
Page 1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 1

F01 Project 2: Transistor-Level Equiv. CheckingF01 Project 2: Transistor-Level Equiv. Checking
So far, the “logic” we have seen is all made of gates

AND, OR, EXOR, EXNOR, NOT etc etc

But, ICs are made up from transistors
CMOS P- and N-type FETs to be precise

How can we look at a transistor-level netlist and “extract” the
Boolean logic function it implements, and then “check” this?

This is project 2

Need a good transistor-level representation as Boolean values

Need to simplify away some transistor-level behavior

Need to know new techniques for solving systems of Boolean eqns

All doable with BDDs (of course!)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 2001
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar 2001, CMU 18-760, Fall 2001 3

Where Are We?Where Are We?
A very realistic application…

27 28 29 30 31
3 4 5 6 7

M T W Th F

10 11 12 13 14
17 18 19 20 21
24 25 26 27 28

Aug
Sep

Oct 1 2 3 4 5
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 31 1 2
5 6 7 8 9 Nov
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
3 4 5 6 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Dec

Thnxgive

10 11 12 13 14 16

OUT: 16 Oct 2001

DUE: 8 Nov 2001 by 5pm

Logistics:
You can work in groups of 2

Implementation is in C or C++
using the CUDD BDD package
from U Colorado. You link to it.

For a grade
Writeup is a WEBPAGE. You put
it up, email us the URL by 5pm

DEMO required, sign-up for times
at end of project, will be required
to show performance on “live”
(new) circuits, explain what
happens as they run in real-time.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 4

Readings/Deadlines/ProjectsReadings/Deadlines/Projects
De Micheli

Nothing about this stuff

Deadlines
OK, fine, I give up: HW3 due date BACK to Oct 23, NEXT Tue, in class

AFTER mid-semester break
(The things I do for you people…)

Project #2
Today—the overview

Due date: 8 November 2001

Page 3

© R. Rutenbar 2001, CMU 18-760, Fall 2001 5

Background: CMOS LogicBackground: CMOS Logic
2 kinds of transistors: P and N

N devices conduct when their input == 1

P devices conduct when their input == 0

Devices have 3 terminals, are bidirectional for us

gate
drain

source

gate
drain

source

0 conduct
1

conduct

© R. Rutenbar 2001, CMU 18-760, Fall 2001 6

Our ProblemOur Problem
How do we analyze a transistor netlist and “extract” Boolean
functions for its outputs?

For example, how can we compute that this netlist is a simple NAND?

This is a pretty simple case: this is a static CMOS (series/parallel) gate

a

Vdd (=1)

==

Gnd (=0)

a

b

b

a
b (ab)’

out

Page 4

© R. Rutenbar 2001, CMU 18-760, Fall 2001 7

Our ProblemOur Problem
And what if we allow pass transistor style circuits?

The 2 devices at the left are clearly a simple inverter

But, the inverted output passes thru 2 pass transistors which can “gate”
the result to the output only if x==1, y==0

a

Vdd (=1)

== ???

Gnd (=0)

x

a
out

y

© R. Rutenbar 2001, CMU 18-760, Fall 2001 8

Our ProblemOur Problem
And what happens when signals take “unreasonable” values?

Can allow inputs to be “unknown” in logic networks, see how these
unknowns propagate

But, in a transistor netlist, all signals can be known, and the output may
still be undetermined; consider example below

a=1

Vdd (=1)

== undetermined

Gnd (=0)

x=0

0 out

y=0

??

This device
is not conducting,
can’t tell what
it does to signal

Page 5

© R. Rutenbar 2001, CMU 18-760, Fall 2001 9

SolutionSolution
Need a more sophisticated model of the “steady state” value
on a wire in a transistor netlist

“Steady state” means combinational circuits only, when they stabilize

Need to model not just “=1” and “=0” but also “=X” don’t know state

Need to acknowledge some simplifications
All devices have same “strength”, as do all storage nodes in circuit

No ratio tricks, no overriding of logic values at contended node, etc.

Some crazy dynamic circuits, circuits with complex state, won’t work in
our analysis technique

Need more powerful solution strategy
With a good model for individual nodes in the MOS circuit, we can
derive systems of Boolean equations. Trick is in how to solve them…

© R. Rutenbar 2001, CMU 18-760, Fall 2001 10

Better Model of Logic NodesBetter Model of Logic Nodes
Use 2-bit signal encoding -- just like PCN notation

Each node (wire) in a netlist gets a pair of boolean variables that
together represent its state

So, node “p” represented as [p.0 p.1] pair of values

Same encoding as PCN
[p.0 p.1] = 0 1 => it’s a Boolean 1
[p.0 p.1] = 1 0 => it’s a Boolean 0
[p.0 p.1] = 1 1 => it’s indeterminate -- don’t know what it is
[p.0 p.1] = 0 0 => not allowed to happen

Goal
We want the “ordinary” Boolean values (0, 1) to work like ordinary
logic gates work

