CMU Fall 01 18-760 VLSI CAD
Project 2 — Addendum (Checker)

Instructor: Prof. Rob A. Rutenbar, TA: Amit Singhee

1. Checker Summary:
The checker performs the following tests for all Transistor Netlists:

e Topological Sort: Checks if you have correctly formed the signal-flow graph. If
not, it tells you which node is incorrect in your order. Since each channel-graph
has a unique output node, we need you to print out the channel-graph output
nodes in the order in which these channel-graphs are sorted in your program.

® Boolean equations at each channel-graph output node: Checks the Boolean
function at each of these nodes. This will also help you figure out which nodes
you went wrong in, if any. See next section for details on printing BDDs using
CUDD.
Note: For the Gate-level Netlists, we will not provide any checkers. You must check the
final outputs yourself and tell us if they match the corresponding transistor-level netlists
provided. Your write-up must however contain the details of how you made this
comparison.

2. Printing using CUDD:

Use the command PrintMinterm() in Cudd. This commands prints out the various paths
to constant node 1 that satisfy the BDD, which correspond to cubes that cover the
function. For example, if your variables are: a, b, c, d, e, the output for (b AND d’) will

appear as:
-1-0- 1

This implies that b appears in the non-complemented form and d appears in the
complemented form, while other variables do not appear in this cube. The position of
each variable in the cube corresponds to the index of the variable in the BDD manager,
which in-turn corresponds to the order in which those variables were created in CUDD.
In the above example, The index ofais 0,bis 1, cis 2, d is 3 and e is 4. In your output,
you will have to tell us what the indices are for the various variables. Your program will
have 2 variables each for every primary input variable in the circuit. You will therefore
have to tell us the indices for both the inp.0 and inp.1 variables corresponding to each
primary input. You will also print the node.0 and node.1 functions for each channel-graph
output

The cover for (b OR d’) has 2 cubes as shown below. Drawing the truth table will
convince you that this is correct.

-0-0- 1

-1--- 1

18-760 Fall 01, Project 2 Addendum (Checker) Page 1

3. Ouput File Format:

VARS <number_of primary_inputs >

NODE <nodel> <0: if nodel.0>
-1---1----1
-1---0----1

... PrintMinTerm() output from cudd
NODE <nodel> <1: if nodel.1>

NODE <node2><1/0>

<Input _nodel> <inpl.0 variable index> <inpl.1 variable index>
<Input_node2> <inp2.0_variable_index> <inp2.1_variable_index>

... variables corresponding to each primary input

... For all channel-graph output nodes (node.1 and node.0)

TOPOSORT <nodel> <node2> <node3> ...in sorted order for channel-graph output nodes

4. Example Output for c17.TRAN

. for all channel graph output

TOPOSORT 8 9 10 11 6 7
VARS 5

101

2 2 3

345

4 6 7

58 9

NODE 8 0
-1---1---- 1
NODE 8 1
0---1----- 1
l--------- 1
NODE 9 0
-----1-1-- 1
NODE 9 1
----0-1--- 1
———-l----- 1
nodes ..

18-760 Fall 01, Project 2 Addendum (Checker)

Page 2

5. Example CUDD Program for Generating the Output

Here is an example program showing output generation for a simple NAND Gate

main () {
Cudd nand mgr (0,0) ;

// Create Variables for all the inputs
BDD x 0 = nand mgr.bddVar() ;

BDD x 1 = nand mgr.bddVar() ;
BDD y 0 = nand mgr.bddvar() ;
BDD y 1 = nand mgr.bddvar();

// create functions for the output
BDD out3 1 = x 0 + y 0;
BDD out3 0 = x 1 * y 1;

// Print out the Toposort that you generated for all the Channel-graph
// Output Nodes Trivial in the NAND example!
cout<<"TOPOSORT 3"<<endl;

// Print out the Variable indices in your BDD Note you have variables
cout<<"VARS 2"<<endl

<<"1l 0 1"<<endl

<<"2 2 3"<<endl;

// Print out the Cubes / Minterms for each channel Graph Output
cout<<"NODE 3 O"<<endl;
out3 0.PrintMinterm() ;

cout<<"NODE 3 l"<<endl;
out3 1l.PrintMinterm() ;

4 nand.TRAN Output
1 2 NUMMODS 4 TOPOSORT 3
—q p_ NUMNETS 4 VARS 2
NUMINPUTPADS 2
MI M2 3 NUMOUTPUTPADS 1 101
VDD 4 223
1 GND 5 NODE 3 0
INPUT 1 -1-1 1
M3 INPUT 2 NODE 3 1
OUTPUT 3
6 P1 1 4 1 3 0-1- 1
2 N1 1316 1--- 1
— P2 1 2 2 3
M4 N2 1625
J_ END

18-760 Fall 01 , Project 2 Addendum (Checker) Page 3

6. Some new Gates in Benchmarks

INVPN (inverter with 2 Pass Transistors)
Format in the Gate-level netlist:
Vdd

INVPN 3 axy out

R

NANDPN (NAND + Pass Gate)
Format in the Gate-level netlist:

EI 5| : i
NANDPN 4 ab xy out a
_out

a _|

T L L

X] :I -?_

y] b y
1

PASS Gnd

Format in the Gate-level netlist:

PASS 3 a x y out J_ X

a a— __ out

X out () LI

18-760 Fall 01, Project 2 Addendum (Checker) Page 4

