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Prof. Rob Rutenbar
rutenbar@ece.cmu.edu
http://www.ece.cmu.edu/~ece347

18-347  Lecture 5

Computer Arithmetic I:
Adders & Shifters

Note bug fixes on a few slides,
as done in lecture…
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Where Are We?

� We’ve seen the 
programmer’s view

� Now we’ll see the hardware 
designers view

� Today:
� Adders & shifters

� Monday:
� Multipliers
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Readings for the Week/Announcements

� Today
� Chapter 4, Sections 4.1-4.5

� Wednesday
� Chapter 4, Section 4.6

� Readings for each lecture: on the class web page
� http://www.ece.cmu.edu/~ece347/lectures
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Computer Arithmetic—Why Bother?

� Computer architecture sounds “cool”
� Easy to impress your friends, potential employers, Mom

� Computer arithmetic sounds “not”
� Sounds remedial, low-level, tedious

� So…why do this?   3 big reasons
� Lots of microarchitecture ends up composed of fast adders, shifters, etc, 
� Increasing number of applications depend on fast or special computation

� Scientific apps – predicting the weather;  media apps – mpeg, mp3 
� You don’t know how to build the very fast components we need to use today 

� There are standard digital designs for fast adders, shifters, etc.
� Present several interesting speed/complexity tradeoffs
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Today’s Menu:

� Stuff we assume you remember
� Basic signed representations, basic ripple-carry adders

� Stuff we assume you don’t remember (or never saw)
� Fast adder design—basic lookahead carry architectures
� Recursive lookahead architectures for very wide, fast adders

� New stuff
� ALU design—for the MIPS ISA
� Shifter design
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� 2s comp. encodes negative nums via an arithmetic transform
� Like a regular, weighted binary representation, but most significant bit weight is negative
� For example, for 32 bits

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

b31 ( -231) + b30 ( 230) + b29 ( 229) + … + b1 ( 21) + b0 ( 20) 

maxint

minint

Basics: Two’s Complement Numbers
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� Negating a 2s complement number:  invert all bits and add 1
� Remember:  “negate” and “invert” are quite different!

� Converting n-bit numbers into numbers with more than n bits:
� You have to do sign extension: copy 2s comp sign bit into higher order bits

Two's Complement Operations

0xxxxxxx

000000000xxxxxxx

1xxxxxxx

111111111xxxxxxx

lsbmsb lsbmsb

sign extend 0 sign extend 1,
this num is negative
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Application in the MIPS ISA

� Arithmetic on MIPS 16 bit immediates
� MIPS 16 bit immediate gets converted to 32 bits 2s complement for arithmetic

� MIPS ISA weirdness…
� MIPS instruction add immediate unsigned addiu sign-extends it 16-bit immediate field

� This is not what the name suggests the instruction does

� Despite its name, addiu is used to add constants to signed integers when we don’t care 
about overflow (more later – ie, when the num gets too big or too negative)

� MIPS has no subtract immediate instruction and negative nums need sign extension, so 
the MIPS architects decided to sign-extend the immediate field to make it possible to do a 
sort of “subtract immediate” by adding a negative 16bit immediate
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Basics: Binary Addition & Subtraction

� Just like in grade school  (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

� Two's complement operations easy
� Subtraction accomplished by doing addition of negative numbers

0111 positive 7
+ 1010 negative 6
1 0001 positive 1, and we usually ignore carry/borrow out 

� ….except in cases of overflow and underflow
� Overflow:  result too positive (too big) for finite computer word)
� Underflow:  result is too negative for finite computer word
� And, it’s NOT just the presence of a carry or borrow out of the top bit!

carry
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� Its generically just called “overflow”
� When can it not happen?

� No overflow when adding a positive and a negative number
� No overflow when signs are the same for subtraction

� When can it actually happen?
� You overflowed when adding two positives yields a negative 
� or, adding two negatives gives a positive
� or, subtract a negative from a positive and get a negative
� or, subtract a positive from a negative and get a positive

� Consider the operations A + B, and A – B
� Can overflow occur if B is 0 ?
� Can overflow occur if A is 0 ?

