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CMU Fall 2001 18-760 VLSI CAD
[125 pts] HW 5. Out: Tue Nov 27,  Due: Thu. Dec 11 ‘01, in class.  (V1)

1. Quadratic Placement [25 pts]

Consider this simple netlist with fixed pins, which has 3 placeable objects. All the 2-point 
wires have Cij=1 except the two wires labeled “W” in the figure:

Do this:

• Assume W=1 so all wires have unit weight, and show how to formulate and solve the 
quadratic placement problem as in the class notes.  Show the  [Cij] matrix, the [A] 
matrix, the two b vectors (one for solving the x problem, one for the y problem). Solve 
the two resulting 3x3 matrix problems (however you want to do it) to get a placement. 
Plot the placement as in class (you can do it by hand, or you can be fancy and use a pro-
gram; either is OK). 

• Now, assume W=10, and repeat the above placement exercise, again showing all the 
matrices, vectors, and final placement.
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2. Static Timing Analysis: Computation [25 pts]

Consider the simple circuit below. Do the following:

• Assume each gate has delay equal to the number of its inputs, i.e., the inverters have 
delay=1, the NANDs have delay=2. Ignore the wires for delay. Draw the full delay 
graph with one source and one sink node.

• What the fastest cycle time we could use if this was the logic we had between latch 
stages in our design?  Show how you computed this.

• Using this cycle time number, show the Arrival Time (AT(node)) and Required Arrival 
Time (RAT(node)) times for each node in your graph.  Use the algorithms from the 
class notes:  you can do the topological sorts by eye, then use these to generate the AT 
and RAT numbers. Don’t worry about “early mode” and “late mode” delays; just use 
the single delay per gate ( delay = the number of gate inputs ).   Given the AT and RAT 
numbers, show the slacks at each node too.

• Is the longest path statically sensitizable?  Explain why or why not.
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3. Basic Maze-Routing Algorithms [25 pts]

Consider the simple 2-point maze-routing problem shown below. All the unblocked cells 
are white, and for convenience are labeled with a single letter in the lower left corner so 
we can refer to them later. Assume cells have unit cost unless they are labeled with a num-
ber in the lower right corner (e.g., cells f, j). Black cells are blockages.

Answer these questions:

• Suppose we use the plain vanilla maze routing scheme (no predictor function) to route 
from the source S cell to the target T cell in this grid.    Assume that when a cell is 
removed from the wavefront (expanded) and used to reach its neighbors, you look at 
(i.e., reach) the neighbor cells in this compass order: North, East, South, West. Assume 
also that reached cells added to the wavefront with the same cost are stored in a queue: 
first in is first out. Redraw the grid twice, and in one drawing label the cells in the order 
they are reached (added to the wavefront); in the other drawing label the order in which 
cells are expanded. Also show the final path and tell its cost.

To be clear here: you start with just cell i on the wavefront with cost=1. You expand i, 
and you reach first f, and then j, and then m, then h, in order. f has cost=3, all others 
have cost=2. These cells go on the wavefront in order f, j, m, h. Given the queue struc-
ture of the wavefront, the next cell to expand is j, since it’s the first cell of cost=2 on the 
wavefront. Continue from here...

• Suppose instead that we use a depth-first predictor scheme? Assume the same Rubin 
scheme as discussed in class.  Assume the order for reaching neighbors is the same 
order as above. Recall: each cell now has a pathcost, and a distance-to-target (esti-
mated) cost.   Answer the same questions for the last part for this new search scheme.

Again, to be clear. Cell i is the first one on the wavefront with pathcost=1 and estimated 
distance-to-target = 3. So, cell i is on the wavefront with total cost = 4. You reach the 
neighbor cells in this order: f, j, m, h.   f has pathcost =3 and distance-to-target =2, so f 
goes on the wavefront at total cost = 5. j has pathcost=2, and distance-to-target = 2, so j 
goes on the wavefront at total cost = 4. Similarly, m and h end   up on the wavefront 
each at a total cost of 2+4=6. Continue from here... 
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4. Elmore Delay for a Parameterized Clock Tree [25 pts]

Consider the  symmetric clock tree layout shown below. It has 7 segments with fixed 
length, with 3 of these having variable width.  It has 4 leaf nodes. Now assume that the 
resistance and capacitance can be calculated as:

•  R = r•L/W, where r=50 x 10-3

•  C = c•L•W, where c = 0.2 x 10-15 

• Assume that L, W must be in units of microns for the above formulas to work right.  
Note that some lengths in the picture are in millimeters. Remember to convert!

Suppose we want to make the delay as small as possible here. One simple way is a mono-
tone widening scheme: the bottom-most wires are all width=1um, and each level up the 
clock tree has wires k times wider than the level below.  There are 7 segments in this 
clock, but only one designable variable now: k.  Do this:

• What is the root to leaf delay of this clock if we just   set k=1?

• How fast can we make this clock run, ie, what is the minimum Elmore delay τ that we 
can achieve if we can set k to any positive number? (k does not have to be an integer).

• How fast can we make this clock if we limit the maximize width of the widest wire to 
5 um?

• Suppose we also have a power limit.  To first order, the power in the clock is CV2f, 
where C is the total capacitance of the entire clock (segments + leaf nodes), V is the 
voltage of the clock signal (let’s call it 1V to make life easy), and f is the frequency of 
operation (Hz) of the clock.  Let’s assume we can approximate f as 1/τ.   How big can 
we make f if we have a total limit of 2 milliWatts dissipated in the clock, i.e., 
CV2f <= 0.002?

 (Hint: Turn each segment into a pi model as a function of k, write delay as a function of 
k, and total capacitance as a function of k. You can solve nonlinear equations graphically 
by plotting for various values of the variable)
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5. Geometric Data Structures [25 pts]

Consider this simple layout, which has 11 rectangles (labelled a-k) on 2 layers:  the dark 
grey layer, and the lighter  (it’s actually striped) layer:

Do this:

• Draw the quadtree that represents this layout. You don’t need to try to draw the actual 
rectangle in each node of the quadtree, just show the quadtree’s overall structure (quad-
rants, cut lines, hierarchy) and what rectangles (by letter) live in each part of the tree. 
Explain any assumptions you need to make.

• Draw the maximally horizontal corner stitched tileplane that represents this layout. 
Assume we want one single tileplane, so that each tile will be a unique combination of 
layers. So, we will have space tiles, dark-grey tiles, striped tiles, and dark-grey-AND-
striped tiles. Label things clearly so we can tell what each tile is.  Draw the grid coordi-
nates as above so we can see where the edges of each tile fall. Remember the canonical 
form for the tileplane:  solid tiles are maximally wide and then maximally high;  solid 
tiles cannot have “same-color” tiles at their extreme left/right ends. In this case,  it’s OK 
to have another solid tile with a different “color”, ie, a different set of solid layers inside 
a horizontally neighboring tile.  Explain any assumptions you need to make.
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