But we want to get [1 1] when a node in the circuit simply cannot be
determined from the current inputs. In other words we want to
compute and to propagate these indeterminate values correctly

Page 6

© R. Rutenbar 2001, CMU 18-760, Fall 2001 11

Simple ExampleSimple Example
This is what we expect we should be able to compute

[a.0 a.1] = [0 1]

[vdd.0 vdd.1] = [0 1]

[1 1] = don’t know

[x.0 x.1]
= [1 0]

[1 0]
[out.0 out.1] =

[y.0 y.1]
= [1 0]

This device
is not conducting,
can’t tell what
it does to signal--
so now we see this
with the [1 1] value

[gnd.0 gnd.1] = [1 0]

[1 1]

© R. Rutenbar 2001, CMU 18-760, Fall 2001 12

Inputs and OutputsInputs and Outputs
Look again at this example

Notice that the inputs and the outputs and even the power rails are also
represented in this same notation

Need to be careful to be precise about what is a variable and what is a
constant here…

[a.0 a.1] = [0 1]

[vdd.0 vdd.1] = [0 1]

[1 1] = don’t know

[x.0 x.1]
= [1 0]

[1 0]
[out.0 out.1] =

[y.0 y.1]
= [1 0]

[gnd.0 gnd.1] = [1 0]

[1 1]

Page 7

© R. Rutenbar 2001, CMU 18-760, Fall 2001 13

Nodes in Netlist: Inputs, Outputs, InternalNodes in Netlist: Inputs, Outputs, Internal
4 kinds of nodes (wires) in these circuits, with diff constraints

Inputs:
represented as variables, can be connected to MOS gates or to
MOS drain/source. You need to know which--it will matter later

Power rails:
they are inputs, but special inputs with constant value, they are not
variables, they appear to us as constant “1” or “0”

Outputs:
represented as variables, can connect only to MOS drain/src

Internal:
everything else in the circuit. Represented as variables. These
represent MOS device drains and sources

© R. Rutenbar 2001, CMU 18-760, Fall 2001 14

Nodes in Netlist: Inputs, Outputs, InternalNodes in Netlist: Inputs, Outputs, Internal
Example revisited

[a.0 a.1]

[vdd.0 vdd.1] = [0 1]
[x.0 x.1]

[p.0 p.1] [out.0 out.1]

[y.0 y.1]

[gnd.0 gnd.1] = [1 0]

Rail, constant

Rail, constant

Input,
variable,

MOS gate
[q.0 q.1]

Input,
variable,

MOS gate

Input,
variable,

MOS gate

Output,
variable

Internal nodes,
variable

What we want is to create a BDD for every internal and output
node [v.0 v.1] that captures the correct behavior, ie,
[v.0=(some BDD), v.1=(some other BDD)]

Page 8

© R. Rutenbar 2001, CMU 18-760, Fall 2001 15

Solving for Node EquationsSolving for Node Equations
5 big steps

1. Make the diffusion channel graph for the circuit
Graph represents paths thru the circuit we need to model

2. Solve for v.1 var for each [v.0 v.1] internal & output node
Graph lets us create a set of simultaneous Boolean eqns; solve ‘em

3. Solve for v.0 var for each [v.0 v.1] internal & output node
Similar graph, different variables, same solution process

4. Solve for D=indeterminate conditions for each int/out node
Similar graph, different vars, same solution process

5. Assemble final solution
From v.1, v.0, D at each variable node, we can get Bool eqn we need

© R. Rutenbar 2001, CMU 18-760, Fall 2001 16

Channel GraphChannel Graph
Represents conducting paths in the CMOS circuit

Node = MOS transistor drains and sources. NOT the MOS gate inputs.

Edge = one MOS device drain-source path, ie, conducting channel

a

Vdd

Gnd

a

b

b

out

vdd

out

pp

gnd

M1 M2

M3

M4

M1 M2

M3

M4

Example channel
graph for simple
2 input NAND

Page 9

© R. Rutenbar 2001, CMU 18-760, Fall 2001 17

Channel GraphChannel Graph
Our other example

vdd

outp

gnd

M1

M2

M3 M4

Example channel
graph for Inverter
with “odd” pass
devices at its output

a

Vdd

Gnd

x

p out

y

q
M1

M2
M3 M4

q

© R. Rutenbar 2001, CMU 18-760, Fall 2001 18

Using the Channel GraphUsing the Channel Graph
Channel graph defines a system of Boolean equations

We need to know how to set these up, this is how we will solve for v.1,
v.0 and D for each node in the circuit

We specify a set of “initial” values for the graph, where a “value” is a
Boolean equation.

Each node and each edge gets an initial value

Each node then gets a variable, call it x[n] for node n

Goal is to solve for x[n] at each node so that the overall set of Boolean
equations defined by the graph is “consistent”, ie, makes sense, works
out right under some sensible rules

3 big questions
What does such a system of Boolean equations look like?

What does a “consistent” Boolean solution look like?

Mechanically, how do we solve to find this solution?

