
18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 1

18-760 Spring99 VLSI CAD Project 3:
Global Routing

Out: Tue Apr 6, 1999. Due: Thu, Apr 29, 1999

1.0 Background

In Fall97 (the last time we taught 760) Project 3 was an annealing placer. We supplied
netlists of connected gates, IO pins and wires (nets), and asked students to write code to
place the movable objects on a coarse grid. To keep the complexity down, we used a very
coarse grid, and allowed multiple gates to be placed at each grid cell, up to some capacity
limit. For example, a 1000 gate netlist could have been placed on a 10x10 grid, with each
cell allowed to hold 10 different gates.

This semester, you will write a companion router for these layouts. You will be using
maze routing ideas as from the class notes, but since each “cell” of the grid can hold more
than one gate, it can also hold more than one wire. Routers that work on this sort of task
are called global routers. A “global” router does not embed the exact wire geometry of
each net. Instead, it “plans” the path for a net, through a set of adjacent cells on this coarse
grid, each of which has some capacity to hold multiple wires.

Your assignment is to implement a program that can take these 3 inputs from us:

• A netlist file, which describes all the gates, IO pins, and wires. This is actually the
input to the Fall97 placer program.

• A placement file, which describes where each gate and IO pin is located on a simple
grid. This is actually the output of the Fall97 placer program.

• A routing capacity limit, which is just two numbers for a formula that tells how many
wires can actually fit in each cell in your grid, as a function of how many objects have
been placed in that grid cell.

...and then route each net on this grid. You will then write a 3rd file as output, the routing
output file, which tells which grid cells each wire uses.

Be sure to go look at the writeup for Fall97 Project3 (also on the web site) to see how the
placer worked. We use the same file formats and geometric model. Also go look at /afs/
ece/class/ee760/proj3 for benchmarks and instructions on what you need to run.

2.0 Modeling the Placement

We describe here the geometric model of the placed chip itself, since your router starts
with a placed netlist.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 2

2.1 Geometric Model of the Placement

For simplicity, we shall model all geometric objects in this problem as being rectangles
whose dimensions are multiples of some unspecified “fundamental unit”. Everything
looks like a sort of simple checkerboard, where the individual squares have certain proper-
ties.

In our model, the overall placed chip is a rectangle with pin sites at its periphery, as shown
in the figure below.

Individual gates drop onto this grid at arbitrary locations (see next subsection). The chip
itself has pins, but they are restricted to be around the outside of the rectangle. Our model
uses a coarse grid--it is a sort of detailed partitioning model and not a complete, exact
placement of each gate. We allow each gate site to hold some maximum number of physi-
cal gates. This number is the capacity of the site. We also allow each pin site to hold more
than one physical pin. The gate capacity (how many gates can be put in a gate site) and pin
capacity (how many pins can be put in a pin site) are part of the input netlist file. This is
information the placer uses to decide where to put the gates and the pins.

In the example on this page, the chip is 13 fu X13 fu (fu=fundamental unit), with
(x=0,y=0) modeled as being the cell at the lower left. There are on this chip 121 gate sites
and 48 pin sites. If we allowed 10 physical pins per pin site, and 100 physical gates per
gate site, this chip could have 10x48=480 actual pins and 121x100 = 12,100 gates if it was
fully populated.

Gate site

Pin site

x=0 x=1 ... x=12

y=0

y=1

y=12

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 3

2.2 The Gates and IO Pins

For our problem, gates and IO pins are the placed objects. The placer starts by reading a
large netlist file specifying gates and nets and pins. The placer then places gates in gate
sites, and pins in pin sites, trying to achieve two goals:

1. Minimize the wirelength: We use the typical half-perimeter of the smallest bounding
rectangle around all the placed terminals as the metric. (There are a few technical
details to this, since many gates can go in one site; see the Fall97 writeup).

2. Respect the capacity limits: Our model of the chip allows multiple gates at each gate
site, and multiple pins at each pin site. The way we suggested to do this with an
annealer is to allow an arbitrary number of objects at each site, but add a term to the
annealing cost function that adds in a penalty that is proportional to the amount of vio-
lation (overcapacity) at each too-full site. So, if the capacity is 10, and a site has 9
objects, it gets no penalty. If it has 11 objects it incurs a small penalty. If it has 100
objects it gets a BIG penalty.