Detecting 2s Complement Overflow
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Effects of Overflow

� An exception (interrupt) occurs
� Control jumps to predefined address for exception
� Interrupted address is saved for possible resumption
� Details based on software system / language

� Don't always want to detect overflow:  unsigned MIPS instructions
addu, addiu, subu

� Remember:   addiu still sign-extends!
� Note:   sltu,  sltiu  for unsigned comparisons

� Let’s look at implementing addition...
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Basics: 1-bit Full Adder Implementation

Standard Approach:  6 Gates (or 5 Gates)

Truth Table
A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

CI
0
1
0
1
0
1
0
1

S
0
1
1
0
1
0
0
1

Truth Table
A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

CI
0
1
0
1
0
1
0
1

CO
0
0
0
1
0
1
1
1

A

AA

B

B
B CI

CI
S CO

a   b
CO  CI

S=sum= a+b

Carry inCarry out

a    b
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Basics: Ripple-Carry Adder Revisited

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

a3  b3 a2  b2 a1  b1 a0  b0

AB

S

CI

CO

AB

S

CI

CO

AB

S

CI

CO

AB

S

CI

CO
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What’s Wrong with the Ripple Carry Adder?

� It’s too slow for wide (32bit, 64 bit) addition.
� How slow…?  Consider a fast modern processor

� Runs at ~ 1GHz, so clock period is ~ 1ns

1ns = 1000ps

flip flops

flip flops

Combin. 
logic
gates

You have roughly 1000ps
to get out of the flip flops (FFs),
thru the combinational logic,
and back into the next FFs.
How many gates deep can this be?
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What’s Wrong with the Ripple Carry Adder?

� Logic depth depends on semiconductor technology
� A reasonable, current model of “the delay of 1 typical gate” is called the FO4 delay
� It’s the delay thru one ordinary inverter, driven by an inverter, loaded by 4 inverters
� Metric is from Mark Horowitz of Stanford, one of the original MIPS guys

� FO4 delay has been falling off linearly with technology scaling
� Pretty good formula for worst case FO4 delay:  0.5 ns/micron * (process feature size) 

FO4 delay is
delay thru this

one inverter
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What’s Wrong with the Ripple Carry Adder?

� Using the FO4 formula
� In a process with 0.5micron CMOS features:  FO4 = 0.5 * 0.5 = 0.25ns = 250ps
� In a leading edge 0.15micron process: FO4 = 0.5 * 0.15 = 0.075ns = 75ps
� At 1GHz, with FO4=75ps/gate, you get 1000ps/75ps =  13 gate delays in 1 clock tick

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s63

C0C1C2C3C64

a63  b63 a2  b2 a1  b1 a0  b0

C63

At roughly 2 gate delays per full adder, this ripple Adder is at ~ 64*2 FO4 delays.
Can YOU build a 64 bit adder with only 13 gate delays?? 
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Aside: Levels of Gates Per Clock in uPs

� Gates/clock, normalized via FO4 delay, have been falling
� Clock speeds have just been scaling aggressively, but…there’s a limit here
� It’s hard to design a processor with only 16 gate delays per clock tick. Very hard for 8/tick
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Design Trick:  Fast Adders via Lookahead

� Basic problem
� Ripple path for carry is proportional to number of bits in the adder
� We need to fix this:  it needs to be constant, at least for “small” adders
� The only solution is more hardware in a “small chunk of adder”, typically a 4bit adder
� Luckily enough, there’s a nice, elegant, fairly simple pattern to this stuff

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

a3  b3 a2  b2 a1  b1 a0  b0
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Basic Lookahead Adder

� For 4bit adder, can we compute all intermediate carries directly?

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

a3  b3 a2  b2 a1  b1 a0  b0

Carry lookahead logic unit

Dotted grey arrows show old path 
for the carries in ripple adder
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Basic Lookahead Adder

� Turns out there’s a nice pattern to the logic in this lookahead box
� Think about a single full adder, and how carries “happen” in it
� Turns out, there’s exactly 2 ways a carryout “happens”, ie, can get set to be “1”

a   b
CO  CI

sum

CinCout

a    b

a   b
CO  CI

Cin
=??

Cout
=1

a    b

Question: when will
a carryout be generated

independent of value
of the carryin bit?

Answer: when a=1 && b=1

sum

a   b
CO  CI

Cin
=1

Cout
=1

a    b

Question: when will
a carryout be propagated

from carryin, thru the adder? 