Page 10

© R. Rutenbar 2001, CMU 18-760, Fall 2001 19

Analogy: Systems of Linear EquationsAnalogy: Systems of Linear Equations
Analogy: matrices from linear algebra

We have variables, say: t y z w

We have a system of linear equations, for example
2t + 3y + 4z + 5w = 32
t + 7z - 3w = 10

7t + 3y + w = 17
2y + 3z + 8w = 45

A consistent solution -- in this case, t=1 y=2 z=3 w=4 -- is such that if you
take any row of this matrix and substitute these values in, the equation
checks out right, eg

2t + 3y + 4z + 5w = 32
t + 7z - 3w = 10

7t + 3y + w = 17 => 7(1) + 3(2) + (4) = 17 …yes, OK
2y + 3z + 8w = 45

A linear solver (eg, Gaussian elimination) can take this system, and
having only the 4x4 matrix (call it A) and the 4x1 vector (call it b), can
solve the eqn Ax = b for the solution x vector=[1 2 3 4]

© R. Rutenbar 2001, CMU 18-760, Fall 2001 20

Now: Systems of Boolean EquationsNow: Systems of Boolean Equations
Amazingly enough, the same problem

Only now, we have “AND” for “•” and “OR” for “+”

n

m

p

q

a

1

0

0

0

e

c

d

Initial node values are like the “b” constants
in a linear algebra Ax=b matrix problem.
But, for us, they are boolean eqns

Initial edge values are like the elements of the
“A” matrix in a linear algebra Ax=b problem.
But, for us, they are again boolean eqns

Initial setup

Page 11

© R. Rutenbar 2001, CMU 18-760, Fall 2001 21

Now: Systems of Boolean EquationsNow: Systems of Boolean Equations
Relabel the graph to make this association clear

n

m

p

q

A(n,m)=a

b(n)=1

b(q)=0

b(p)=0

b(m)=0

A(n,m)=e

A(m,p)= c

A(p,q)= d

Initial node values for each node v
labeled as b(v)

Initial edge values labeled as A(v,u) for each
Edge between nodes u, v.
Note one weird thing: can have multiple edges
between any pair of nodes.

Initial setup

And finally, each node also has a variable x(v)
which is the “x” in Ax=b. We need to solve
for these unknown x(v) values

x(q)=?

x(p)=?

x(m)=?

x(n)=?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 22

Solving Systems of Boolean EquationsSolving Systems of Boolean Equations
How do we recognize a solution? It’s “consistent”, it “works”

Here is the rule for when a set of eqns for each x(v) “works”:

v

n1x(n1)
A(v,n1)

n2x(n2) A(v,n2)

nkx(nk)

A(v,nk)

b(v)

x(v)

Solution is consistent if, for each node v,

x(v) = b(v) + ∑ A(v,ni)•x(ni)
Neighbor
nodes ni

In this example, this means:

x(v) = b(v) + A(v,n1)•x(n1) + … + A(v,nk)•x(nk)

Page 12

© R. Rutenbar 2001, CMU 18-760, Fall 2001 23

ExampleExample
A consistent solution

New questions
Properties of this solution?

And, how do we actually find such a solution?

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x=1

x=a+e

x=c(a+e)

x=cd(a+e)

x(m) = b(m) + ∑ A(m,ni)x(ni)
Neighbor
nodes ni

?

x(m) = b(m) + a x(n) + e x(n) + c x(p)
?

(a+e) = 0 + a (1) + e (1) + c [c(a+e)]
= a + e + ac + ec
= a + e (!!)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 24

The big, useful result (Bryant 1989)
Any Boolean system [A b] where A is a set of edge values (boolean eqns)
and b is a set of node values (boolean eqns) has a UNIQUE solution x (set
of node eqns)

This solution is given by the limit of the sequence xi, where
x0(v) = b(v) for all nodes v

xi(v) = xi-1(v) + ∑ A(v,n)xi-1(n)

In English…
There’s one unique solution to the set of equations

You can find it iteratively--
Set all x(v) to b(v) to start
Pick a node, update it with the above formula based on its neighbors
Continue until each x(v) equation stops changing

Solution PropertiesSolution Properties

Neighbor
nodes n

Page 13

© R. Rutenbar 2001, CMU 18-760, Fall 2001 25

Showing the iterations:
go thru each node, do this formula on it, update x0 value to x1 value

Solving IterativelySolving Iteratively

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x1=1

x0=0

x0=0

x0=0

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x1=1

x0=0

x0=0

x0=0

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x0=0

x0=0

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x0=0

x0=0

x1=(a+e)c

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x0=0

x1=(a+e)c

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x0=0 x1=(a+e)cd

x1=(a+e)c

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x1=(a+e)cd

x1=(a+e)c

x1=a+e

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

This one just
happens to
converge really
easily to this
consistent
solution

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0

x0=0

x0=0

x0=0

n

m

p

q

a

b=1

b=0

b=0

b=0

e

c

d

x0=1

x0=0

x0=0

x0=0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 26

Solving SmarterSolving Smarter
Not smart to update the nodes in totally “random” order

Randy Bryant in CS (who invented this) says:

“…if you keep doing updates of the form
v[i] <-- v[i] OR a[i,j] AND v[j]

you'll eventually get a convergent solution. Since
you're using BDDs, the convergence test becomes
feasible. Basically, it then works a lot like the
fixed point iterations of model checking.