Each gate is assumed to be a “small” unit-sized object. Each gate can be connected to sev-
eral nets. Pins are likewise unit-sized objects that can be placed in pin sites. Most pins
connect to only 1 gate but in general a pin can connect to several gates.

3.0 Modeling the Global Routing

3.1 Overview

See the Fall97 writeup for a discussion about how we modeled wire length in the placer.
For your router project, the goal is to actually create a path for each wire, while again
respecting a set of appropriate routing capacity constraints.

The basic global routing problem looks like this:

• Nets: you have to wire all the nets specified in the input netlist file. The placer has
arranged the gates and (maybe) IO pins that are the terminals of this net on the coarse
placement grid. As far as you are concerned, you just have to route each wire so that all
the grid sites that hold its terminals are connected.

• Capacity: each cell in the grid has a capacity, which is the number of wires that can be
routed through that cell. This capacity number is a function of the number of placed
objects in that cell. So for example, if a grid cell has a capacity to hold 10 gates but 0
gates are placed there, it has a large capacity for wires. But if it can hold 10 gates and 9
gates are placed there, is has a smaller capacity for wires. Note that capacity also gets
updated after each wire is routed. If we have a cell with a capacity of 10 wires, and we
route a wire through it, then on the next net we route, this cell has a capacity of only 9
wires.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 4

• Routing cost: the way that routing capacity information gets used in a maze router is to
translate the capacity info into a supply-and-demand cost model. In a maze router, each
cell in the grid can have a cost, which can be used to preferentially avoid certain grid cells
(by giving them a high cost). In a global router, you use this idea by giving cells that have
many wires through them, that are close to their capacity limit, a BIG cost. The idea is that
you want the next path to avoid this cell if at all possible, and only use it if necessary. A cell
that has few wires through it, and is not close to its capacity limits, gets a SMALL cost; it is
OK to let the next path use this cell. Note that after each net is routed, all the costs in the grid
get updated to reflect the altered capacity of each cell.

• Obstacles: in this form a routing, we don’t really have “hard” obstacles. We only have
cells that are over their capacity for wiring. For example, suppose a cell has a capacity
for 20 wires, and your router has already put 20 wires through this cell. Do we get to
route a 21st wire through this cell? You get to decide if you want to allow more wires
to go in a cell that is at its capacity limit. One option is you give it a BIG cost, but you
don’t prevent the router from using the cell. Another option is you can treat this cell as
an obstacle and prevent any subsequent wires from using it.

3.2 Modeling One Wire’s Path

After placement, each gate and each IO pin is placed somewhere on the grid. So, the router
must connect each wire by finding a path though the cells on the grid. The big difference
between the lecture notes on maze routing and this router is that this one allows multiple
wires to use each cell.

Let’s look at 2 examples (see next page) to see how individual wires can use the grid cells
to route. Suppose we have two nets in a simple problem:

• Net N is connected to 5 gates, numbered 1,2,3,4,5. Net N is also required to be con-
nected to the chip pin “0” marked by the circle in the top row.

• Net M is connected to 3 gates, numbered a,b,c. It is not connected to any chip pin:

Consider net N first. Although it connects 6 objects (5 gates plus 1 IO pin), notice that the
path we find for this wire only connects 4 different grid cells. This is because we assume
that the wiring for the cells which hold multiple placed objects will take place “inside”
those individual cells--so, we don’t have to worry about it.

The extreme case of this is net M. All the objects to which net M is connected live in a sin-
gle grid cell, so the ultimate “path” here is just this one cell. We refer to this as a “trivial”
net. But note, you may see a lot of trivial nets in our benchmarks, since a good placer
should be able to cluster connected gates in a single grid cell.

So, the summary about the geometric path for each wire is this:

• Before you start routing, make sure you “collapse” the terminals of each net down to
just the unique grid cells, and route to only connect those grid cells.

• If your collapsed terminals are all in one grid cell, you’re done--this is a trivial route
and you don’t have to do any real routing work here.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 5

x=0 x=1 ... x=12

y=0

y=1

y=12

1,2
3

4,5

a,b
c

x=0 x=1 ... x=12

y=0

y=1

y=12

1,2

3

4,5

a,b
c

Gates and IO Pins for 2 different nets

Possible routes for the 2 nets

0

0

Net N routed path

Net M

1,2

3

4,5

0

a,b
c

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 6

3.3 Basics for a Global Router

The big difference between a detailed router (like we did in the lecture notes) and a global
router is that each cell is allowed to hold multiple wires. So, the fact that you used a cell to
put a wire in does not mean that the next wire must avoid this cell. It just means you have
to assign a sensible cost to each cell that reflects the supply of wiring space that remains
inside it. The mechanism for doing this is to give each cell a cost this is inversely propor-
tionally to how much “space” is left in the cell for future wires to use.