Answer: when a !=b

sum
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Basic Lookahead Adder

� Give these 2 unique “carry happens” events names
� When a,b are set so that a carryout is just generated:  g = generate = a*b
� When a,b are set so that a carryin passes to be carrout: p = propagate = a ⊕⊕⊕⊕ b

� Write equation for carryout for a single adder in this notation

a   b
CO  CI

sum

CinCout

a    bCarryout = “either I generated it,
or, I propagated the 
carryin to carryout”

= g + p*Cin
= (ab) + (a ⊕⊕⊕⊕ b)*Cin
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Baic Lookahead Adder

� With this notation, can see “pattern” for each intermediate carry
� Look at the 4bit adder up close, let’s write a direct equation for EACH carry we need

s0s1s2s3

C0C1C2C3C4

a3  b3 a2  b2 a1  b1 a0  b0

prop

gen

C1 = g0 + poC0
ie, either stage0 generated it
or, C0 propagated thru stage 0

g0
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Baic Lookahead Adder

� Keep going, use the pattern
� Look at the 4bit adder up close, let’s write a direct equation for EACH carry we need

s0s1s2s3

C0C2C3C4

a3  b3 a2  b2 a1  b1 a0  b0

g0
Prop p0

gen

C2 = g1 + p1g0 + p1p0C0
ie, either stage1 generated it
or, stage1 propagated a carry generated in stage0
or, stage1 and stage3 propagated the Cin

Prop p1
g1

Prop p1
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Baic Lookahead Adder

� Keep going, use the pattern
� Look at the 4bit adder up close, let’s write a direct equation for EACH carry we need

s0s1s2s3

C0C3C4

a3  b3 a2  b2 a1  b1 a0  b0

g0
Prop p0

gen

C3 = g2 + p2g1 + p2p1g0 + p2p1p0C0

Prop p1
g1

Prop p1

g2
Prop p2
Prop p2
Prop p2
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Baic Lookahead Adder

� Keep going, use the pattern
� Look at the 4bit adder up close, let’s write a direct equation for EACH carry we need

s0s1s2s3

C0C3C4

a3  b3 a2  b2 a1  b1 a0  b0

g0
Prop p0

gen

C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

Prop p1
g1

Prop p1

g2
Prop p2
Prop p2
Prop p2

g3
Prop p3
Prop p3
Prop p3
Prop p3
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Basic Lookahead Adder

� So—YES, we can do all the carries directly, no ripples at all
� Why is this fast?  Each carry equation is a SOP 2-level form, 2 FO4 delays to compute

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

Carry lookahead logic unit
C1 = g0 + poC0          
C2 = g1 + p1g0 + p1p0C0
C3 = g2 + p2g1 + p2p1g0 + p2p1p0C0
C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

a3  b3 a2  b2 a1  b1 a0  b0
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a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

Carry lookahead logic unit
C1 = g0 + poC0          
C2 = g1 + p1g0 + p1p0C0
C3 = g2 + p2g1 + p2p1g0 + p2p1p0C0
C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

a3  b3 a2  b2 a1  b1 a0  b0

Basic Lookahead Adder

� How fast is it?   ~4 gate delays thru the whole 4bit adder

1 gate delay to compute all p’s, g’s 

2 more gate delays 
to compute all Cs

1 more gate delay
to compute all sums—
si = ai ⊕⊕⊕⊕ bi ⊕⊕⊕⊕ Ci

= pi          ⊕⊕⊕⊕ Ci
= 1 more delay

BUG fixed here
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a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

Carry lookahead logic unit
C1 = g0 + poC0          
C2 = g1 + p1g0 + p1p0C0
C3 = g2 + p2g1 + p2p1g0 + p2p1p0C0
C4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0C0

a3  b3 a2  b2 a1  b1 a0  b0

Beyond Basic Lookahead

� Neat digital trick.  What keeps us for doing this for 64bits?
� The lookahead equations for the individual intermediate carries get too complex
� Carry Cn has (n+1) terms ORed, and the biggest AND has n terms in it. 
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Beyond Basic Lookahead:  Recursive Lookahead

� Another wonderful, elegant trick that gives a useful pattern
� The exact same set of formulas works to apply these ideas recursively
� The question is:  what are we recursing on?  And, in hardware?