I think you'll find the iterative method works just
fine. The main thing is to set up an "event list" that
propagates an update only if the value on the source
changes. This should be processed in FIFO order, so
that you get the equivalent of breadth first expansion.”

Page 14

© R. Rutenbar 2001, CMU 18-760, Fall 2001 27

Solving SmarterSolving Smarter
Strategy

n

FIFO in

FIFO out

m

k

1. Pop node n at
top of queue

n

n1

n2

nk

2. Use n’s neighbors to update x(n):
xi(n) to xi+1(n)

n

n1

n2

nk

3. Only IF node n’s x(n)
changed, “schedule”
its neighbors to be
updated by pushing
them all at bottom
of the FIFO queue

0. Push all the nodes in the
circuit on the queue;
any order will work

Repeat: steps 1,2,3 until the queue is empty, ie, all nodes have consistent val’s

© R. Rutenbar 2001, CMU 18-760, Fall 2001 28

Aside: Solving VERY SmartAside: Solving VERY Smart
Iterative is OK, not the best you can do

Just like with linear systems

Smartest you can do with (nice) linear systems: Gaussian elimination

Smartest you can with these Boolean systems: Gaussian elimination

Yes--you can do Gaussian elimination on these systems
Check class web site, I’ll post the papers from Bryant

More complicated, but optimally fast for larger designs

You don’t have to do it for this project (but you can if you want to…)

Page 15

© R. Rutenbar 2001, CMU 18-760, Fall 2001 29

OK: Where Are We?OK: Where Are We?
We have a workable model for the circuit

Each node (internal, rail, input, output) is a 2-bit [v.0 v.1] pair

Model supports the indeterminate “X” I-don’t-know-value state, and
propagates it correctly

Channel graph models the circuit correctly for us

We know how to solve systems of Boolean equations
Iteratively till convergence

Just like Ax=b, but A=edges, b=nodes, x(v) = unknowns on each node,
and each of these is a Boolean equation

What’s left?
What system(s) of equations do we need to set up whose solution is the
right answer for the behavior of these circuits?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 30

Setting Up the EquationsSetting Up the Equations
3 sets of equations to solve

First 2 will seem “natural” when you see them

Last one is not so intuitive (at first)

Strategy
Set up and solve the equations to determine v.1 at each node

Set up and solve the equations to determine v.0 at each node

Look closely and these and see why they are not sufficient

Page 16

© R. Rutenbar 2001, CMU 18-760, Fall 2001 31

Solving for v.1 & v.0Solving for v.1 & v.0
Rules

Build channel graph for the circuit

Defn: the definite value for a MOS gate input [g.0 g1] is:
N FET: this is g.1 (ie, if g.1=on, then this N FET conducts)
P FET: this is g.0 (ditto--if g.0 in on, P FET conducts)
(Ignore the [1 1] “X” state for now; we’ll come back to this)

[g.0 g.1]
d

s

[g.0 g.1]
d

s

g.0
s

d
g.1

s

d

© R. Rutenbar 2001, CMU 18-760, Fall 2001 32

Solving for v.1 & v.0Solving for v.1 & v.0
To setup to solve v.1:

Rule 1-1: edge value A(u,v) is the definite value for the FET associated
with this edge in the diffusion graph

Rule 1-2: b(v) value for an internal node is 0. A node is internal if not
connected to an input var, or a power rail

Rule 1-3: b(v) value for a rail is 1 if the rail is Vdd, 0 if rail is Gnd

Rule 1-4: x(v) value for a drain/source -connected input is i.1 where “i”
is the name of the input variable. Do NOT resolve for this x(v), it’s fixed.

To setup to solve v.0 (almost identical):
Rule 0-1: edge value A(u,v) is the definite value for the FET associated
with this edge in the diffusion graph

Rule 0-2: b(v) value for an internal node is 0. A node is internal if not
connected to an input var, or a power rail

Rule 0-3: b(v) value for a rail is 0 if the rail is Vdd, 1 if rail is Gnd

Rule 0-4: x(v) value for a drain/source -connected input is i.0 where “i”
is the name of the input variable. Do NOT resolve for this x(v), it’s fixed.