Let’s look at a very simplified example, routing a few wires (A B C) in a very small 5x5
grid. Let’s assume each cell has a capacity of 2 wires, and that the cost of each cell varies
with the number of wires already using the cell, like this:

• If 0 wires are using this cell, the cost is 1

• If 1 wire is using this cell, the cost is 5

• If 2 wires are using this cell, the cost is 100; cost goes up by 20 for each succeeding wire.

Net A: we first route net A. Before we route it, we make sure to set all the cell costs. Since
this is the start of the routing, all cells cost 1. The terminals of net A are shaded at left.
Since there is really nothing to stop it, the net takes a very straightforward path during
routing. Note that all the cells on the path get their cost updated after routing. These costs
reflect the fact that we would rather not use these cells if don’t have to, since they each
have space for just one more wire.

Net B: we next route net B. Again, before we route it, we make sure we have updated all
the cell costs. Terminals are again shaded at the left. Notice now that not all cells cost “1”
anymore. And, some of the terminals are in cells that cost 5; this is always possible, since
there is more than one gate in each cell of the grid, and also the gates have multiple termi-
nals themselves.

1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Cost before routing A

1 1 1 1 5

5 5 5 5 5
1 1 1 1 5

1 1 1 1 5

1 1 1 1 5

Cost after routing A

1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

Path for net A

Cost before routing B

1 1 1 1 5

5 5 5 5 5
1 1 1 1 5

1 1 1 1 5

1 1 1 1 5

Cost after routing BPath for net B

1 1 1 1 5

5 5 5 5 5
1 1 1 1 5

1 1 1 1 5

1 1 1 1 5

1 1 1 5 100

5 5 5 100 5
1 1 1 5 5

1 1 1 5 100

1 1 1 1 5

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 7

Observe that the path for B is not the “obvious” straight vertical connection. The reason is
that that path costs too much: it costs 5+5+5+5+5=25. The reason is all those cells are
close to their capacity limit of 2 wires. The chosen path costs 5+1+5+1+1+5=18, which is
longer but cheaper.

Net C: we next route net C. Again, before we route it, we make sure we have updated all
the cell costs. Terminals are again shaded at left. Notice again that a lot of cells have BIG
costs, that are intended to strongly deter their use, since they are at or near capacity.
Observe again that the net took a somewhat long path to get a cheap cost of
100+5+1+5+1+1+1+1+5=120. The vertical straight connection would cost 215.

This little example illustrates several critical ideas:

• Each cell has a capacity for wires, which simply counts how many net paths can use
that cell. Think of this as the available supply of wire spaces in this cell.

• Each cell is updated after each route so that it knows how many wires actually use the
cell. Think of this as the routing demand for wires in this cell.

• Each cell has a cost that is a function of its capacity (supply) and current demand. In
particular, each cell’s cost gets updated after each route finishes, since the demand has
gone up in some cells.

• In general cell costs get bigger as demand gets bigger. Think of this in terms of eco-
nomics: scarce things cost more. The idea is to deter the router from using cells that are
close to their capacity, or over their capacity.

• You can decide, if you want, to set the cost of a cell to infinity when it hits capacity;
this will preclude your router from ever using the cell. But, you may also fail to route
the net at all, this way. Another strategy is to give cells at or over capacity a very BIG
cost. This way the router will only use it if it’s truly desperate, and the nets will all
route (although some are illegal here).

3.4 Modeling Cell Capacity: the Supply Side of the Router

We adopt a simple first-order model to determine how many wires can use a cell in our
placed grid. Given the parameters W, A for a cell in the grid, the capacity is:

capacity = ceiling[W - AG]

Cost before routing c Cost after routing CPath for net c

1 1 1 5 100

5 5 5 100 5
1 1 1 5 5

1 1 1 5 100

1 1 1 1 5

1 1 1 5 100

5 5 5 100 5
1 1 1 5 5

1 1 1 5 100

1 1 1 1 5

1 1 5 100 120

5 5 100100 5
1 1 5 5 5

1 1 5 5 100

1 1 5 5 100

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 8

where W and A are parameters associated with each benchmark circuit, and G is simply
the number of placed objects in the cell. Usually, G means “gates”, but at the edges of the
placement grid, G means “IO pins”. We treat each cell identically with respect to the
capacity for wires. Note that if we ignore the ceiling[...] part, the (W - AG) formula sim-
ply means this:

• If there are 0 placed objects in the cell, you get to have “W” wires use the cell.

