18-347 Lecture 5

Computer Arithmetic I:
Adders \& Shifters

Prof. Rob Rutenbar
rutenbar@ece.cmu.edu

http://www.ece.cmu.edu/~ece347

Note bug fixes on a few slides, as done in lecture...

Where Are We?

Jan	M	T	W	Th	F	
	15	16	17	18	19	1
	22	23	24	25	26	2
Feb	29	30	31	1	2	3
	5	6	7	8	9	4
	12	13	14	15	16	5
	19	20	21	22	23	6
Mar	26	27	28	1	2	7
	5	6	7	8	9	8
	12	13	14	15	16	9
	19	20	21	22	23	10
Spring Break	26	27	28	29	30	11
Apr	2	3	4	5	6	12
	9	10	11	12	13	13
	16	17	18	19	20	14
	23	24	25	26	27	15
May	30	1	2	3	4	16

- We've seen the programmer's view
- Now we'll see the hardware designers view
- Today:
\triangleright Adders \& shifters
- Monday:
\triangleright Multipliers

Readings for the Week/Announcements

- Today
\triangleright Chapter 4, Sections 4.1-4.5
- Wednesday
\triangleright Chapter 4, Section 4.6
- Readings for each lecture: on the class web page
- http://www.ece.cmu.edu/~ece347/lectures

Computer Arithmetic-Why Bother?

Computer architecture sounds "cool"
\triangleright Easy to impress your friends, potential employers, Mom

- Computer arithmetic sounds "not"
\triangleright Sounds remedial, low-level, tedious

So...why do this? 3 big reasons
\triangleright Lots of microarchitecture ends up composed of fast adders, shifters, etc,
\triangleright Increasing number of applications depend on fast or special computation
\triangleright Scientific apps - predicting the weather; media apps - mpeg, mp3

- You don't know how to build the very fast components we need to use today
\triangleright There are standard digital designs for fast adders, shifters, etc.
\triangleright Present several interesting speed/complexity tradeoffs

Today's Menu:

Stuff we assume you remember

\triangleright Basic signed representations, basic ripple-carry adders

Stuff we assume you don't remember (or never saw)

\triangleright Fast adder design—basic lookahead carry architectures
\triangleright Recursive lookahead architectures for very wide, fast adders

New stuff

\triangleright ALU design-for the MIPS ISA
\triangleright Shifter design

Basics: Two's Complement Numbers

- 2s comp. encodes negative nums via an arithmetic transform
\triangleright Like a regular, weighted binary representation, but most significant bit weight is negative
\triangleright For example, for 32 bits

Two's Complement Operations

- Negating a 2s complement number: invert all bits and add 1
\triangleright Remember: "negate" and "invert" are quite different!
- Converting n-bit numbers into numbers with more than n bits:
\triangleright You have to do sign extension: copy 2s comp sign bit into higher order bits

CMU ECE347- Spring 2001

sign extend 1, this num is negative

Application in the MIPS ISA

Arithmetic on MIPS 16 bit immediates
\triangleright MIPS 16 bit immediate gets converted to 32 bits 2 s complement for arithmetic
MIPS ISA weirdness...
\triangleright MIPS instruction add immediate unsigned addiu sign-extends it 16-bit immediate field
\triangleright This is not what the name suggests the instruction does
\triangleright Despite its name, addiu is used to add constants to signed integers when we don't care about overflow (more later - ie, when the num gets too big or too negative)
\triangleright MIPS has no subtract immediate instruction and negative nums need sign extension, so the MIPS architects decided to sign-extend the immediate field to make it possible to do a sort of "subtract immediate" by adding a negative 16bit immediate

Basics: Binary Addition \& Subtraction

- Just like in grade school (carry/borrow 1s)
0111
$+\quad 0110$

0111
0110
$+0110$

- 0110 - 0101

- Two's complement operations easy

\triangleright Subtraction accomplished by doing addition of negative numbers

carry $\Rightarrow 10001 \Longleftrightarrow$ positive 1, and we usually ignore carry/borrow out

- ...except in cases of overflow and underflow
\triangleright Overflow: result too positive (too big) for finite computer word)
- Underflow: result is too negative for finite computer word
\triangleright And, it's NOT just the presence of a carry or borrow out of the top bit!

Detecting 2s Complement Overflow

- Its generically just called "overflow"
- When can it not happen?
\triangleright No overflow when adding a positive and a negative number
\triangleright No overflow when signs are the same for subtraction
- When can it actually happen?
\triangleright You overflowed when adding two positives yields a negative
\triangleright or, adding two negatives gives a positive
\triangleright or, subtract a negative from a positive and get a negative
\triangleright or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A - B
\triangleright Can overflow occur if B is 0 ?
\triangleright Can overflow occur if A is 0 ?

