
CMU Fall’01 18-760 VLSI CAD October 3, 2001 1

CMU Fall’01 18-760 VLSI CAD
[120 pts] Homework 3. Out Tue Oct 2, Due Tue. Oct. 16, in class (v1)

1. Sequential FSM Verification [20 pts]

Show how to use kbdd to formally check the equivalence of these two example state
machines. As you can see, one machine has 4 states, and the other has 5 states, and a few
suspicious (shaded) transitions. Are they equivalent? Show how to use kbdd to do the
reachability set computations, one set at a time, for the cross-product machine. The goal
here is to understand step by step how you do this mechanically, as a sequence of sym-
bolic ops using a BDD package. Hand in a printout of your kbdd run to show how you did
this. Explain your answer

One input: x
One output: z

D Q
pp+

D Q
qq+

Encoded pq machine

Implementation equations
p+ = q’x’ + p’q
q+ = q’x + p’q + pq’
z = pq

Implementation equations
a+ = dx’ + e
b+ = ax + cx
c+ = ax’

z = d

Starting state: A

A/0

B/0

C/0

D/1
0

1

1

1,0

0

0,1

pq=00

pq=10

pq=01

pq=11

A/0

B/0

C/0

D/1
0

1

1

0,1

0

0

abcde=10000

abcde=00100

abcde=01000

abcde=

E/0

abcde=0,1

D Q
aa+

D Q
bb+

1-hot abcde machine

D Q
cc+

1

D Q
dd+

D Q
ee+

d+ = b + cx’

00010

00001

e+ = d

CMU Fall’01 18-760 VLSI CAD October 3, 2001 2

2. FSM Reachability Analysis [10 pts]

In the lecture about FSM verification, we introduced the concept of reachability analysis,
where we represent as a Boolean function the set of all states that our machine can visit from a
known start state in 0 clock ticks (we called it R0), 1 tick (R1), 2 ticks (R2), and so on. This is
actually a forward reachability analysis: you pick a state in which the FSM starts and then you
go forward in time to see what states you can reach. It turns out that you can also go back-
wards in time. You pick an “end state” and you go backwards to see which sets of prior states
could have got you into that state, It turns out that this has one very nice technical advantage:
you don’t need to build the BDD for the transition relation

 δ(old state, input, next state) = 0 or 1

In practice it is often true that δ can make a huge BDD.

Consider again our simple machine from the lecture. Let R0 = {B} be our arbitrarily chosen end

state. Then we expect the set of states prior to R0 —the states we could have been in one clock
tick in the past, and still reached state B one tick later — to be {A B}, which we call R-1. In this
notation, R-k denotes the Boolean function that represents the set of all states that could reach our
end state {B} in not more than k clock ticks. It turns out that there is another quantification sort of
formula to figure out how to compute these sets. For our particular little FSM, that formula is:

where R-k(p,q) is the Boolean function for a set of reachable states, and (p,q) is the bit pattern
representing a state in our FSM. p+(p,q,x) and q+(p,q,x) are the next-state equations from the
FSM. If you start in state (p,q) and see input x, then you go to state (p+, q+).

For this problem, do the following:

• Explain briefly why this formula works. In English, what is going on here? The key is to
look at each term in the equation, and the quantification operation, and understand why this
formula gives us a new Boolean equation that represents the states our FSM could be in one
clock tick earlier.

• Assume that R0(p,q) = {state B} = p’•q. Then, show how to use this formula to compute R-

1(p,q). Does the result make sense?

A/0 B/0

C/0

State: pq=00 pq=01

pq=10

D/1

pq=11

x=0

x=1

x=0

x=0,1

x=1x=0,1

R0 = end state = { B }
R-1 = prior states 1 tick before = {A B}
R-2 = prior states 2 ticks before = {A B D}
R-3 = R-2

R k 1+()– p q,() R k()– p q,() x∃()R k()– p+ p q, x,() q+ p q, x,(),[]+=

CMU Fall’01 18-760 VLSI CAD October 3, 2001 3

3. URP Algorithms: Cube Containment [10 pts]

A natural question to ask in any attack on logic simplification is this one:
given a particular cover of a function F represented as a set of cubes {C1, C2, ..., Ck},
and another cube S, does the cover of F actually contain cube S?

Two examples are shown below:

It turns out there is a very simple way to do this via a URP algorithm. We first need one
bit of notation:

Given a cover of F = {C1, C2, ..., Ck} and another cube S
The cofactor of cover F with respect to cube S, written FS, is the set of cubes
that result by cofactoring each cube Ci with respect to the variables in the product term
represented by cube S.