• Each gate in the cell consumes “A” potential wire spaces

We use ceiling[...] since the “A” parameter may not be an integer. For example, gates
may each have a very different number of pins of amount of internal wiring. Perhaps each
gate in a netlist consumes, on average, 1.3 wire slots. ceiling[W - AG] just round this up
to the next biggest integer, and thus ensures we get an integer capacity number, which is
important.

3.5 Modeling Cell Cost: the Demand Side of the Router

Since this is, after all, a design class, you get to decide what you want to use here. We will
note that cell cost functions tend to look something like this:

When the demand is much less than the supply (e.g., less than half the capacity number),
the cost of each cell is essentially constant (e.g., “1”). But when the cell starts to gets con-
gested (say, less the half the free wire spaces remain), the cost starts to rise. At the max
capacity, the cost is very high. And, if you choose to allow routing with cells already over
capacity, there is usually a jump in the cost so that cells over capacity are very expensive,
and only get used if necessary. Sometimes you also see the “cost is rising” part of the
curve as some nonlinear function, like a quadratic, which starts out flattish but rises very
fast near the capacity.

Playing around with this is one of the interesting parts of this assignment.

demand = #wires

already using
this cell

cell
cost

0 1 ... 1/2Capacity Capacity

low

high

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 9

4.0 Project Function, Objectives and Constraints

Obviously, this layout problem is to be solved with certain functional goals, objectives to
optimize, and constraints not to violate (if you can help it). Here we describe these.

4.1 Project Function

Here is the overall structure of the project:

We supply netlist input files that tell the geometry of the chip, all the relevant delay and
cell site capacity parameters, and the specific paths the placer is supposed to optimize for.
The placer reads this, and generates a placement and some output information in a place-
ment output file. You read the netlist input file to determine the gates, IO pins and nets;
you get to ignore the timing constraints for this project. Your router creates the placement
grid, the appropriate cell costs, and routes each net (you hope...). Your router writes the
router output file, which tells where each wire goes. A checker program we will supply
reads these 3 files and lets you know how well you really did: how many wires did you
route, what was the total wirelength, how many cells had their routing capacity violated,
etc.

4.2 Constraints

Let’s begin with the constraints not to be violated.

netlist
file

Your

Router
input

placer
file
input

Checker

Program

analysis of
your routing

W,A capacity parameters

router
output
file

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 10

1. Every wire in the input netlist should be accounted for. There are 3 ways for you to deal
with a net. (1) You routed it. (2) You failed to route it. (3) You decided to ignore it. In
other words, you can also decide that won’t even try to route it, e.g., you can decide up
front to punt on any nets with more than 50 terminals to connect. Your output file will
specify which of these 3 options (routed, failed to route, ignored). You cannot lose any
nets. Each net must be accounted for.

2. Each net that your output file says you routed must actually have a connected path that
touches all the grid cells that hold the terminals (gates, IO pins) of the net. If you report
that a net is partially routed, it must touch at least some of the terminals. It is an error to
report a net completely routed if, in fact, your constructed path does not actually touch
every net.

3. You should not put more wires in a cell than the cell’s capacity, as determined by the
W, A numbers for the benchmark. Of course, we actually expect that you will do this,
but the ideal goal is not to.

4.3 Objectives

Objectives are the things you want to optimize. You can decide yourself on what your
exact priorities are, but we will be looking at the following:

• Make the total wirelength short.

• Minimize the number of the cells that are over their wiring capacity, and in each such
cell, minimize the number of wires over the capacity.

• Try to make your software run in a reasonable amount of time.

Note that our real ideal here is: route 100% of the nets, make them short, don’t go over
capacity in any cell, do it fast.

Note also that this is likely to be hard. Welcome to the real world of CAD...

5.0 Implementation Issues

Here we describe what the input and output files look like, what sorts of benchmark prob-
lems you have to run, and what sort of software help we will provide.

