
CMU Fall 2001 18-760 VLSI CAD October 31, 2001 1

CMU Fall 2001 18-760 VLSI CAD
[120 pts] HW 4. Out Tue Oct 30, Due TBD, November (V1)

1. Rectangle covering [20 pts]

Consider this simple function: Y = abg + acg + adf + aef + afg + bd + be + cd + ce

Do this:

• Kernel this function using the recursive algorithm from class. Show the recursion tree
as in the class notes.

• Next, build the cokernel-cube matrix for Y.

• Using rectangle covering, identify the best first multi-cube factor you can pull out the
expression for Y and improve the network. (Note the “network” here starts with just
one Boolean node. This is OK, all this stuff still works fine.) Show the updated net-
work with the factor extracted.

• Repeat: show how to update the matrix to reflect this factor, and then show how to use
rectangle covering to get the next best factor (if there is a next best factor that makes the
network better). If there is, show it, and redraw the network to reflect this second fac-
tor that you found. If there is no “next factor” that improves the network, say why.
(You don’t have to update the matrix again.)

2. Multi-Level Don’t Cares [20 pts]

Consider this Boolean Logic Network.

Do this:

1. Derive the Satisfiability don’t cares (SDCs) for node X and Y. Show an SOP cover of
the don’t care functions SDCX and SDCY

X = b’ c +d

Y = ab

Z = X + Y + b

a

b

c

Q = a(Z’ + b’)

d

Q

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 2

2. Derive the Controllability don’t cares (CDC) for the signals at the input to node Z.
Show an SOP cover of the don’t care function. Show how you use the formula to quan-
tify away any unneeded variables.

3. Derive the Observability don’t cares for node Z with respect to network output Q.
Show how you use the ODC formula to quantify away any unneeded variables.

4. Draw a Kmap for node Z. Show the original “1”s in the Z function, and show all the
new don’t cares due to CDC and ODC don’t cares. Minimize the 2-level form for the
function at Z using these new don’t cares and write a new SOP form for Z. Is the new
form of Z any simpler?

Suggestion: Don’t hesitate to use the KBDD calculator to do the quantifications and such here
-- use it as a Boolean calculator to do the messy parts of this problem, and hand in any output
from this as proof of your work. You don’t need to do it all by hand if you don’t want to.

3. Technology Mapping [20 pts]

Consider this uncommitted logic network made out of inverters and 2-input NANDs. We
have labeled the internal nodes of the network with numbers 1-12 for convenience.

4

1

2 3

5

6

7

9

10

11

8

12

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 3

Suppose your technology library consists of:

1 input gates: INVERTER ($1)
2 input gates: NAND ($2), AND ($3), NOR ($2)
3 input gates: NAND ($3), OAI21 ($3) (or-and-invert, it implements [(a+b)•c]’)

Do this:

• First, draw the target patterns for each of these library cells, as they consist of
NAND2s and INVERTERs.

• Label which library patterns match at each node of this network (you can do this by
eye).

• Then, show how the dynamic programming tree covering algorithm will derive a mini-
mum cost covering of this network (show the tables like in the notes; you don’t have to
manually do all the recursion stuff).

• Draw the final mapped network, and tell its final cost.

And: no you don’t have to do the back-to-back inverter insertion trick from the notes.

4. Using SIS to do Tech Mapping [20 pts]

Let’s see how this works with a real techmapping tool. First, you have to describe the tech-
nology library in the GENLIB file format and then use this library for the technology map-
ping of the given circuit. For help on the GENLIB format, look at the assignments page on
the class web page, a pdf about this is there.
Use 1 for <input-load>, 999 for <max-load>, 1.0 for all block delays, and 0.0 for all fanout
delays. An example technology library, which consists of only an inverter and a 2-input
AND gate, is described in the GENLIB format as:

GATE zero 0 O=CONST0;
GATE one 0 O=CONST1;
GATE inv 1 O=!a; PIN * INV 1 999 1.0 0.0 1.0 0.0
GATE and2 2 O=(a*b); PIN * INV 1 999 1.0 0.0 1.0 0.0

Then define the network to be covered in the BLIF file format, using one .names direc-
tive for each gate. Documentation on BLIF format can also be found on the class web page.
A BLIF description of a netlist which consists of a 2-input AND gate, followed by an in-
verter, is:

.model circuit.blif

.inputs a b

.outputs f

.names a b n1
11 1

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 4

.names n1 f
1 0

.end

Finally, assuming you have circuit.blif and tech_libl.genlib typed in as the netlist and tech
files, respectively, in your UNIX directory, you run SIS, and the sequence of SIS commands
that you will need is:

sis>rl circuit.blif
sis>rlib tech_lib1.genlib
sis>map
sis>p
sis>print_gate

Do this:

• Set up the problem just as in problem 3, and run the mapping. Run SIS, and handin the
printout, and also draw the network it creates. Interpret this output: write a few
sentences explaining what SIS did.