Page 17

© R. Rutenbar 2001, CMU 18-760, Fall 2001 33

A(out,p)=x.1

A(vdd,out)=y.0

b(out)=0

A(vdd,out)=x.0

Solving for v.1Solving for v.1
Setup example for 2-input NAND

x

Vdd

Gnd

x

y

y

out

vdd

out

pp

gnd

M1 M2

M3

M4

b(vdd)=1

b(p)=0

b(gnd)=0

A(p,gnd)=y.1

Rule 1-3

Rule 1-3

Rule 1-1

Rule 1-2

Rule 1-1

Rule 1-1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 34

A(out,p)=x.1

A(p,gnd)=y.1

A(vdd,out)=y.0

b(out)=0

A(vdd,out)=x.0

Solving for v.0Solving for v.0
Setup example for 2-input NAND

x

Vdd

Gnd

x

y

y

out

vdd

out

pp

gnd

M1 M2

M3

M4

b(vdd)=0

b(p)=0

b(gnd)=1

Rule 0-3

Rule 1-3

Rule 0-1

Rule 0-2

Rule 0-1

Rule 0-1

Careful!
Backwards for
the v.0 solve!

Page 18

© R. Rutenbar 2001, CMU 18-760, Fall 2001 35

b(o
ut)=

0

b(q
)=

0

b(p
)=

0

Solving for v.1 & v.0Solving for v.1 & v.0

Inverter + pass transistors setup

vdd

outp

gnd
a

Vdd

Gnd

x

p out

y

q
M1

M2
M3 M4

q

A(vdd,p)=a.0

b(vdd)=1Rule 1-3

Rule 1-1

b(gnd)=0Rule 1-3

A(p,gnd)=a.1

Rule 1-1

A(p,q)=x.1
A(q,out)=y.0

Rule 1-2

b(o
ut)=

0

b(q
)=

0

b(p
)=

0
vdd

outp

gnd

q

A(vdd,p)=a.0

b(vdd)=0

Rule 0-3

Rule 0-1

b(gnd)=1

Rule 0-3

A(p,gnd)=a.1

Rule 0-1

A(p,q)=x.1

A(q,out)=y.0

Rule 0-2v.0

v.1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 36

Solving for v.1 & v.0Solving for v.1 & v.0
New example: pass transistor ckt

Note the different treatment of inputs and outputs

Inputs: x() = fixed value of input--we “force” node to be this input eqn

Outputs: b() = 0, ie, we will “solve” for this value as an x()

dx

out

y

d

outx(d)=d.1
is fixed

b(out)=0

A(d,out)=x.1

A(d,out)=y.0

Rule 1-4 Rule 1-2

Rule 1-1

Rule 1-1

d outx(d)=d.0
is fixed

b(out)=0

A(d,out)=x.1

A(d,out)=y.0

Rule 0-4 Rule 0-2

Rule 0-1

Rule 0-1

Page 19

© R. Rutenbar 2001, CMU 18-760, Fall 2001 37

Doing the Solve (In Detail…)Doing the Solve (In Detail…)
Mechanically

//Each non-fixed node v gets an unknown Boolean equation x(v)
for(each node v in graph){

if (node v is a diffusion input)
set x(v) to fixed BDD eqn for input node // we won’t try to solve for this one

else {
set x(v) == b(v) BDD;
push node v onto FIFO queue;

}
}
while (FIFO not empty) {

v = pop top node on FIFO
create xnew(v) = x(v)
for(each node n that is a neighbor of node v)

xnew(v) = xnew(v) + A(v,n)*x(n)
// Compare xnew(v) and x(v) -- they’re BDDs, it’s easy to compare!
if (xnew(v) == x(v)) {

//Great -- don’t reschedule all its neighbor nodes n for update
let x(v) = xnew(v)

} else {
// xnew(v) != x(v), so, schedule all neighbor nodes n for update
for(each neighbor node n of v)

if(node v is not a fixed diffusion input)
push n onto the FIFO queue;

Replace xnew(v) with x(v)
}

}

© R. Rutenbar 2001, CMU 18-760, Fall 2001 38

x(out)=x.0+y.0 x(out)=x.1y.1

Solutions for ExamplesSolutions for Examples
NAND

x.1

y.0

b(out)=0

x.0
x

Vdd

Gnd

x

y

y

out

vdd

out

p
p

gnd

M1 M2

M3

M4

b(vdd)=1

b(p)=0

b(gnd)=0

y.1

x(vdd)=1

x(p)=x.1(x.0+y.0)

x(gnd)=
x.1y.1(x.0+y.0)

x.1

y.0

b(out)=0

x.0

vdd

out

p

gnd

b(vdd)=0

b(p)=0

b(gnd)=1

y.1

x(vdd)=
x.1y.1(x.0+y.0)

x(p)=y.1

x(gnd)=1

v.1 v.0

The boolean equations for the output nodes are what we care about

Page 20

© R. Rutenbar 2001, CMU 18-760, Fall 2001 39

Solutions for ExamplesSolutions for Examples
NAND

x

Vdd

Gnd

x

y

y

out

p

M1 M2

M3

M4

out.1 = v.1 solution for x(out)
out.0 = v.0 solution for x(out), so
out.1=x.0+y.0 out.0 = x.1y.1
Does this make sense? Yes!