5.1 Input Netlist File Format

(Note that this file was really designed for the placer we did in Fall97; you can actually
ignore a lot of this.) We keep formats simple. The input file is just lines of numbers
describing the geometry of all the components, and the netlist. Here is a summary of the
format:

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 11

Xchip Ychip GatesPerGateSite PinsPerPinSite
NumOfGates NumOfNets
1 NumOfNetsOnThisGate NetID NetID ... NetID
2 NumOfNetsOnThisGate NetID NetID ... NetID
...
lastgate NumOfNetsOnThisGate NetID...NetID
NumOfPinsConnectedToNets
1 NetID PinLocation
2 NetID PinLocation
...
NumOfTimingPaths CycleTimeTarget
1 ObjectsOnPath InPinID NetId GateId NetId GateID...NetID OutPinID
2 ObjectsOnPath InPinID NetId GateId NetId GateID...NetID OutPinID
...

• The first line tells how wide and tall the chip itself is (in fundamental units), and the
capacities of each gate site and pin site. You need the chip size, but you can ignore the
site capacities.

• The next line tells how many gates (numbered as consecutive integers starting at 1) and
nets (ditto) in this problem. You need both of these numbers.

• The next NumOfgates lines each describe one gate and the nets it connects to. The first
number is the gate ID (integer starting at 1), then how many nets this gate connects to,
then the net ID (integer) of each of these NumOfNetsOnThisGate nets. (Note: there is no
separate list of the nets and the gates on each one; you will need to build this as you
read in this gate-oriented netlist.) You need this info, since this really is the netlist.

• The next line tells how many pins there are that must be placed along the edges of the
chip on pin sites. You need this info.

• The next NumOfPinsConnectedToNets lines each list a pin (consecutive integers num-
bered from 1) and the NetId number (integer) of the net this pin connects to, and the
constraint on which edge you can put the pin on. A PinLocation is one of the single
characters “t” for top, “b” for bottom, “l” for left, or “r” for right edge. You need the pin
ID info and the net the pin connects to. You don’t need the edge constraint info.

• The next line tells how many paths we want you to watch while placing, and what your
target delay--chip cycle time--is. You can ignore this.

• The next NumOfTimingPaths lines each specify a path. Each path gets a number,
starting from 1. The next field tells how many objects on the path: pins + gates + nets.
Then the subsequent ObjectsOnPath numbers specify the actual elements of the path.
The first element is a pin ID. Then there pairs of NetID number and GateID number,
then the final NetID and final PinID. You can ignore this too--we’re not dealing with
timing in this benchmark.

You should expect to read this information in one line at a time, and build up the data
structures you will need to be able to find out quickly things like:

• What nets are on this gate?

• What gates are on this net?

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 12

• Where is this gate (what site?)

• Is this net connected to a pin? If so, where is the pin (which site?)

• etc etc etc.

5.2 Input Placement File Format

The placer code we did in Fall97 generated this as an output file. This file basically tells
where everything got placed, and also gives a lot of info about the critical timing paths.
For your router, this is an input file. Here is the format, which is again simple:

GateID1 ChipXSite ChipYSite
GateID2 ChipXSite ChipYSite
...
GateIDlast ChipXSite ChipYSite
NetID1 Length Delay
NetID2 Length Delay
...
NetIDlast Length Delay
PinID1 ChipXSite ChipYSite
PinID2 ChipXSite ChipYSite
...
PinIDlast ChipXSite ChipYSite
PathID1 Delay
PathID2 Delay
...
PathIDlast Delay

• The first NumOfGates lines each list a gate ID (consecutive integers from 1), and the rel-
ative location (X,Y) on the chip. Note that (ChipXSite, ChipYSite) is measured from
the lower-left corner of the chip, numbered as (0,0). You need this info, since this tells
you where the gates got placed.

• The next NumOfNets lines likewise list what the placer program thinks is the Length and
Delay of each net. You can ignore all this.

• The next NumOPinsConnectedToNets lines list for each pin (consecutive integers
starting at 1) the location of the pin site (X,Y) used for that pin. You need this info,
since this tells you where the pins got placed.

• The next NumOfTimingPaths lines list for each constrained path (consecutive inte-
gers from 1) what you think the delay actually is for that path in your placement. You
can ignore this info.

As you can see, the output file is pretty simple and basically just dumps the final place-
ment info. You just need to read the (Xgrid, Ygrid) location for each gate and each pin, so
you know where each terminal is on each net you want to route.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 13

5.3 Router Output File: Checker Program

How do you know if your code is working? Obviously you will print stuff out, and you
can also do some live graphics so you can watch it run.