• Let’s try a much richer library, and see if it helps as all. Use the genlib format to build
this library:
INVERTER: 1 input
NAND: 2,3,4 inputs
AND: 2,3,4 inputs
NOR: 2,3,4 inputs
OR: 2,3,4 inputs
XOR: 2,3,4 inputs
XNOR 2,3,4 inputs
AOI: (2,1) as in the class lecture notes
OAI: (2,1) as in the class lecture notes
Run SIS, and handin the printout, and also draw the network it creates. Interpret
this output: write a few sentences explaining what SIS did.

• Let’s try a much weirder library, and see if this works at all. Use the genlib format to
build this library:
INVERTER: 1 input
NOR: 2,3,4 inputs
XOR: 2,3,4 inputs
XNOR 2,3,4 inputs
Run SIS, and handin the printout, and also draw the network it creates. Interpret
this output: write a few sentences explaining what SIS did.

5. Annealing and the Travelling Salesman Problem (TSP) [10 pts]

Source code for the TSP annealer example is in the class ANDREW account. This imple-
mentation is pretty simple, and it works OK--but it could be better. In particular, the one
obvious feature that the code lacks is any notion of “range limiting”. Recall from the

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 5

class notes that this is the idea that you should try to limit the “range” of proposed random
moves to be smaller as the temperature cools, so that you avoid trying useless moves. In
the context of TSP, its pretty clear that when its really cold, it’s a bad idea to try swapping
completely random, distant cities that are already separated by many links in the overall
TSP solution tour. But...it takes some thought to work out a real range limiter here.

Do this:

• Show pseudocode for a proposed range limiting solution. Tell where in the current
TSP code this would go, eg, is it in evalSwap(), or in annealAtTemperature() or where?
Explain what you think your range limiting scheme is supposed to do.

(Hint: think about the structure of the tour as it evolves. When it is hot, cities i, j in the
tour can be very very far apart, even if i is very close to j in the tour order. As it cools,
however, this should not be true any more: if i is close to j, then probably city i is closer to
city j. Can you use this to suggest a way to pick cities to swap are likely to yield more use-
ful moves? It is OK to assume some un-specificed function RANGE(Temperature) that
gets tuned to limit the actual numerical “rangle” limit, as a function of the falling tempera-
ture. In any real annealing, this is something that gets carefully tuned, or set adaptively as
annealing proceeds. But for this problem, we want to see you work out the mechanics of
how you would use this info, i.e., what is RANGE(Temperature) actually generating? Is is
a distance (in miles?) a separation (in index-units in the tour array solution?) or something
else. You can specify anything you like here, just explain it clearly.

You might also want to go look at placer.cc, which is also on the web page, and is a simple
checkerboard-style gridded placer. It has a real range limiter implemented for a placement
problem.)

You don’t have to go implement this in the tsp.cc code. (But if you do, we will be mighty
impressed...)

6. Very Simple Floorplanning via Annealing (TSP) [30 pts]

OK: this one, you have to implement something. But, something small, and interesting.

In class we showed a video tape of something sort of like a jigsaw puzzle assembling itself
by annealing. (This was that fuzzy orange set of rectangles, with appropriate musical
accompaniment.) You can actually build a very simple version of this, directly reusing
most of the skeleton of the TSP annealing code.

In general, this is a lot of work, but for this problem, we’re going to build the code to just
one single, fixed problem, i.e., we will not read in any description of a general floorplan.
We will just “bake” the floorplan right into the cost function and move set, so that we keep
this very very simple to implement. Here is how to do it:

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 6

1st cut

2nd cut

3rd cut

4th cut

a

c

b

ed
1. Get some graph

paper, draw a
big square.

2. Draw some
“cut” lines thru

the square, recursively
like this.

3. This is your trivial
“jigsaw” puzzle,

and you know it can
be reassembled into

a perfect square.
Label the pieces.

a

c

b

ed
4. Draw “wires” from center of each piece to
other pieces it touches. Note – not all pieces

will end up with these wire, since not all
piece touch each other

a b c d e
a 1 1
b 1 1 1 1
c 1 1 1
d 1 1 1
e 1 1

a b c d e
a 1 1
b 1 1 1 1
c 1 1 1
d 1 1 1
e 1 1

Make a matrix C(i,j) that
records which blocks
have wires to which

other blocks

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 7

a

c
b

ed

p1 p2

p3

p4

p5p6p7

p8

p9

5. With the puzzle “assembled”, draw a “pin” on
the perimeter with one same coord as the center
of each block that touches the perimeter. In this
small example, its all the blocks. It general, it
won’t be all the blocks.

Create another wire
from each pin to the
center of the block it

touches. Note, each pin
is on just one wire.

p1 (x1,y1,a)
p2 (x2,y2,b)
p3 (x3,y3,b)
p4 (x4,y4,e)
p5 (x5,y5,e)
p6 (x6,y6,d)
p7 (x7,y7,c)
p8 (x8,y8,c)
p9 (x9,y9,a)

6. Create an array that lists
each pin, its FIXED location
on the perimeter of the square,
and what block it connects to.

c
b
e

d

p1 p2

p3

p4

p5p6p7

p8

p9 a

7. To anneal: just randomly relocate
a block inside the overall square;

these are your moves.
Yes—just let them overlap!