For example, if we represent F with the SOP cover ab+ bc + bc’d + a’b’d and let cube
S=a’c. Then FS is the set of cubes we get by setting a=0 and c=1 in this list. The result is
FS = 0 + b + 0 + b’d = b + b’d = b+d. This leads us to our big result:

a cover F = {C1, C2, ... Ck} contains cube S if and only if FS = 1.

This is a very practical result, since it means we can test if a cover F contains a particular
cube S by computing the cube list for cofactor FS and then calling our URP tautology
algorithm on FS .

Do this: prove the IF part of this result: If F contains cube S, then FS = 1.

Hint: You can look in DeMicheli but you can’t copy that proof, which is too terse. Pre-
tend F is just another SOP Boolean algebra equation. LHS = SOP form. RHS = “1”. What
can you try to do to both sides of this equation (it involves term S) to get to this result?
The answer is not very much algebra.

ab
cd 00 01 11 10

00
01
11
10

1 1
1
1

1
1

1
1

ab
cd 00 01 11 10

00
01
11

10

1 1
1
1

1
1

1
1

cover = {c’d, ad, a’bc}

This cube S=a’bd is
contained in the cover

This cube S=bc is NOT
contained in the cover

CMU Fall’01 18-760 VLSI CAD October 3, 2001 4

4. ESPRESSO Ops: Reduce [10 pts]

Consider the cover of the new function G(a,b,c,d) shown below. We want to apply the
REDUCE operator to the single shaded cube R in the map. To illustrate how REDUCE
actually does it’s job, do the following:

• Write the PCN cube list for the starting cover (4 cubes) shown below for G.

• Write the PCN cube list for the cover that has the single cube R removed: H - {R}.

• Show a Kmap for the complement of this reduced cover H - {R}. Draw the 1’s in this
map and circle a reasonable-looking cover by eye, i.e., just draw a reasonable cover of
the OFF set by eye.

• In PCN notation (write a cube list) and on the Kmap, intersect each cube in this com-
plement with the original R cube.

• Take this new intersected cubelist and do the supercube operator (bitwise OR) across
all the cubes (if there is more than one cube). Draw the resultant single cube on the
Kmap.

• Comment in a sentence why this result makes sense as “the reduction of cube R” in the
ESPRESSO algorithm.

5. ESPRESSO Operations: Complement, Expand-Irredundant [20 pts]

Consider the function F(a,b,c,d) shown on the Kmap below. An intermediate nonprime
cover with 3 cubes is given below.

Answer the following, showing your work for each step:

• Complement [2 pts]: By eye, pick a decent (try for minimal) cover of the off-set of the
function in the above Kmap. Draw the Kmap for this cover.

ab
cd 00 01 11 10

00
01
11
10

1
11

1

1 R

1

1

1
1

1
1

1

ab
cd 00 01 11 10

00
01
11
10

1
1

1

1

1 1

1

3 cubes in this cover of F1
1 1

CMU Fall’01 18-760 VLSI CAD October 3, 2001 5

• Cube ordering [4 pts]: Determine and list the order in which the cubes in the cover of
the ON set given about will get expanded using the cube weighting heuristic. Show the
weight computation. Redraw the Kmap above and show the weight for each cube.

• Expand [12 pts]: In order from lightest to heaviest, show how to expand each cube.
In particular, for each cube: build and show the blocking matrix; extract by eye a
decent looking cover for the matrix; show the resulting expanded cube. Draw a Kmap
with each of the new expanded cubes circled.

• Irredundant [2 pts]: by eye, pick an irredundant set of cubes from the expanded
cubes you just generated. Draw the final Kmap covering that uses these cubes.

6. Algebraic Division and Kerneling [20 pts]

Consider these 2 functions:

F = abrs+abrt+abd+abe+abu+ghrs+ghrw+ghd+ghe+ghu+dp+eq+rstuw
G = a+b+cd

Do this:

• Show how to do the division F/G using the algebraic division algorithm from the lec-
ture notes. Show the work involved, and give the final quotient and remainder expres-
sions.

• Use the recursive algorithm from class notes, and show how to find all the kernels and
co-kernels in function F. Show the recursion tree like in the class notes.

7. Kerneling [10 pts]

Since kerneling is an important and frequent operation in multilevel synthesis, there are
variants of the basic algorithm that trade some quality for more speed. Let’s consider one
such option, presented here in pseudocode form:

quickKernel(SOP cover of function F) {
 if(every literal in F appears just once)
 return F;
 let x = any literal that appears more than once in F;
 let G = F/x // ie, cross out x in each term where it appears,
 // and remove those other terms that did not have any x’s in them
 // make G “cube free”, ie, find any cube that is common to ALL products
 // in the equation for G, and then get rid of it
 let c = 1;
 for(each product P in SOP form G)
 c = AND(P,c);
 let G = remove common cube c from each product term in G
 return quickKernel(G)
}

CMU Fall’01 18-760 VLSI CAD October 3, 2001 6

Do this:
• Show the result of running this algorithm on the expression for F from the previous

problem. Show the chain of recursive calls and what gets passed into and out of the
chain of calls. For the step that says “pick a literal that appears more than once in F”,
choose the first available literal in alphabetical order.