� Big trick:  the lookahead equations for the carries do not care 
how big the individual adders were that gave us the g, p signals
� We derived these for the “generate from” and “propagate across” 1-bit adders
� You can do the same think for N-bit adders.  In our case, 4-bit adders
� Now, the g, p signals are commonly written G, P, called “group” generate, propagate 
� Your book calls them “super” generate and propagate
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Recursive, Group Lookahead

� We derived this lookahead structure

a   b
CO  CI

s0

a   b
CO  CI

s1

a   b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

Carry lookahead logic unit

Make C4, C3, C3, C1 directly from a,b input, and C0

a3  b3 a2  b2 a1  b1 a0  b0
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Recursive Group Lookahead

� Lets redraw it to separate out the p’s, g’s, and the carry logic

a b

CO  CI

s0

a  b
CO  CI

s1

a  b
CO  CI

s2

a   b
CO  CI

s3

C0C1C2C3C4

Carry lookahead logic unit
Make C4, C3, C3, C1 directly from p, g inputs, and C0

a3 b3 a2 b2 a1 b1 a0 b0

p3 g3 p2 g2 p1 g1 p0 g0
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Recursive Group Lookahead

� Big idea:  as long as the p’s, g’s are correct, same lookahead unit 
will work for wider adders at the bottom

C0
Carry lookahead logic unit

Make C16, C12, C8, C4 directly from P, G inputs, and C0

a   b
CO       CI

s[15..12]

C12

C16
bits[15..12]

P G

a   b
CO       CI

s[11..8]

C8

bits[11..8]

P G

a   b

s[7..4]

C4

bits[7..4]

P G

a   b

s[3..0]

bits[3..0]

P G

CO       CI CO       CI
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Recursive Group Lookahead

Lookahead carry logic

1bit
add

a,b

sum3

C3

C4
p3,g3

1bit
add

a,b

sum3

C2

p2,g2

1bit
add

a,b

sum3

C1

p1,g1

1bit
add

a,b

sum3

C0

p0,g0

Lookahead carry logic

n-bit
add

a,b

sum[4n-1..3n]

C3n

C4n
P3,G3

n-bit
add

a,b
C2n

P2,G2

n-bit
add

a,b
Cn

P1,G1

n-bit
add

a,b
C0

P0,G0

sum[3n-1..2n] sum[2n-1..n] sum[n-1..0]

Lookahead logic for
1bit adders…

Is identical for
wider, n-bit adders
at the bottom!
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Why We Think of it as Recursive

Lookahead carry logic

n-bit
add

a,b

sum[4n-1..3n]

C3n

C4n
P3,G3

n-bit
add

a,b
C2n

P2,G2

n-bit
add

a,b
Cn

P1,G1

n-bit
add

a,b
C0

P0,G0

sum[3n-1..2n] sum[2n-1..n] sum[n-1..0]

Lookahead carry logic

1bit
add

a,b

sum3

C3

C4
p3,g3

1bit
add

a,b

sum3

C2

p2,g2

1bit
add

a,b

sum3

C1

p1,g1

1bit
add

a,b

sum3

C0

p0,g0

If n=4 here, then
each wider adder
could be a lookahead
4-bit adder, as
shown here
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What’s Missing Here?

� We need to know how to generate the group-level signals P, G
� With these, we can use this fast 4 bit adder as a component in a wider, lookahead adder

Lookahead carry logic

1bit
add

a,b

sum3

C3

C4
p3,g3

1bit
add

a,b

sum3

C2

p2,g2

1bit
add

a,b

sum3

C1

p1,g1

1bit
add

a,b

sum3

C0

p0,g0

P,   G  == ???

4-bit
add

a,b

sum

P ,G 

Cout Cin
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Group Level Signals 

� Actually, pattern still works fine.  Consider group gen = G
� Group generate G = when does the whole 4-bit block generate a carry without us needing 

to know value of C0?

s0s1s2s3

C0=???C3

a3  b3 a2  b2 a1  b1 a0  b0

g0
Prop p0

gen
Prop p1

g1

Prop p1

g2
Prop p2
Prop p2
Prop p2

g3
Prop p3
Prop p3
Prop p3
Prop p3

G = g3 + p3g2 + p3p2g1 + p3p2p1g0 BUG fixed here
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Group Level Signals 

� Consider group propagate P
� Group prop P = when does the whole 4-bit block propagate a carry across all 4 bits right 

back from the value of C0?

s0s1s2s3

C0C3

a3  b3 a2  b2 a1  b1 a0  b0

g0
Prop p0

gen
Prop p1

g1

Prop p1

g2
Prop p2
Prop p2
Prop p2

g3
Prop p3
Prop p3
Prop p3
Prop p3

P = p3p2p1p0
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Group Level Lookahead

