A go to 0 in the limit and you got df(x)
dx

e

Neversns
o
+

>
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Boolean Derivatives

N OK, do Boolean functions have derivatives?
» Actually, yes. Trick is how to define them...

N Basic idea
» For real-valued f(x), df/dx tell hows f changes when x changes
» For 0,l-valued Boolean function, we can’t change x by small A
» Can only change 0 <-> |, but can still ask how f changes with x ...

Real-valued f(x): Binary-valued f(x):
dfidx = lim  f(X*4) - f(x) dfidx =
A—>0 A

Compares value of f( ) when
x=0 against when x=1 ;
==1 just if these are different
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Boolean Difference

Y Hey, we’ve seen these pieces before!

» df/dx = exor of the Shannon cofactors with respect to x
» Also often written as of/ox

» Called the Boolean Difference of function f wrt variable x
It also behaves sort of like regular derivatives...

» Order of vars doesn’t matter

of  ox 8y =|

» Derivative of exor is exor of derivatives
Afdg)lox =|

» If function f is actually constant (f=1 or f=0, always, for all inputs)
ol ox =|

» If function f doesn’t depend on var x (ie change x, f never changes)
of l ox =

|
afeg)lox =|
o(f+g)lox I
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Boolean Difference

N continued...

» If f is a function only of x (only changing x can change f)
> of ox =|

N But some things are just more complex, though...
» Derivatives of (f °g) and (f + g) don’t work the same...
o(feg)lox =

o(f+g)lox=

» Why?

» Because AND and OR on Boolean values don’t always behave like
ADDITION and MULTIPLICATION on real numbers
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Boolean Difference: Gate-level View

N Tty the obvious “simple” examples for Of / Ox

X_Do_f

- f
=D

Interpretation: when of / ox =1, then f changes as x changes
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Interpreting the Boolean Difference

a___
b ——
c—>

W———>

X—>

A BIG
BLOB OF
LOGIC

—_—

F(a,b,c,....,w, X)

When OF / 0X (a,b,c, ..., w) =1, it means that ...
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Boolean Difference: Example

N Try another example

aH1b't ] =a® b® cin
b, 1o > S cout =ab + (a + b)cin
cin ,| full add—> cout

osloa =

dcout / ocin =
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Boolean Difference: Example

N Example

S

|

a—»|0o sel

— out out =as’ +bs

b—>1

2:1 mux

oout/ods =

oout/oa =
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Boolean Difference

N Things to remember about Boolean Difference

» Not as easy to assign a physical interpretation like ordinary derivative
(ie, no “slope of the curve” sort of stuff)

» Of | Ox is another Boolean function, but it does not depend on x
» It can’t, it’s made out of the cofactors wrt x, and they eliminate all

the x and x’ terms by setting them to constants

N OK; it’s cute, but is it useful...?
» Sure, let’s look at a simplified application in testing
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Application: Testing

N Suppose you want to test some logic
» You want to figure out what inputs to apply to figure out if it works

—>

—b You can’t afford to apply all possible inputs
X —» f(X) —>

— Example: 50 inputs = 1000 trillion patterns

» So, you look at the manufacturing process and try to figure out what
actually breaks
» These are called defects
» The effect of the defect is called a fault
» How you model it in your testing procedure is the fault model
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N Most common fault model is stuck-at model
» Assume individual wires are stuck at logic | (sal) or logic 0 (sa0)

a
- f ’b, ’d7
c (a,b,c,d,e)
;3
e
a
b
- f(a,b,c,d,e)
c
dis sa1 1)&:.
e

This line is stuck at 1
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N So, what’s a test here?
» A pattern of inputs that makes an output that is wrong, ie, different

what it should be if the fault was not present

» Usually try to generate tests to detect specific faults

» If you have a big list of possible faults, you generate a test set and ask
what fraction of all the faults will get detected, called the fault coverage

a="?
b=?

c="?
d=0—>x0
/ e=7?
...then see if you get an output f that

If this line is to be tested for sa1,
you have to apply a 0 to it... was wrong, ie, it still looks like d was 1,
though we know it was 0

- f(a,b,c,d,e)
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N OK, so how do you do it?
» For this simplified problem, easy
» What do you want...?
» An input pattern abcde...