But to help, we will also provide a CHECKER program that will read all the input files,
and an output file format your tool must generate. CHECKER will then report a few useful
statistics, like:

• Total wirelength of the nets you completely routed

• Any gross violations, like nets not accounted for, nets you said you routed and did not,
etc.

• Any capacity violations: more wires than a cell can hold.

• A routing score that we will use later to try to see how different people’s programs
attacked the problem. This score will tentatively be a 4-tuple as follows:

(WiresUnrouted, SumWirelength, SumCellCapacityViolations, SumWireViolations)

The first number just counts how many wires you did not completely route. The second
number will measure the routed wirelength by just adding up all the cells in all the
paths of the nets you correctly routed. The third number counts how many grid cells
have wires in excess of capacity. The fourth number counts the actual number of wires
over the capacity limit, summing over all the over-full cells. A good rule of thumb here
is that this tuple should come out like this:

(0, small, 0, 0)

Of course, this may not always be possible.

So, you have to write out a router output file that the CHECKER code will read as input,
along with the actual netlist input file, to figure this stuff out. Here is the format:

NetID1 status NumOfCellsInPath X1 Y1 X2 Y2 ... XN YN
NetID2 status NumOfCellsInPath X1 Y1 X2 Y2 ... XN YN
...
NetIDlast status NumOfCellsInPath X1 Y1 X2 Y2 ... XN YN

• The file has NumOfNets lines in it., each of which describe how you routed (or did not
route) the net. status is a single char, one of (c, f, i). “c” means you completed the net.
“f” means you failed on this net. “i” means you decided up front to ignore this net. If
the status is “c” then NumOfCellsInPath tells us how many grid cells are used in the
path. The next NumOfCellsInPath pairs of integers Xi Yi each tell one cell in the path,
in no particular order. If the status is “f” or “i” then don’t put anything else on the line,
i.e., the line should read “NetIDx f” or “NetIDx i” and nothing else.

As you can see, the router output file is very simple and basically just dumps the final
route path info for each net.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 14

5.4 Benchmarks

We will provide a suite of placement benchmarks for you to run your router tool on. These
will come in three flavors:

• Toy Problems: small enough so that you can see what’s happening when you run your
tool and manually track down all the bugs in your first cut at the solution. These prob-
lems will have 10-100 gates and nets.

• For-Credit Problems: we will provide a few “real” problems that you must run your
router on, and run the CHECKER program on, and turn in the results. These will be
smallish industrial semi-custom netlists with a few thousand gates and nets.

• We’ll-Be-Very-Impressed-Extra-Credit Problems: Same thing, only bigger. We’ll
provide problems in the 5000-15000 gate/net range. We’ll be delighted to see what
happens when you run your tool on these.

6.0 Algorithmic Formulation for Router

The idea here is to use what you know about maze routing to build this global router. You
have a lot of flexibility here, but here are some ideas.

6.1 Core Routing Engine

This is really right out of the lecture. The “core” of your router is a maze router that can
route multi-point nets in a rectangular grid with non-unit-cost cells. That’s basically it.

The trick is that each cell has its cost changed as a function of where the wire went after
you finished routing it.

6.2 Multipoint Nets

Yes, you have to be able to support multipoint nets, but as we said earlier, you can decide
to punt if the number of terminals is too big (e.g., over 50 or 100, say).

You can do in this 2 different ways:

• Crude: this is a hack but its fairly easy. You chop the net up into separate 2 point nets,
and then you just route each 2 point net separately. (Look up minimum spanning tree
algorithms in your favorite data structures book for how to do this.) You have to make
sure that when you’re done, all the terminals are connected. This saves you from having
to do “real” multipoint nets, where you relabel the current partial route as a source and
expand it. You only have to route 2 point nets with this option, but your wirelength will
suffer, since you cannot route any Steiner nets (i.e., you must connect terminal to termi-
nal, you cannot connect to the middle of a wire). Note that when you dump the route
path, some cells will be repeated, since they were included on different 2 point paths.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 15

This is OK, but the CHECKER program will count the wirelength. You also have to
update each cell’s capacity and cost correctly. If 3 different 2 point paths use the cell, it
gets charged for 3 separate wires against is capacity.

• Optimal: route the multipoint nets directly. This means you relabel each partial path as
a SOURCE and expand from it to hit the next target. This is really not that hard to do,
but you do have to be careful about that SOURCE labeling, and accounting for which
cells got used in the final path.

