
1st cut

2nd cut

3rd cut

4th cut

a

c

b

ed
1. Get some graph

paper, draw a
big square.

2. Draw some
“cut” lines thru

the square, recursively
like this.

3. This is your trivial
“jigsaw” puzzle,

and you know it can
be reassembled into

a perfect square.
Label the pieces.

a

c

b

ed
4. Draw “wires” from center of each
piece to other pieces it touches. Note

– not all pieces will end up with
these wire, since not all pieces touch

each other

a b c d e
a 1 1
b 1 1 1 1
c 1 1 1
d 1 1 1
e 1 1
Make a matrix C(i,j) that

records which blocks
have wires to which

other blocks

Homework 4: Review of Floorplanning Problem
18-760 Fall 2001

a

c
b

ed

p1 p2

p3

p4

p5p6p7

p8

p9

5. With the puzzle “assembled”, draw a “pin”
on the perimeter with one same coord as the
center of each block that touches the
perimeter. In this small example, its all the
blocks. It general, it won’t be all the blocks.

Create another wire
from each pin to the
center of the block it
touches. Note, each pin
is on just one wire.

p1 (x1,y1,a)
p2 (x2,y2,b)
p3 (x3,y3,b)
p4 (x4,y4,e)
p5 (x5,y5,e)
p6 (x6,y6,d)
p7 (x7,y7,c)
p8 (x8,y8,c)
p9 (x9,y9,a)

6. Create an array that lists
each pin, its FIXED location
on the perimeter of the
square, and what block it
connects to.

c
b
e

d

p1 p2

p3

p4

p5p6p7

p8

p9 a

7. To anneal: just randomly relocate
a block inside the overall square;

these are your moves.
Yes—just let them overlap!

Your problem state is just the
(X,Y) center location of each block.

c
b

e
d

p1 p2

p3

p4

p5p6p7

p8

p9 a

8. The first part of your
cost function is just the
lengths of all the wires:

The ones block-to-block,
and the ones pin-to-block.
Remember: blocks move,

but pins don’t.

c
ba

9. The second part of your
cost function encourages the

blocks NOT to overlap.
This is called a “penalty function”.

For each pair of blocks that overlap,
you add to the cost function the amount

(area of overlap)2

c
ba

c
ba

c
ba

c
ba

Just look at 3 blocks
to make this simpler

a-c overlap

a-b overlap b-c overlap

So, overall cost function is this:

Cost = ∑ distancePintoBlockCenter(pin P , block m)

+ ∑∑ C(m,n) distanceBetweenCenters(block n, block m)

+ W ∑∑ overlapArea(block n, block m)2

pins P

n m>n

n m>n

You need this since the units of the first
2 terms are “wirelength”, but units of
this term are “area”. You need to empirically
balance these to get a good final solution.

Here is the overall pseudocode for how to do this move-one-block-and-eval
to anneal this problem:

// to do a move
let m = random block in {a,b,c,d,e}
let x,y be a random new center location inside the overall square
move block m to location (x,y)
// you can either let the block move partially “outside” the square
// or check when this happens, and slide it back inside. Your call.

// to eval delta-cost for a move
newCost = 0;

// cost for wires from pins to blocks
for (pin p = 1; p<=9; p++)

newCost += distanceFromPinToItsBlockCenter(p)

// cost of wires and overlaps block to block
for(block m = a; m <=e; m++) {

for(block n = m+1; n<e; n++) {

// cost for block to block wires
if (C[m][n] == 1) //blocks m,n have a wire we must count

newCost += distanceBetweenBlockCenters(m,n)

// penalty for block to block overlap
newCost += W *overlapAreaBlocktoBlock(m,n)**2

}
}

// compute final change in the cost value due to this move
deltaCost = oldCost – newCost;

// usual Metropolis accept/ reject
if (Metropolis criterion(deltaCost, temperature) == “accept”)

// this is your new state of the floorplan
else

// nope, sorry. Remember to UNDO this move
move block m back to its original location

m

m

m

p

m
n

m

m

m

m

Overlap(rectangle b, rectangle c) {
rectangle a;
// try to build the overlap rectangle itself – call it “a”
a.llx = Max(b.llx, c.llx);
a.urx = Min(b.urx, c.urx);
a.lly = Max(b.lly, c.lly);
a.ury = Min(b.ury, c.ury);

if((a.llx > a.urx) || (a.lly > a.ury)) {
// they don’t really overlap
return (0);

}
else {

// they really do overlap, compute area of rect a, return it
return ((a.urx - a.llx) * (a.ury - a.lly))

}
}

(urx,ury)

(llx,lly)
b

c

A rectangle is 4 coords:
lower-left x,y
upper right x,y

Want to compute how much
rectangles b,c overlap, area of this
potential overlap, (=0 of no overlap)

Also, its not too hard to calculate the overlaps
between the rectangles. You can use this
pseudo code.