» ...which means you can see if the line is stuck
» Note: to test sal you apply abOde, for sa0 you apply ablde

» We already know how to write this more clearly
» Want an input pattern where F(a,b,c,d=0,e) != F(a,b,c,d=1,e)

» Same as asking for

» Really want a pattern that makes cofactors wrt d different
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X For our example...

f(a,b,c,d,e) = ab + cd’e’

oflod =

=— f(a,b,c,d,e)=
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Back to Combinations of Cofactors

N Other combinations of cofactors also important
» F,°F, =17
» F,+F, =?
» Look at example to get some insight

f(a,b,c) =ab + bc + ac

f= f.=
foof, = f+f, =
abc f(a,b,c) f, f, foof,, | f. 41,
000 0 0 0
001 1] 1 0
010 0 1 0
011 1 1 1
100 0 0 0
101 1 1 0
110 1 1 0
111 1 1 1
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Combinations of Cofactors

N Observe
» f of, = I justin places where f would be | independent of value of a
» f +f, =1 ifeither f(a=0,b,c)=1 or f(a=1,b,c)=1

abc f(a,b,c) f, f, foof,. | f+ 1,
000 0 0 0
001 0 1 0
010 0 1 0
011 1 1 1
100 0 0 0
101 1 1 0
110 1 1 0
111 1 1 1

N But...this idea is hard to see in a truth table
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Understanding Combinations of Cofactors

Alternative perspective that offers some more insight

N Recall Boolean cubes

» You can plot a real function y=f(x) y /F\//

» You can also “plot” a Boolean function f(a,b,c)
» Of course, each axis only goes from 0 to |
» And, the only points are at the corners of this cube

011 m

\Corners that differ by just
/1 bit are called adjacent

o010 110
b
> a

000 100

001 101
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Boolean Cubes

N Represent a function by corners where f=1
» f(a,b,c) =ab + bc + ac

011 11

010 110
b
a  oo00 100

» Note that product terms appear on cube as sets of 2k adjacent corners

» product = 0 literals, eg “I” => all 8 corners

» product = | literal eg a => 4 corners

» product = 2 literals eg ab’ => 2 corners

» product = 3 literals eg ab’c” => | corner, ie, a minterm
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Aside: Literals and other Terms

N Consider this function:

ab’c + a’bc + acd + e + af

» How many literals are there?

» How many product terms?

» Is this SOP or POS?
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Plotting the Cofactors

N Look at cubes here...

fa o1t 11
» f=ab + bc + ac
= b+
> f, = btc 001 101
»f, = bc
010 110
111
011 000 100
f(a,b,c)
001 101
f, 011 m
010 10
b 001 101
> a 000 100
< > 010 110
Remember that
this is ‘a’ axis 000 100
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Plotting Combinations of Cofactors

N Look at cubes here...

» f=ab + bc + ac farfa o1 "
>f +f, = bc - -
bf +f, = bc
010 110
f(a,b,c) 011 " 000 100
001 101
fo+f. o m

010 10
b 001 101
> a

000 100
—p 010 110
Remember that
this is ‘a’ axis 000 100
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Interpreting Combinations of Cofactors

N Nice geometric interpretation

f, *f,, is called the consensus f, +f, is called the smoothing
of fwrta, C(f)(b,c) of fwrta, S,(f)(b,c)
11
o1 111 011
001 101 001 101
010 10 010 o
Lo

>a 000 100 000 100

Interpretation: keep corners Interpretation: add corners

where f=1 independent of “a” where adjacent “a” corner = 1
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Containment Props for Combinations of Cofac

N One more petspective on C (f) , S, (f) , and of / Ox

Containment properties

» Remember basic set theory...?

abc bc xy

def set Q

set P
albc| xy alb c| xy albc| xy
de f d e f d e f
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Containment Properties

N Think about Boolean functions as sets of minterms

» Not entirely unfamiliar, you should have seen somewhere notation like:

f(a,b,c) =X m(0,3,5,7) =m0 + m3 + m5 + m7
= a’b’c’ + a’bc + ab’c + abc

» Now, we just explicitly reformulate this as

X Who cares?

» We can now ask containment questions about functions...
» Like: isf ‘“bigger than” g, ie, fO g

© R. Rutenbar 2001 Fall 18-760 Page 40

Page 20




Containment Properties

N Interesting containment property: C (f) C fC S (f)

Consensus C(f) is Smoothing S (f) is
11
o1 111 011
001 101 001 101
010 10 010 10
Tzf’
a  oo0 100 000 100
Actually: consensus is Actually: smoothing is
function independent function independent
of var ‘a’ that’s still ‘inside’ f of var ‘a’ that contains f
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Containment Properties

N How would you prove something like this...?