� And, that’s it.  A generic lookahead carry logic unit that “looks 
across” 4 adders looks like this:

Lookahead carry logicC4
P3,G3 P2,G2 P1,G1 P0,G0

P,   G

C0

n-bit
adder 3 C3 n-bit

adder 2 C2 n-bit
adder 1 C1 n-bit

adder 0

Computed lookahead carry
into the 2nd n-bit adder unit

Group signals from
1st n-bit adder unit

Overall carryout, == carry
into the 4th n-bit adder unit
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Group Lookahead

� Easiest to see how to do 2 levels of lookahead
� For example: 16bit adder

� Make fast 4 bit adder as we now know how:  use 1st layer of lookahead logic
� Then, make the group generate, propogate P,G signals for each 4 bit adder
� Use another layer of lookahead – exact same lookahead logic !! – to combine 4 of these 

fast 4-bit adders, and do lookahead across each 4-bit adder, to get to 16 bits

� Don’t have to stop at 2 levels of lookahead
� To get to 64 bit adder, take this fast 16-bit adder, and combine 4 of them with a 

lookahead unit – exact same lookahead logic again !! – to get to 4*16=64 bits

� Variants of these ideas are how wide, fast adders get built
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64 Bit Adder:  How Fast, in Gate Delays?

Lookahead carry logicC4
P3,G3 P2,G2 P1,G1 P0,G0

P,   G

C0

4-bit
adder 3 C3 4-bit

adder 2 C2 4-bit
adder 1 C1 4-bit

adder 0

Lookahead carry logicC4
P3,G3 P2,G2 P1,G1 P0,G0

P,   G

C0

16-bit
adder 3 C3 16-bit

adder 2 C2 16-bit
adder 1 C1 16-bit

adder 0

Lookahead carry logicC4
P3,G3 P2,G2 P1,G1 P0,G0

P,   G

C0

1-bit
adder 3 C3 1-bit

adder 2 C2 1-bit
adder 1 C1 1-bit

adder 0

There will be some
homework problems to
work through the details,
and the delay, on these
recursive adder structures.
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New Problem: Design a “Fast” ALU for MIPS

� Requirements?
� Its not just adding (and subtracting)
� It also must support the Logic operations – whole-word bit ops like AND, OR

� How?
� Think about what we can do with each individual bit of this computation (like 1 bit of a 

ripple adder is simple to do)
� Think about how to generalize from the single bit up to the whole ALU…
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MIPS ALU Requirements

� Add,  AddU,  Sub,   SubU, AddI, AddIU 
� => 2’s complement adder/subtractor with overflow detection

� And,  Or, AndI, OrI, Xor, Xori, Nor
� => Logical AND, logical OR, XOR, nor

� SLTI, SLTIU (set less than)
� => 2’s complement adder with inverter, check sign bit of result
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MIPS Arithmetic Instruction Format

� R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53
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Design Trick: Divide & Conquer

� Break the problem into simpler pieces, solve each, glue together
� Example: 

� Assume the immediates have been 
taken care of before the ALU

� 10 operations (4 bits)
00 add

01 addU

02 sub

03 subU

04 and

05 or

06 xor

07 nor

12 slt

13 sltU
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Refined Requirements

� Functional Specification
� inputs: 2 x 32-bit operands A, B, 4-bit mode
� outputs: 32-bit result S, 1-bit carry, 1 bit overflow
� operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

� Block Diagram

ALUALU
A B

m
ovf

S

32 32

32

4
c
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Refined Diagram: Bit-slice ALU

A B

M

S

32 32

32

4

Ovflw

ALU0
a0 b0

m
cinco s0

ALU0
a31 b31

m
cinco s31
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Another Way to Think About It

� We want an N-bit ALU.  Design 1-bit “slices” of this ALU. 
� Then, try to glue them togther like a ripple carry adder 
� Remember—ripple adder makes a big adder by letting the carryin-carryout connects glue 

all the 1-bit pieces together

bit0bit1bit
N-1

Control signals

Data in

Data out

Extra low-bit logic

Extra high-bit logic
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One Bit of the Bit-Slice Design

� Design trick: 
� Take pieces you know (or can imagine) and try to put them together
� Solve part of the problem and extend