• This algorithm finds exactly one kernel of the function F. It also always finds a partic-
ular kind of kernel -- what “kind” of kernel does it find? (Hint: kernels have levels...)

CMU Fall’01 18-760 VLSI CAD October 3, 2001 7

8. Comparing 2-level and multi-level synythesis [20 pts]

Let’s try to get a feel for the difference in approach and results between two-level and
multi-level minimization, as exemplified by 2 real synthesis tools: Espresso (for 2-level
minimization) and SIS (for multilevel minimization). We are going to be working with a
simple combinational function. The computation we want to implement operates on two
4-bit unsigned numbers and produces a 4-bit unsigned number:

s[3:0] = (a[3:0] + b[3:0]) MOD 13

Keep in mind that you (conceptually) do the 4-bit add first, then compute the mod-13
remainder (a number between 0 and 12) as the result. If this was a C program, it would
something like:

unsigned int a, b s;
s = (a + b)%13;
s = s & 0x0000000f;

1. Create an Espresso file for these output functions. We suggest you do this with a simple
program in your favorite language, but feel free to do it by hand if you prefer.

ESPRESSO has a simple input and output format (comments are in italics, you don’t
type in these comments):

If you put this in a file called input, you can run this by typing:

espresso <input >output

and file output will contain this:

.i 4 there are 4 inputs

.o 1 there is 1 output

.ilb w x y z names of inputs

.ob f names of outputs
0-11 1 a line of the truth table,
 “-” means don’t care on this input
01-1 1 more truth table
1011 1 ditto
1111 - explicitly declaring that f is
 don’t care for this input pattern
0110 0 more truth table
.e done

.i 4

.o 1

.ilb w x y z

.ob f

.p 2 result SOP form has 2 product terms in it
--11 1 one product term is: yz
01-1 1 the other term is: x’yz
.e

CMU Fall’01 18-760 VLSI CAD October 3, 2001 8

ESPRESSO’s output format is the same as the input, and you just read the truth table lines
in the output as specifying product terms you OR together to get the final SOP solution.

The resultant file for this “mod 13” function should look like the following (except for the
italics comments):

Minimize the logic (assume you put it in a file called mod13.pla) by running Espresso:
/afs/ece/class/ee760/bin/espresso <mod13.pla > mod13.out

Assuming you just implemented the result as a two-level structure, and you had up to 8-
input AND and OR gates (and inverters) answer these questions:

• How many gates are required to implement the product outputs? (If you need an
input inverted, just count 1 inverter, for simplicity).

• How many literals in all? (You may want to write a little program to count).

• Include your espresso output file as well.

2. Now, minimize the logic by running SIS:
/afs/ece/class/ee760/bin/sis

To read in the file (which is in programmable logic array, “pla” format), type the fol-
lowing at the sis> prompt:

read_pla mod13.pla
To verify that it read it in properly, you can look at the SOP form for the function by
typing “print”.
We are going to use the well-known script called “rugged” that tends to give reasonably
good answers. A script is simply a recipe or series of operations performed on the
multi-level network. To run this script, you can either type in the commands below
directly at the sis> prompt, or put them in a file and type “source <file>”. Here is the
“rugged” script (same as from the lecture notes):

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5

.i 8

.o 4

.ilb a0 a1 a2 a3 b0 b1 b2 b3

.ob s0 s1 s2 s3

.p 256
00000000 0000 (0+0)mod 13 = 0
 ...
11000011 0010 (12+3)mod 13 = 2
 ...
11111111 0100 (15+15)mod 13 = 4
.e

8 inputs

4 inputs
names of input vars

names of output vars

end of file

doesn’t matter for input, output tells # of products

CMU Fall’01 18-760 VLSI CAD October 3, 2001 9

simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

To see the resultant multi-level network, type “print”. Using the UNIX script utility, or
simply by cut-and-paste, print out this resultant network and hand it in. As in part 2,
answer:

• How many gates would be required to implement it, assuming each node was
done as a standard two-level structure AND-OR form, and you have up to 8-input
gates? (Be careful to count the inverters this time, since they may appear inside
individule nodes in the Boolean network.)

• How many literals in all?

3. Comment briefly on the differences in the results between Espresso and SIS.