Consensus is biggest function independent of var ‘a’ that’s still ‘inside’ f
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Containment Properties

X How would you prove something like this...? cont.
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Consensus and Smoothing

W Additional properties
» Like Boolean difference, can do with respect to more than | var
» Example: C, () =C, (C(f)) =1, ., °f, °f,,
» Example: S, () =S, (S, () =1, +f. +f +f,

N Alternative names: Quantification

» In logic (predicate calculus over truth values) when you have a formula
and want to get rid of a variable, the term is “quantification”

» Two kinds of quantifiers

» “For all x” V x called universal quantification

» “There exists x” I x called existential quantification
» Back to cofactors...

» Consensus C (f) is also written (V xf), called
universal quantification of function f wrt variable x.

» Smoothing S_(f) is also written (3 xf), called
existential quantification of function f wrt variable x

» Both of these things -- (V xf), (3 xf) -- are new functions
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Quantification...?

X'What does this really mean? Look at Universal quantify

) »| function
> F

» function J/

0—Px F L

and (V x F) (all original vars but x)

—>
— i
— ) function

| —Pix F |

v
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Quantification

X Why “quantification”...?

» Quantification is about ‘“abstracting away’’ variables
N Ponder the names a little...
» (V x F)(vars except x)

» (3 x F) (vars except x)
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Quantification

o — | F(x=0) (V x F) (all original vars but x) ==

and

v

| = bx FOx=1)

(@ xF) (all original vars but x) ==

0 —p Ix F(x=0) 1
—
—
R

| —plx FOx=1)

—> © R. Rutenbar 2001 Fall 18-760 Page 47

Quantification

N Remember!
» C.(f),S,(f), and of | Ox are all functions...
» ..but they are functions of all the vars in support of f except x
» There are no ‘X’ vars anywhere in expressions for C (f) , S, (f) , of / 0x
» We got rid of variable x and made 3 new functions

N So, are these any good for anything...?

» Sure, look at an example in logic network debugging
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Application: Network Repair

N Suppose ...
» | specified a logic block for you to implement
» ...but you implemented it wrong.
» In particular, you got ONE gate wrong

Specified Got

b —» b —»
- E— —rfap) T —Fab)

a

N Goal

» Can we deduce how precisely to change this gate to restore the correct
functionality?

» Let’s go with this very trivial test case to see how mechanics work...
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Network Repair

N Clever trick

» Replace our suspect gate by a 4:1 mux with 4 arbitrary new vars
» By cleverly assigning values to d0 dI d2 d3, we can fake any gate
» Question is: what are the right values of d’s so F is repaired (==

Repair with... Replace with

b —»
a —»

> F(a,b,d0,d1,d2,d3)
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Aside: Faking a Gate with a MUX

Y Remembert...

» You can do any function of 2 vars with one 4 input MUX

b ::
a
Is1|50

\4

0 —>00
1 1
mux >
1 -0
0 —»11
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Network Repair: Using Quantification

N Next trick
» Make new function Z(a,b,d0,dl,d2,d3) that =1 just when F==

o _:_|_|
a —
s1is0

do—»oo

41 b1 F(a,b,d0,d1,d2,d3)
d2 omux -

d3 11

exnor{_ . 7(a,b,d0,d1,d2,d3)

(::
b —»
" e

known good version
of logic network ©R.Rutenbar 2001 Fall 18-760 Page 52
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Using Quantification

N What now?

» Think hard about exactly what we want:

N But this is something we’ve seen!

» Consensus of function Z wrt variables a,b!

» This is just any pattern of (d0 dI d2 d3) that makes
C..(Z)(d0odl d2d3) == (do you know where a, b went??)

» Can also write as quantification: (V _, Z)(d0,dl,d2,d3)
» Note: these are both functions of just the d’s
» We want any pattern of d’s that makes C,, (Z ) ==

» This pattern is guaranteed to make the mux behave like the correct
gate, independent of what’s going on with a,b
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Network Repair via Quantification: Example

N Don’t believe it...? Try it... It’s all mechanics

b —»
a—»

F(a,b,d0,d1,d2,d3)

E —» Z(a,b,d0,d1,d2,d3)
a _,i flab
a,
> (a,b)
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Network Repair via Quantification: Example

N ...mechanics, cont.

© R. Rutenbar 2001 Fall 18-760 Page 55

Repair via Quantification

N Mechanical foo, cont.
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Network Repair

N Does it work? What do these d’s represent?

b —»
a—»
F(a,b,d0,d1,d2,d3) do=L_1-»lo
a
T a=Clo |y
d2=D»1omux I:I
— Z(a,b,d0,d1,d2,d3) d3= D»T‘

N This example is small...
» But in a real example, you have a big network-- 500 inputs, 50,000 gates
» When it doesn’t work, it’s a major hassle to go thru in detail
» This is a mechanical procedure that can answer this:
» Is there a way to change this one gate to make it right?
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Network Repair

N Realistic Case

» Oops, it doesn’t work! Let us guess there is a one-gate error
someplace..but we don’t know where...