1
1
1
1
0
1
1
1
1

out.1
out

111
101
01011
111
101
01001
011
001
01010

out.0y.0y.1x.0x.1
yx 0

anything 1

1
0 1
1
1 0

1
X X

X
0 1

X
Not a 0 X

© R. Rutenbar 2001, CMU 18-760, Fall 2001 40

SolutionsSolutions
Inverter + pass transistors

b(o
ut)=

0

b(q
)=

0
vdd

outp

gnd
a

Vdd

Gnd

x

p out

y

q
M1

M2
M3 M4

q

a.0

b(vdd)=1

b(gnd)=0

a.1

b(o
ut)=

0

b(q
)=

0

b(p
)=

0
vdd

outp

gnd

q

a.0

b(vdd)=0

b(gnd)=1

a.1

v.0

v.1 x.1 y.0

x.1 y.0

x(vdd)=1

b(p
)=

0

x(p)=a.0

x(gnd)=a.0a.1

x(q)=a.0x.1 x(out)=
a.0x.1y.0

x(vdd)=a.1a.0

x(p)=a.1

x(gnd)=1

x(q)=a.1x.1 x(out)=
a.1x.1y.0

Page 21

© R. Rutenbar 2001, CMU 18-760, Fall 2001 41

SolutionsSolutions

Again--does it make sense? No!
out.1 = v.1 solution for x(out)
out.0 = v.0 solution for x(out), so
out.1=a.0 x.1 y.0 out.0 = a.1 x.1 y.0

[a.1 a.0]

[0,1]

[1,0]

[0,1]
=on

[a.0 a.0]
its correct = !a

[1,0]
=on

M1

M2
M3 M4

[a.1 a.0]

[0,1]

[1,0]

[1,0]
=off

[0 0]
huh? This is an
illegal value!

[1,0]
=on

M1

M2
M3 M4

Works OK in
this case, behaves
as expected, it “inverts”

Surprising, illegal
2-bit answer. This is
not supposed to
happen. What did
we do wrong…?

© R. Rutenbar 2001, CMU 18-760, Fall 2001 42

Solving for the Indefinite CaseSolving for the Indefinite Case
We need to explicitly solve for the case where the FETs do not
make definite conducting paths--the indefinite case

Defn: the indefinite value for a MOS gate input [g.0 g1] is:
N FET: this is g.0 (ie, if you only know g.0=on, then can’t really

tell if this N FET conducts)
P FET: this is g.1 (ditto--if only know g.1 is on, can’t tell if this

PFET conducts)

[g.0 g.1]
d

s

[g.0 g.1]
d

s

g.1
s

d
g.0

s

d

Page 22

© R. Rutenbar 2001, CMU 18-760, Fall 2001 43

Solving for the Indefinite CaseSolving for the Indefinite Case
Same solution strategy, but different system setup rules

Rule d-1: edge value A(u,v) is the complement of the indefinite value for
the FET associated with this edge in the diffusion graph

Rule d-2: b(v) value for an internal node is 0. A node is internal if not
connected to an input var, or a power rail

Rule d-3: b(v) value for any rail is 1

Rule d-4: x(v) value for any drain/source -connected input is fixed at 1

Rules are similar, interpretation is more subtle
Set up and solve this system for x(v)

Take the resulting x(v) and complement each one, !x(v)

Update v.1 solution: out.1 = out.1 + !x(out)

Update v.0 solution: out.0 = out.0 + !x(out)

Look at examples again…

© R. Rutenbar 2001, CMU 18-760, Fall 2001 44

Examples: Indefinite SolutionExamples: Indefinite Solution
Inverter + pass transistors

b(o
ut)=

0

b(q
)=

0
vdd

outp

gnd

Vdd

Gnd

x

p out

y

q
M1

M2
M3 M4

q

a.1’

b(vdd)=1

b(gnd)=1

a.0’

Indef

x.0’ y.1’

x(vdd)=1

b(p
)=

0

x(p)=a.1’ + a.0’

x(gnd)=1

x(q)=x.0’(a.0’+a.1’)

(out)=
x.0’y.1’(a.0’ + a.1’)

Careful—even GND
is a 1 in this case, not a 0

Page 23

© R. Rutenbar 2001, CMU 18-760, Fall 2001 45

Examples: Indefinite CaseExamples: Indefinite Case
Mechanics of final solution

How this works
(!Indef) captures the cases where the paths are not defined in the MOS
network, because FETs are not “for sure” conducting, OR their own
gate inputs are in the “X” state

When (!Indef)==1, it means “can’t tell if there’s a path to a 1,0 here”

By ORing (!Indef) into both out.1 and out.0, we force the out value to be
[1 1] in these cases, which is the “X” encoding, which is answer we want

out.1 = v.1 solution for x(out) = a.0 x.1 y.0
out.0 = v.0 solution for x(out) = a.1 x.1 y.0
Indef = “raw” indefinite solution = x.0’ y.1’ (a.0’ + a.1’) ; we must invert
!Indef = useful indefinite solution = x.0 + y.1 + a.1a.0

Complete solution is thus:
out.1 = a.0 x.1 y.0 + x.0 + y.1 + a.1a.0

out.0 = a.1 x.1 y.0 + x.0 + y.1 + a.1a.0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 46

Examples: Indefinite CaseExamples: Indefinite Case
OK, now does it make sense? Yes!