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select
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Additional Operations

� A - B = A + (– B)
� Form two’s complement by invert and add one

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select
invert

Set-less-than? – left as an exercise
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Revised Diagram

� LSB and MSB: we need to do a little extra work on these

A B

M

S

32 32

32

4

Overflow

ALU0
a0 b0

cinco s0
ALU0
a31 b31

cinco s31 Logic to
produce
select,
complement,
and Cin;
Easy stuff

?
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Overflow Detection Logic

� Carry into MSB xor Carry out of MSB
� For a N-bit ALU: Overflow = CarryIn[N - 1]  XOR  CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X   XOR   Y

0 0 0
0 1 1
1 0 1
1 1 0
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Updated Diagram

� LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Overflow

ALU0
a0 b0

cinco s0
ALU0
a31 b31

cinco s31 Logic to
produce
select,
complement,
and c-in

XOR proper
carries
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But What About Performance?

� Critical Path of n-bit ripple 
adder way too slow…

� Perfect place to use the fast 
lookahead ideas

� Just adds some more “extra 
logic” around bits in the 
bitslice to do the recursive 
lookahead

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3
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Additional MIPS ALU Requirements

� Mult, MultU, Div, DivU 
� Need 32-bit multiply and divide, signed and unsigned 
� Next lecture…

� Sll, Srl, Sra 
� Need left shift, right shift, right shift arithmetic by 0 to 31 bits

� Nor 
� Logical NOR or use 2 steps: (A OR B) XOR 1111....1111
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Combinational Shifters

� 2 types:  issue is what bit value gets “shifted in” on the ends?
� 0 is obvious first answer, but its not always 0 that gets shifted in…

� Note: 
� These are single bit shifts. 
� A given instruction might request 0 to 32 bits to be shifted!

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend (ie, copy msb back in)

msb lsb"0" "0"

msb lsb "0"
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New Problem: Big, Fast Shifters

� Take an n-bit word, left or right shift k-bits, programmably.  How?
� Answer:  a logarithmic shifter structure, done as layers of shifters
� Each layer of the shifter structure can shift 2M bits in one direction.  
� Each layer is programmable – either it shifts or not.
� If your word is 2N bits in all, you need N layers of shifters, hence the “log” idea

Programmable
Shifter

8-bit num

Shifted 8-bit num

3-bit 
control
= shift

“distance”

8-bit num

Shifted 8-bit num

3-bit 
control
= shift

“distance”

Shift right  1bit:   y/n

Shift right  2bits:  y/n

Shift right  4bits:  y/n
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Big, Fast Shifters

� How do you make any one of these layers of the shifter?
� Out of multiplexors.  Its pretty simple –mainly just MUXs and wires

8-bit num

Shifted 8-bit num

3-bit 
control
= shift

“distance”

Shift right  1bit:   y/n

Shift right  2bits:  y/n

Shift right  4bits:  y/n

2bit shift? no

2bit shift? yes
?  ?

Can shift in 0s, 1s or other values

lsbmsb

lsbmsb
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Details:  Big, Fast Shifter From MUXes

� What comes in the MSBs?
� How many levels for a bigger shifter?

� 32 bit shifter?  64bit shifter?
1 0sel

A B

D

Basic MUX Building Block

8-
bi

t r
ig

ht
 sh

ift
er 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7
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Combinational Shifter: Basic Operation

1 0sel

A B

D

Basic MUX Building Block

8-
bi

t r
ig

ht
 sh

ift
er 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1   0   1A0A1A2A3A4A5A6A7

A5A6A700000

0

0

0

A5
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Combinational Shifter: Basic Operation

� What comes in the MSBs?   
� 0s here, shifted in from the left
� Could be 1s, could be the topmost msb if we wanted

1 0sel

A B

D

Basic MUX Building Block

8-
bi

t r
ig

ht
 sh

ift
er 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1   0   1A0A1A2A3A4A5A6A7

0

0

0

A5A6A700000
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Summary

� Adders
� Always get built using carry lookahead ideas

� ALUs
� Always get built as regular bit-slices, repeating a basic unit bit design
� Some extra stuff usually requires for lowest and highest bits, and for lookahead

� Shifters
� For a single, fixed shift distance, can just hardwire up the MUXes
� For arbitrary programmable shift distances:  barrel shifter, with layers of MUXes