Effects of Overflow

An exception (interrupt) occurs

\triangleright Control jumps to predefined address for exception

- Interrupted address is saved for possible resumption
\triangleright Details based on software system / language
- Don't always want to detect overflow: unsigned MIPS instructions addu, addiu, subu
\triangleright Remember: addiu still sign-extends!
\triangleright Note: sltu, sltiu for unsigned comparisons

Let's look at implementing addition...

Basics: 1-bit Full Adder Implementation

	Truth Table				Truth Table			
	A	B	Cl	S	A	B	CI	CO
	0	0	0	0	0	0	0	0
	0	0	1	1	0	0	1	0
	0	1	0	1	0	1	0	0
	0	1	1	0	0	1	1	1
	1	0	0	1	1	0	0	0
	1	0	1	0	1	0	1	1
	1	1	0	0	1	1	0	1
	1	1	1	1	1	1	1	1

Standard Approach: 6 Gates (or 5 Gates)

What's Wrong with the Ripple Carry Adder?

- It's too slow for wide (32bit, 64 bit) addition.
- How slow...? Consider a fast modern processor
\triangleright Runs at $\sim 1 \mathrm{GHz}$, so clock period is ~ 1 ns

You have roughly 1000ps to get out of the flip flops (FFs), thru the combinational logic, and back into the next FFs.
How many gates deep can this be?

What's Wrong with the Ripple Carry Adder?

- Logic depth depends on semiconductor technology
\triangleright A reasonable, current model of "the delay of 1 typical gate" is called the FO4 delay
- It's the delay thru one ordinary inverter, driven by an inverter, loaded by 4 inverters
\triangleright Metric is from Mark Horowitz of Stanford, one of the original MIPS guys

FO4 delay has been falling off linearly with technology scaling
\triangleright Pretty good formula for worst case FO4 delay: $0.5 \mathrm{~ns} /$ micron * (process feature size)

What's Wrong with the Ripple Carry Adder?

Using the FO4 formula
\triangleright In a process with 0.5 micron CMOS features: FO4 $=0.5 * 0.5=0.25 \mathrm{~ns}=250 \mathrm{ps}$
\triangleright In a leading edge 0.15 micron process: $\mathrm{FO4}=0.5 * 0.15=0.075 \mathrm{~ns}=75 \mathrm{ps}$
\triangleright At 1 GHz , with $\mathrm{FO}=75 \mathrm{ps} /$ gate, you get $1000 \mathrm{ps} / 75 \mathrm{ps}=13$ gate delays in 1 clock tick

At roughly 2 gate delays per full adder, this ripple Adder is at $\sim 64 * 2$ FO4 delays. Can YOU build a 64 bit adder with only 13 gate delays??

Aside: Levels of Gates Per Clock in uPs

- Gates/clock, normalized via FO4 delay, have been falling
\triangleright Clock speeds have just been scaling aggressively, but...there's a limit here
\triangleright It's hard to design a processor with only 16 gate delays per clock tick. Very hard for 8/tick

Data from
Mark Horowitz,
EE Dept
Stanford Univ

Design Trick: Fast Adders via Lookahead

- Basic problem

\triangleright Ripple path for carry is proportional to number of bits in the adder
\triangleright We need to fix this: it needs to be constant, at least for "small" adders
\triangleright The only solution is more hardware in a "small chunk of adder", typically a 4bit adder
\triangleright Luckily enough, there's a nice, elegant, fairly simple pattern to this stuff

Basic Lookahead Adder

For 4bit adder, can we compute all intermediate carries directly?

Basic Lookahead Adder

- Turns out there's a nice pattern to the logic in this lookahead box
\triangleright Think about a single full adder, and how carries "happen" in it
- Turns out, there's exactly 2 ways a carryout "happens", ie, can get set to be " 1 "

Question: when will a carryout be generated independent of value of the carryin bit?
Answer: when $\mathrm{a}=1$ \& \& $\mathrm{b}=1$

Question: when will a carryout be propagated from carryin, thru the adder?

Answer: when a !=b

Basic Lookahead Adder

- Give these 2 unique "carry happens" events names
\triangleright When a, b are set so that a carryout is just generated: $\mathrm{g}=$ generate $=\mathrm{a} \mathrm{b}$
\triangleright When a, b are set so that a carryin passes to be carrout: $\mathrm{p}=$ propagate $=\mathrm{a} \oplus \mathrm{b}$
- Write equation for carryout for a single adder in this notation

$$
\begin{array}{r}
\text { Carryout = "either I generated it, } \\
\begin{array}{r}
\text { or, I propagated the } \\
\text { carryin to carryout" }
\end{array} \\
=g+p^{*} C \text { in } \\
=(a b)+(a \oplus b)^{*} C \text { in }
\end{array}
$$