Vdd

Gnd

x

p out

y

q
M1

M2
M3 M4

Complete solution is :
out.1 = a.0 x.1 y.0 + x.0 + y.1 + a.1a.0
out.0 = a.1 x.1 y.0 + x.0 + y.1 + a.1a.0

1
0
1
-
-

a.1
a

0
1
1
-
-

a.0

0
1
1
1
1

out.1
out

1
01001
1----
1-1--
1--1-

out.0y.0y.1x.0x.1
yx

a

Indefinite cases for pass trans,
or impossible input case [0 0]

If input = “X”, then output =“X”

Expected out = !a behavior

Page 24

© R. Rutenbar 2001, CMU 18-760, Fall 2001 47

Examples: Indefinite CaseExamples: Indefinite Case
How about the NAND?

x(out)=x.1’+y.1’ + x.0’y.0’

x.0’

y.1’

b(out)=0

x.1’
x

Vdd

Gnd

x

y

y

out

vdd

out

p
p

gnd

M1 M2

M3

M4

b(vdd)=1

b(p)=0

b(gnd)=1

y.0’

x(vdd)=1

x(p)=x.0’(x.1’+y.1’ + y.0’)

x(gnd)=1

indefinite

Invert
x(out)’=
x.1 y.1(x.0+y.0)

© R. Rutenbar 2001, CMU 18-760, Fall 2001 48

Examples: Indefinite CaseExamples: Indefinite Case
How about the NAND, cont?

x

Vdd

Gnd

x

y

y

out

p

M1 M2

M3

M4

out.1 = v.1 solution for x(out) = x.0 + y.0
out.0 = v.0 solution for x(out) = x.0 y.0
!Indef = useful indefinite solution = x.1 y.1 (x.0 + y.0)

Complete solution is thus:
out.1 = x.0 + y.0 + x.1 y.1 (x.0 + y.0) = x.0 + y.0 (nice)

out.0 = x.1 y.1 + x.1 y.1 (x.0 + y.0) = x.1 y.1 (very nice)

Nice result: no change to solution. There’s no
indefinite paths in this one, it’s a nice (safe) static
CMOS gate, nothing “bad” can happen here.

Page 25

© R. Rutenbar 2001, CMU 18-760, Fall 2001 49

ExamplesExamples
How about this one?

…watch out for diffusion inputs

d

x

out

y

d

outx(d)=d.1
is fixed

b(out)=0
A(d,out)=x.1

A(d,out)=y.0

d outx(d)=d.0
is fixed

b(out)=0
A(d,out)=x.1

A(d,out)=y.0

v.1

v.0

d outx(d)=1
is fixed

b(out)=0
A(d,out)=x.0’

A(d,out)=y.1’

indef

x(out)=d.1(x.1+y.0)

x(out)=d.0(x.1+y.0)

x(out)=x.0’ + y.0’
Invert: x.0 y.1

© R. Rutenbar 2001, CMU 18-760, Fall 2001 50

ExamplesExamples
How about this one?

Works OK, even makes sense--but do watch out for diffusion inputs

x

out

y

d

out.1 = v.1 solution for x(out) = d.1(x.1 + y.0)
out.0 = v.0 solution for x(out) = d.0(x.1 + y.0)
!Indef = useful indefinite solution = x.0 y.1

Complete solution is thus:
out.1 = d.1(x.1 + y.0) + x.0 y.1
out.0 = d.0(x.1 + y.0) + x.0 y.1

“d” input goes
to output if

EITHER x or y
pass tran conducts

But if BOTH x, y pass
transistors are OFF, then
we get the [1 1]=“X” state
at the output

Page 26

© R. Rutenbar 2001, CMU 18-760, Fall 2001 51

So, Where Are We?So, Where Are We?
To analyze a transistor level netlist

Read in netlist

Build channel graph for it

Set and solve, in order: v.1 system, v.0 system, indef system

Construct solution BDD for each output node
Out.1 = v.1 solution + !(indef solution)
Out.0 = v.0 solution + !(indef solution)

Result is a pair of BDDs [Out.0 Out.1] that correctly describe behavior
of the output node, including “X” behavior and “indefinite path” behav

What’s missing here…?
One little thing…

© R. Rutenbar 2001, CMU 18-760, Fall 2001 52

Multiple, Disconnected Channel GraphsMultiple, Disconnected Channel Graphs
Real netlists have many distinct channel-connected regions

You have to analyze each one separately using these solver techniques

Then, you need to “glue” the final solution together, in the right order

x

Vdd

Gnd

x

y

y

q

p

M1 M2

M3

M4

outM5

M3

x
Vdd

Gnd

x

y

y

q

p

M1 M2

M3

M4

outM5

M3

Vdd

Gnd

q

2 channel graphs in here

Page 27

© R. Rutenbar 2001, CMU 18-760, Fall 2001 53

Multiple, Disconnected Channel GraphsMultiple, Disconnected Channel Graphs
Simple strategy