One fussy point to mention is what happens if you can route some but not all the points of
a net? For example, you have a 5 point net, and you can route the first 4 points, but not the
last point. What do you do? In this case:

• You have to report this as a failed route. For simplicity, we’re not supporting any “par-
tial” net routing in this project.

• You have to undo whatever cost changes you did to the cells as part of this partial rout-
ing. For example, after the first 2-point connection got routed, you may have updated
the costs of the cells in the grid used in that connection. When you fail on an entire net,
you have to restore the costs and capacities back to what they were at the start of the
net.

One final fussy point is a reminder: remember to collapse the net points down to only the
unique grid cells before routing. A net can have many of its gates in the same grid cell, and
you only need to route to that cell. In particular, note the following:

• You only need to update the capacities/costs of the cells in the grid. You don’t worry
about individual gates or IO pins.

• A cell is charged with 1 wire for each path that uses that cell. So, for example, even the
trivial wiring of gates a,b,c from our prior example of Net M is charged with using 1
wire in the cell that all the gates reside in. This is clearly a trivial net, but it’s still a real
net and uses real wire. It just uses wire in exactly one cell.

6.3 Data Structures

You need a grid for the actual placement grid. You store the cell cost info, and the prede-
cessor info, and the “I’ve been reached during search” flag in here.

You need some kind of cost-sorted data structure for the wavefront. A heap is probably
best, but a big cost sorted hash array would probably also work here, depending on how
you do the cell costs.

You will also need some basic bookkeeping structures, to keep track of what the nets are,
what the gates are, what the pins are, and how they are connected (e.g., gates-on-nets,
nets-on-gates, etc.)

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 16

6.4 Cell Cost

As we said earlier, it’s your call here how to assign costs to the cells as a function of the
supply and demand for wires.

6.5 Net Routing Order

You initially at least have to decide what order to try to route the nets in. Conventional
wisdom is for you to create an estimate of the length of each net (e.g., 1/2 perimeter of the
bounding box of the terminals) and use this to sort the nets. You can route short to long
(this is common) or long to short (this also happens). Or you can route in random order (or
the order you see the nets numbered in the input file). Some intelligent ordering will prob-
ably help your results.

6.6 File IO

Your program should handle its inputs and outputs more or less like this:

YOURROUTER W A netlistinfile placerinfile > routeroutfile

where “W” and “A” are the capacity parameters, netlistinfile is the netlist input, placerin-
file is the placement input, and routeroutfile is the routed output file.

6.7 Ripup and Reroute

It’s not as hard as it sounds with a simple global router. Ripup means that when you find
that you cannot route a net (or a net is “hard” to route) you determine some other nets to
remove, and you keep routing. Here is one suggestion for a nice ripup/reroute strategy:

• First, before you do any real routing, route each net individually, with infinite capacity
on each cell. The idea is that each net WILL definitely route, and you can tell how long
it would like to be, with no other nets around competing for space. Save these length
numbers.

• Next, sort the nets on these lengths, shortest to longest, and put these nets in a queue.
This is the routing queue, you pop nets off of this in LIFO style to get the next net to
route.

• Use a cell cost function that allows nets to route even if they exceed capacity. This
means every net will route, although you might violate some capacities to do it, or you
might not like the path.

• After each net routes, you look at the “quality” of the path, and if you don’t like it, you
ripup some nets in the cells on the path that have the most wires in them. Two criteria
for “poor quality” are (1) the net’s actual routed length is vastly longer than its mini-
mum length, and (2) the net uses cells that are over capacity.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 17

• You get to decide which nets to ripup. You could actually ripup ALL the nets in each
cell over capacity and reroute them, or just pick, say, a random subset of the nets in
each of these cells. When you rip them up, you physically remove them from the rout-
ing grid, so you have go in and update the cell costs correctly. (This is the most
mechanically messy part, but its not really that bad). Then, you push them back on the
queue (in what order? your call.) and keep routing. The idea is that the router always
pops the next net off the queue and routes it, but sometimes this process removes some
nets and reinserts them in the queue. You keep routing until the queue is empty.

• The big thing you need to do is to avoid infinite ripup loops, where net A removes net
B, and then net removes net A. Easiest thing to do here is to put a counter on each net
that limits ripups. For example, no net can get ripped up more than 10 times.

This sounds a little complicated, but the code is not all that hard (though, there is certainly
MORE of it). And, this is pretty representative of how real ASIC routers do it, to get really
good results.