» For each gate in network, try to do this repair procedure..
do dl d2 d3

—> Z(real input vars,d0,d1,d2,d3)

correct implementation ©R.Rutenbar 2001 Fall 18-760 Page 58
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Computational Strategies

X 'What haven’t we seen yet? Computational strategies

» In several places we sort of assumed you could figure something out
once you got the right function...

» Example: find inputs to make of / 0x ==1 for testing
» Example: find inputs to make C_ (Z) ==I for gate debug
» This computation is called satisfiability

» We’'ll see a bunch of such strategies later in course

N Common computation theme: divide & conquer
» You want to do something hard on a Boolean function...
» ...so you try to do it with the cofactors, glue answer back together

» Let’s look at one simplified example to get some experience...

© R. Rutenbar 2001 Fall 18-760 Page 59

Representation Issues

UFirst, let’s look at a simple, historically early representation
scheme for functions

» Represent a function as a set of OR’ed product terms
» Remember: each product term is a cube with 2" corners when plotted

111

. 011

101
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Positional Cube Notation

Y Remember, we say “cube” and mean “product term”
» So, how to represent each cube?
» Positional cube notation: one slot per variable, 2 bits per slot

» Can write down each cube very simply by just noting which variables are
true, complemented, or absent

» In slot for var x: put 0l if product term has ...x... in it
» In slot for var x: put 10 if product term has ...xX’... in it
» In slot for var x: put || if product terms has no x or X’ in it

. 011

101
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Positional Cube Notation: Tautology

N So, we represent a cover of a function...
» ...as a list of cubes in positional cube notation
» Ex: f(a,b,c)=a +bc +ac’ =

N Look at an application: Tautology testing
» We say a function f is a tautology when f == | for all inputs
» Turns out to be many computational uses for this
» But you might be thinking ‘“Hey, how hard can this be...?”

» Actually, pretty hard for a big complex function represented in
some POS form like a cube-list

Ex: f(a,b,c) =ab +ac+ab’c’+a’

is it or isn’t it == | always?
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Tautology Checking

Y How do we approach tautology as a computation?

» Input = cube-list representing products in an SOP form of f
» Output = yes/no, f ==| always or not

N Cofactors to the rescue

Nice result: fis a tautology if and only if f and f, are both tautologies

Proof again not too hard:
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Recursive Tautology Checking

N Suggests a recursive strategy:
» If you can’t tell immediately that f==
» ...go try to see if each cofactor == | !

=17 |::> Split on X
(f,=1 AND £,=1)2?
/fyln y/n \\

f=122 f,=172

N What else do we need here?

» Selection rules: which x is good to pick to split on?

» Termination rules: how do we know when to quit splitting, so we can
answer ==| or !=1 for function at this node of tree?

» Mechanics: how hard is it to actually represent the cofactors?
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Recursive Cofactoring

N Do mechanics first -- they’re easy
» For each cube in your list

» If you want cofactor wrt var x=1, look at x slot in each cube:
= [... 10...] => just remove this cube from list, since it’s a term with an x’
= [... 01 ...] => just make this slot || == don’t care, strike the x from product term
= [... Il ..] => just leave this alone, this term doesn’t have any x in it

» If you want cofactor wrt var x=0, look at x slot in each cube:
= [...01 ...] => just remove this cube from list, since it’s a term with an x
= [...10...] => just make this slot | | == don’t care, strike the X’ from product term
= [...11 ..] => just leave this alone, this term doesn’t have any x in it

» Examples

f = ab+ac’d+bc’ f f

[01 01 11 11]
[01 11 10 01]
[11 0110 11]
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Unate Functions

N Selection / termination, another trick: Unate functions
» Special class of Boolean functions

» fis unate if a SOP representation only has each literal appearing in
exactly one polarity, either all true, or all complemented

» f is positive unate in variable x if changing x 0-->1 keeps f constant or
mabkes it change 0->1

» f is negative unate in variable x if changing x 0->1 keeps f constant or
mabkes it change 1->0

» Function that’s not unate is called binate
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Unate Functions

N Analogous to monotone continuous functions

y . Lo . .
This function is monotone increasing,

whenever x2 > x|, f(x2) > f(x1)

» X

N Boolean function positive unate in x

Really just same idea as above...

—
—

Boolean

variable X == funcftion

— (X )
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Using Unate Functions For Computation

N Who cares?
» Unate schmunate--we need easy tautology checking!
» But this helps...