Baic Lookahead Adder

- With this notation, can see "pattern" for each intermediate carry
\triangleright Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

$\mathrm{C} 1=\mathrm{g} 0+\mathrm{poCO}$
ie, either stage0 generated it
or, C0 propagated thru stage 0

Baic Lookahead Adder

- Keep going, use the pattern
\triangleright Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

ie, either stage1 generated it or, stage1 propagated a carry generated in stage 0 or, stage 1 and stage 3 propagated the Cin

Baic Lookahead Adder

Keep going, use the pattern
\triangleright Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

Baic Lookahead Adder

- Keep going, use the pattern
\triangleright Look at the 4bit adder up close, let's write a direct equation for EACH carry we need

Basic Lookahead Adder

- So-YES, we can do all the carries directly, no ripples at all
\triangleright Why is this fast? Each carry equation is a SOP 2-level form, 2 FO4 delays to compute

Basic Lookahead Adder

How fast is it? ~ 4 gate delays thru the whole 4bit adder

Beyond Basic Lookahead

Neat digital trick. What keeps us for doing this for 64bits?
\triangleright The lookahead equations for the individual intermediate carries get too complex
\triangleright Carry Cn has $(\mathrm{n}+1)$ terms ORed, and the biggest AND has n terms in it.

Beyond Basic Lookahead: Recursive Lookahead

Another wonderful, elegant trick that gives a useful pattern
\triangleright The exact same set of formulas works to apply these ideas recursively
\triangleright The question is: what are we recursing on? And, in hardware?

- Big trick: the lookahead equations for the carries do not care how big the individual adders were that gave us the g, p signals
\triangleright We derived these for the "generate from" and "propagate across" 1-bit adders
\triangleright You can do the same think for N -bit adders. In our case, 4-bit adders
\triangleright Now, the g, p signals are commonly written G, P, called "group" generate, propagate
\triangleright Your book calls them "super" generate and propagate

Recursive, Group Lookahead

- We derived this lookahead structure

Recursive Group Lookahead

Lets redraw it to separate out the p's, g's, and the carry logic

Recursive Group Lookahead

- Big idea: as long as the p's, g's are correct, same lookahead unit will work for wider adders at the bottom

Recursive Group Lookahead

Is identical for wider, n-bit adders at the bottom!

Why We Think of it as Recursive

If $\mathrm{n}=4$ here, then each wider adder could be a lookahead 4-bit adder, as shown here

What's Missing Here?

- We need to know how to generate the group-level signals P, G
\triangleright With these, we can use this fast 4 bit adder as a component in a wider, lookahead adder

Group Level Signals

Actually, pattern still works fine. Consider group gen = G
\triangleright Group generate $\mathrm{G}=$ when does the whole 4-bit block generate a carry without us needing to know value of C 0 ?

Group Level Signals

- Consider group propagate P

\triangleright Group prop $\mathrm{P}=$ when does the whole 4-bit block propagate a carry across all 4 bits right back from the value of C 0 ?

Group Level Lookahead

And, that's it. A generic lookahead carry logic unit that "looks across" 4 adders looks like this:

Group Lookahead

- Easiest to see how to do 2 levels of lookahead

- For example: 16bit adder
\triangleright Make fast 4 bit adder as we now know how: use $1^{\text {st }}$ layer of lookahead logic
\triangleright Then, make the group generate, propogate P, G signals for each 4 bit adder
\triangleright Use another layer of lookahead - exact same lookahead logic !! - to combine 4 of these fast 4-bit adders, and do lookahead across each 4-bit adder, to get to 16 bits
- Don't have to stop at 2 levels of lookahead
\triangleright To get to 64 bit adder, take this fast 16-bit adder, and combine 4 of them with a lookahead unit - exact same lookahead logic again !! - to get to $4^{*} 16=64$ bits

Variants of these ideas are how wide, fast adders get built

64 Bit Adder: How Fast, in Gate Delays?

New Problem: Design a "Fast" ALU for MIPS

Requirements?

\triangleright Its not just adding (and subtracting)
\triangleright It also must support the Logic operations - whole-word bit ops like AND, OR

- How?
\triangleright Think about what we can do with each individual bit of this computation (like 1 bit of a ripple adder is simple to do)
\triangleright Think about how to generalize from the single bit up to the whole ALU...