18-760 Spring99 VLSI CAD Project 3: Global Routing April 6, 1999 18

7.0 What To Do For Credit

Here are the constraints:

• Groups: you can work in groups of up to 2 people. Pick your partner carefully. Group
dynamics is your business.

• Code: you can write in JAVA (which will be slooooow...) or C or C++ on your favorite
UNIX box or PC. If you want to use something else, make sure you can read and write
our mandatory netlist formats, and get at the data, and get your output to our UNIX
CHECKER program. We are not going to provide any porting or translation service
here for other than Solaris UNIX.

• Graphics: optional but a good idea. It’s your business to decide if and what, but your
code should could show something illuminating as it runs. We suggest at least that you
dump a text grid after each net routes, showing where the net went, and also a grid
showing how the cost changed. You can be fancy if you like: plot all the sites in artistic
detail; show the supply/demand at each site as a color that suggests sparseness or full-
ness; etc. Debugging a router that uses maze search is vastly easier if you can see your
nets as they each route, even if you have to just print them out on paper as it runs.
Go look in /afs/ece/class/ee760/hw5/annealgraphics for an example of how to do this.
This is the same annealer you are asked to augment in HW5, but with a set of graphics
drawing code added. Lots of comments in the code show how it works. It’s pretty sim-
ple if you just want to draw boxes and lines and text.

• Demo: you have to sign up for a live demo to the TAs at the end of the assignment.
You come to us, you run your program on a new, small benchmark, and we watch your
code run and ask you probing questions about what the heck it’s doing. If you don’t
have graphics you at least have to print out some useful ASCII stuff as it runs.

• Benchmarks: you run your router on at least the minimum set of benchmarks (we’ll
specify what this is) and also on any of the “big” netlists if you feel ambitious, and you
tell us what the CHECKER program said about your solution, and you also tell us how
much CPU time it took and on what machine. In UNIX, if your program is called
FOOROUTE, you do this with this command:

time FOOROUT > FILE

which will put a line of timing info into FILE when this thing is finished.

• Write-up: this is a big deal. You also submit a write-up (and the code) describing how
you designed this, and how it works, and analyzing it.

The requirement of the write-up will be scored using the sheet on the following page. The
big difference between this and prior writeups is that this writeup is a web page. That’s
right: a web page. You put it someplace we can see it, and grab it, and copy it, and we put
it in the projects section of the 760 web page. You can write raw html, or use a web
builder, or just use your favorite text processor (e.g., Microsoft WORD, Adobe Frame)
and dump the output to a set of web pages. It’s easy. You can be as fancy or as simple as
you like.

18-760 Spring99 VLSI CAD Proj. 3: Global Router [100 pts]April 6, 1999 19

18-760 Spring99 VLSI CAD
Proj. 3: Global Router [100 pts]

NAMES:

Problem Formulation [10 pts]: How did you decide to attack the routing problem? What
where your objectives, what trade-offs or assumptions or simplifications did you choose,
and why?

Algorithms & Data Structures [15 pts]: In detail, how did you solve this? Algorithm
pseudo-code, data structure diagrams, analysis of complexity.

Live Demo [15 pts]: Did it work? Did it show something useful? Did the demonstrators
answer questions in a lucid and coherent fashion?

Benchmark Results & Analysis [15 pts]: What did you run, what did CHECKER say
about the result, is this good or bad, why are you getting these answers, did you make the
right design trade-offs early in the design, etc.? Analyze what your tool can do. Include
CHECKER outputs, plots of relevant details of the program doing the placement.

Web Write-up Style [20 pts]: Professional, neat, coherent, grammatically clean, etc.
Think of this as a web page for the startup company you just launched, that you are refer-
ring your customers to, to try to coax another $1,000,000 out of a venture capitalist to fund
your breakthrough routing technology.

Code Quality [5 pts]: Yeah, we want to see it. Commented, indented, structured, etc. Just
stick it on the web page someplace, and put a link to it.

Ambition/Style [20 pts]: This is a subjective judgement on how well you achieved your
stated goals. You can shoot for a really solid, simple, elegant solution that does fabulously
well for the smaller benchmarks only. You can shoot for something more complex that
can run the difficult big benchmarks, but maybe not get great answers. One component of
this score is this “style” part--does the tool do something well? The other part is your com-
parative rank against all the other tools in class, using the output of the CHECKER pro-
gram. Best-in-benchmark-category gets you a few more points here.