N Suppose you have a cube-list for f

» That cube-list is unate if each var in each cube only appears in one
polarity, but not both

» Ex: f(a,b,c)=a +bc +ac => [0] II1 II],[I11 OI OI],[OI Il 017 is unate
» Ex: f(a,b,c)=a +b’c +bc => [01 Il II],[11 100I],[I1 0l OI] is not
» Easier to see if draw vertically

atb’ctac UNATE a+b’ctbc NOT

[01 11 11] [01 11]

[1110 01] [11 10 01]

[01 11 01] [11 01 01]

a/}:;/;/‘ b,b’/
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Using Unate Functions in Tautology Checking

N Nice result

» It’s pretty easy to check a unate cube-list for tautology

» Reminder: what exactly is[I11 11 Il ... 1] as a product term?

[010101]=abc [010111]=ab [011111]=a [[111111]=

N This result actually makes sense... ap&d

» You can’t make a “I”
with only product terms
where all literals are
in just one polarity

» Try to do it on a Kmap...
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Recursive Tautology Checking

N So, unateness gives us some termination rules
» We can look for tautology directly, if we have a unate cube-list
» If match rule, know immediately if ==1, or not

» Rule I: ==1 if cube-list has all don’t care cube [I1 I ... 11]
Why: function at this leaf is (stuff + | + stuff) ==

» Rule 2: !=1 if cube-list unate and all don’t care cube missing
Why: unate ==1 if and only if has [11 11 ... 1] cube

f==1?

==] NO

==1 YES
RIRL
1111..11 |Rulel Holto | Hule2-
it’s unate but
oroi1o all don’t care

cube is not here
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Recursive Tautology Checking

» Lots more rules...

» Rule 3: ==1 if cube list has single var cube that appears in
both polarities
Why: function at this leaf is (stuff + x + x’ + stuff) ==

» You get the idea...

f==1?

f=1n

==] YES
oLt Rule 3 -
101111 =.LEx+Ex+ .
Iirio
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Recursive Tautology Checking

N But can’t use easy termination rules unless unate cubelist
N Selection rule...?

» Hey, pick the splitting var to try to make unate cofactors!

» Strategy: pick “most not-unate” (binate) var as split var
N Implementation

» Pick binate var with most product terms dependent on it

» If a tie, pick one with min | true var - complement var |
X Yy z W
01 01 01 o1
10 11 01 01
10 11 11 10
01 01 11 01

L, binate, in 4 cubes, | true - compl | = 3-1 =2
unate

unate
binate, in 4 cubes, | true - compl | =2-2=0
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Recursive Tautology Checking

N And that’s it!
Algorithm

tautology( f represented as cubelist) {
I* check if we can terminate recursion */
if (f is unate) {
apply unate tautology termination rules directly
if (==1) return (1)
else return (0)

else if (any other termination rules, like rule 3, work) {
return the appropriate value if ==1 or ==

else { /* can’t tell from this -- find splitting variable */
X = most-not-unate variable in f
return ( tautology( f, ) && tautology( f,.) )
}
}
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Recursive Tautology Checking: Example

N Tautology example: f=ab + ac + ab’c’ + a’

a b c
ab 01 01 11 Al vars are binate, var a
ac 01 11 01  affects most implicants, so
ab’c’ 01 10 10  gplit on a...
a’ 10 11 11

N

4
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Recursive Tautology Checking: Example

No unate vars yet, no simplifications.
Let’s split again, now on b.

y Ny

f
N So we are done:
f/

» Our tree has tautologies f, ==

a a
at all the leaves!
» Note - if any leaf ends up
=1, then f!= | too, this fo==1 f . ==1
is how tautology fails ab ab’ =
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Computational Boolean Algebra

N Computational philosophy revisited

» This strategy is so general and useful it has a name

» Paradigm: a general strategy of broad application, power
» Recursive: use Shannon cofactoring as basis for progress

» Unate: strive to make cofactors unate, since unate = simpler,
and lots of properties are just easier to find with unate fs
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Advanced Boolean Algebra

N Summary
» Cofactors, and functions of cofactors interesting and useful
» Boolean difference, consensus, smoothing (quantification)
» Real applications: test, gate debugging, etc.

» Representation for Boolean functions will end up being critical
» Truth tables, Kmaps, equations not manipulable by software
» Saw one real representation: cube-list, positional cube notation

» Emphasis on computational strategies to answer questions about
Boolean functions

» Ex: is f==1? does f cover this product term?
what values of inputs makes f==1?

» Saw an example of a strategy: Unate Recursive Paradigm
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