MIPS ALU Requirements

Add, AddU, Sub, SubU, AddI, AddIU

- => 2's complement adder/subtractor with overflow detection

And, Or, Andl, Orl, Xor, Xori, Nor
\triangleright => Logical AND, logical OR, XOR, nor

- SLTI, SLTIU (set less than)
\triangleright => 2's complement adder with inverter, check sign bit of result

MIPS Arithmetic Instruction Format

I-Type: | op | Rs | Rt | Immed 16 |
| :--- | :--- | :--- | :--- |

Type	op	funct
ADDI	10	xx
ADDIU	11	xx
SLTI	12	xx
SLTIU	13	xx
ANDI	14	xx
ORI	15	xx
XORI	16	xx
LUI	17	xx

Type	op	funct
ADD	00	40
ADDU	00	41
SUB	00	42
SUBU	00	43
AND	00	44
OR	00	45
XOR	00	46
NOR	00	47

Type	op	funct
	00	50
	00	51
SLT	00	52
SLTU	00	53

Design Trick: Divide \& Conquer

Break the problem into simpler pieces, solve each, glue together

- Example:
\triangleright Assume the immediates have been taken care of before the ALU
- 10 operations (4 bits)

00	add
01	addU
02	sub
03	subU
04	and
05	or
06	xor
07	nor
12	sIt
13	sItU

Refined Requirements

- Functional Specification
\triangleright inputs: 2×32-bit operands A, B, 4-bit mode
- outputs: $\quad 32$-bit result S, 1-bit carry, 1 bit overflow
\triangleright operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU
- Block Diagram

Refined Diagram: Bit-slice ALU

Another Way to Think About It

- We want an N-bit ALU. Design 1-bit "slices" of this ALU.
\triangleright Then, try to glue them togther like a ripple carry adder
\triangleright Remember-ripple adder makes a big adder by letting the carryin-carryout connects glue all the 1-bit pieces together

One Bit of the Bit-Slice Design

- Design trick:
\triangleright Take pieces you know (or can imagine) and try to put them together
\triangleright Solve part of the problem and extend

Additional Operations

$A-B=A+(-B)$
\triangleright Form two's complement by invert and add one

Set-less-than? - left as an exercise

Revised Diagram

- LSB and MSB: we need to do a little extra work on these

Overflow Detection Logic

- Carry into MSB xor Carry out of MSB
\triangleright For a N-bit ALU: Overflow = Carryln[$\mathrm{N}-1]$ XOR CarryOut[$\mathrm{N}-1$]

X	Y	X XOR Y
0	0	0
0	1	1
1	0	1
1	1	0

Updated Diagram

- LSB and MSB need to do a little extra

But What About Performance?

- Critical Path of n-bit ripple adder way too slow...
- Perfect place to use the fast lookahead ideas
- Just adds some more "extra logic" around bits in the bitslice to do the recursive lookahead

Additional MIPS ALU Requirements

Mult, MultU, Div, DivU
\triangleright Need 32-bit multiply and divide, signed and unsigned
\triangleright Next lecture...

- SII, Srl, Sra
\triangleright Need left shift, right shift, right shift arithmetic by 0 to 31 bits

Nor
\triangleright Logical NOR or use 2 steps: (A OR B) XOR 1111.... 1111

Combinational Shifters

- 2 types: issue is what bit value gets "shifted in" on the ends?
$\triangleright 0$ is obvious first answer, but its not always 0 that gets shifted in...
logical-- value shifted in is always " 0 "
" 0 " \longrightarrow msb Isb
arithmetic-- on right shifts, sign extend (ie, copy msb back in)

Note:
\triangleright These are single bit shifts.
\triangleright A given instruction might request 0 to 32 bits to be shifted!

New Problem: Big, Fast Shifters

- Take an n-bit word, left or right shift k-bits, programmably. How?
\triangleright Answer: a logarithmic shifter structure, done as layers of shifters
\triangleright Each layer of the shifter structure can shift 2^{M} bits in one direction.
\triangleright Each layer is programmable - either it shifts or not.
\triangleright If your word is 2^{N} bits in all, you need N layers of shifters, hence the "log" idea

Big, Fast Shifters

- How do you make any one of these layers of the shifter?
\triangleright Out of multiplexors. Its pretty simple -mainly just MUXs and wires

Details: Big, Fast Shifter From MUXes

Basic MUX Building Block

What comes in the MSBs?

- How many levels for a bigger shifter?
$\triangleright 32$ bit shifter? 64bit shifter?

Combinational Shifter: Basic Operation

Basic MUX Building Block

Combinational Shifter: Basic Operation

Basic MUX Building Block

What comes in the MSBs?
\triangleright Os here, shifted in from the left
\triangleright Could be 1s, could be the topmost msb if we wanted

Summary

- Adders

\triangleright Always get built using carry lookahead ideas

ALUs

\triangleright Always get built as regular bit-slices, repeating a basic unit bit design

- Some extra stuff usually requires for lowest and highest bits, and for lookahead
- Shifters
\triangleright For a single, fixed shift distance, can just hardwire up the MUXes
\triangleright For arbitrary programmable shift distances: barrel shifter, with layers of MUXes