Your problem state is just the
(X,Y) center location of each block.

c
b

e
d

p1 p2

p3

p4

p5p6p7

p8

p9 a

8. The first part of your
cost function is just the
lengths of all the wires:
The ones block-to-block,
and the ones pin-to-block.
Remember: blocks move,

but pins don’t.

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 8

m

c
ba

9. The second part of your
cost function encourages the

block NOT to overlap.
This is called a “penalty function”.
For each pair of blocks that overlap,

you add to the cost function the amount
(area of overlap)2

Here is the overall pseudocode for how to do this move-one-block-and-eval
to anneal this problem:

// to do a move
let m = random block in {a,b,c,d,e}
let x,y be a random new center location in the overall square
move block m to location (x,y)
// you can either let the blocks move partially “outside” the square
// or check when this happens, and slide them back inside. Your call.

// to eval delta-cost for a move
newCost = 0;
// cost for wires from pins to blocks
for (pin p = 1; p<=9; p++)

newCost += distanceFromPinToItsBlockCenter(p)
// cost of wires and overlaps block to block
for(block m = a; m <=e; m++) {

for(block n = m+1; n<e; n++) {
// cost for block to block wires
if (C[m][n] == 1) //blocks m,n have a wire we must count

newCost += distanceBetweenBlockCenters(m,n)
// penalty for block to block overlap
newCost += WEIGHT*overlapAreaBlocktoBlock(m,n)**2

}
}
deltaCost = oldCost – newCost;

c
ba

c
ba

c
ba

c
ba

Just look at 3 blocks
to make this simpler

a-c overlap

a-b overlap b-c overlap

m

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 9

Do this:

• Make up your own jigsaw-puzzle “floorplanning” problem as shown here. Use at least
10 blocks. We suggest a 100x100 grid for the overall square.

• Use the tsp.cc code as a starting point, but remove the “TSP” parts, and replace them
with code to do the jigsaw puzzle. In particular, this is

genTSP() -- generates a random TSP problem, you want genFloorplan()
costTSP() -- rename as costFloorplan, and write a new one
tclInitTSP() -- just rename it to tclInitFloorplan()
tclDrawTSP() -- change it to draw you blocks, wires, pins, instead of the TSP.
tclEndTSP() -- just rename it to tclEndFloorplan()
evalSwap() -- replace it with a new evalFloorplanMove()
global variable “tourcost” -- rename it floorplanCost
annealAtTemperature() -- set var “attempts” to MOVESPER * (your block count)
 replace the ~30 lines of code that swaps 2 cities with

some code to pick a random block, move it, eval cost,
accept reject. Its doable in about 20 lines.

anneal() -- works OK as is as long as “tourcost” gets replaced with “floorplanCost”
this gets set up globally before annealing starts

main() -- get rid of any parameters you don’t want on the command line

• Your final cost will end up as:
SUM(pin to block wirelengths) + SUM(block to block wire lengths)
+ WEIGHT * SUM(block-to-block overlaps)2

You have to play around with the “WEIGHT” number to balance the “attractive” part
of the cost function, that pulls blocks with wires close to each other, with the
“replulsive” part of the cost function, the push overlapping blocks apart. The idea is
you want to minimize the wirelength (which should go to 0 in a perfect solution), and
you want to minimize overlaps (which also should go to 0 in a perfect solution).

• See next page for how to compute these rectangle to rectangle overlaps easily.

• Play around with your implementation to set the annealing parameters to get something
“interesting”. We don’t expect to see a perfect solution, with the floorplan reassem-
bling itself quickly, perfectly, beautifully. This formulation is just a little to dumb, too
simple. But, it should make some “progress” toward this final answer.

CMU Fall 2001 18-760 VLSI CAD October 31, 2001 10

• Email asinghee@ece.cmu.edu a tcl movie file for the output, and in the HW assignment
itself, print out the code, and tell us anything interesting you did to write it. See the
class web page for the tcl drawing package cmuview, and instructions how to use it.

Overlap(b,c) {
rectangle a;
// try to build overlap rectangle itself – call it “a”
a.llx = Max(b.llx, c.llx);
a.urx = Min(b.urx, c.urx);
a.lly = Max(b.lly, c.lly);
a.ury = Min(b.ury, c.ury);

if((a.llx > a.urx) || (a.lly > a.ury)) {
// they don’t really overlap
return (0);

}
else return ((a.urx - a.llx) * (a.ury - a.lly))

}

(urx,ury)

(llx,lly)

b
c

A rectangle is 4 coords:
lower-left x,y
upper right x,y

Want to compute how much
rectangles b,c overlap, area of this
potential overlap, (=0 of no overlap)