You have to analyze each one separately using these solver techniques

x
Vdd

Gnd

x

y

y

q

p

M1 M2

M3

M4

outM5

M3

Vdd

Gnd

1. Compute Q=[Q.1 Q.0]

Analyze the NAND first.
Build [Q.0 Q.1] solution for
its output node.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 54

Multiple, Disconnected Channel GraphsMultiple, Disconnected Channel Graphs
Simple strategy

You have to analyze each one separately using these solver techniques

x
Vdd

Gnd

x

y

y

q
p

M1 M2

M3

M4

outM5

M3

Vdd

Gnd

2. Compute out=[out.1 out.0]

2. Analyze INVERTER second.
Treat input q as just another
atomic variable.
Build BDDs for [out.1 out.0]

Page 28

© R. Rutenbar 2001, CMU 18-760, Fall 2001 55

Multiple, Disconnected Channel GraphsMultiple, Disconnected Channel Graphs
Simple strategy

Then, you need to “glue” the final solution together, in the right order

x
Vdd

Gnd

x

y

y

q

p

M1 M2

M3

M4

outM5

M3

Vdd

Gnd

Replace input var “q” in the
INVERTER result with BDDs for Q
using composition

Q.1 Q.0 out.1 out.0
BDDs

out.1
q.0

q.1

Q.0

Q.1

out.0
q.0

q.1

Q.0

Q.1

x.1 x.0
y.1 y.0

x.1 x.0
y.1 y.0

x.1 x.0
y.1 y.0

x.1 x.0
y.1 y.0

© R. Rutenbar 2001, CMU 18-760, Fall 2001 56

MechanicsMechanics
You need to read in the netlist

There’s a simple format for transistor netlists

You DO NOT need to identify each individual channel graph
We will provide you with labeling to ID the channel connected parts

But, you need to build a new graph which lets you determine the right order
in which to glue together the results for individual channel graphs

You need to analyze the function of each channel graph
Determine the inputs/outputs. Inputs may be “temp” variables.

Set up and solve the v.1 v.0 & indef systems for each graph

Glue the final answers together
Requires you to visit the channel graphs in the right order, and to
substitute variables in the right order

Page 29

© R. Rutenbar 2001, CMU 18-760, Fall 2001 57

Format: Basic Transistor NetlistFormat: Basic Transistor Netlist
NUMMODS <number_of_transistors>
NUMNETS <number_of_nets>
NUMINPUTPADS <number_of_inputs>
NUMOUTPUTPADS <number_of_outputs>

VDD <VDD_net_num>
GND <GND_net_num>

INPUT <input_1_net_num>
INPUT <input_2_net_num>
...... for all circuit inputs

OUTPUT <output_1_net_num>
... for all circuit outputs

P1 <channel graph ID> <source> <gate> <drain>
P2 <channel graph ID> <source> <gate> <drain>
N1 <channel graph ID> <source> <gate> <drain>
.... for all transistors

END

Some comments on the net numbers
-> If we convert from a gate-level netlist,
(1) ..(VDD-1) are gate-level node numbers
(GND+1) .. (NUMNETS) are the new nodes introduced

© R. Rutenbar 2001, CMU 18-760, Fall 2001 58

Example: Basic Transistor NetlistExample: Basic Transistor Netlist
--- Example File c17.TRAN -----

NUMMODS 24
NUMNETS 19
NUMINPUTPADS 5
NUMOUTPUTPADS 2

VDD 12
GND 13
INPUT 1
INPUT 2
INPUT 3
INPUT 4
INPUT 5
OUTPUT 6
OUTPUT 7
P1 1 12 1 8
N1 1 8 1 14
P2 1 12 3 8
N2 1 14 3 13
P3 2 12 3 9
N3 2 9 3 15
P4 2 12 4 9
N4 2 15 4 13
P5 3 12 2 10
N5 3 10 2 16
P6 3 12 9 10
N6 3 16 9 13

P7 4 12 9 11
N7 4 11 9 17
P8 4 12 5 11
N8 4 17 5 13
P9 5 12 8 6
N9 5 6 8 18
P10 5 12 10 6
N10 5 18 10 13
P11 6 12 10 7
N11 6 7 10 19
P12 6 12 11 7
N12 6 19 11 13
END

Page 30

© R. Rutenbar 2001, CMU 18-760, Fall 2001 59

Format: Basic Gate-Level NetlistFormat: Basic Gate-Level Netlist
Why do we need this?

So you can compare not just transistor netlists, but a transistor netlist
against the gate-level logic netlist its supposed to be implementing…

----------- File Format for .GATE file ------

NUMMODS <number_of_gates>
NUMNETS <number_of_nets>
NUMINPUTPADS <number_of_inputs>
NUMOUTPUTPADS <number_of_outputs>

INPUT <input_1_net_num>
INPUT <input_2_net_num>
..... for all circuit inputs

OUTPUT <output_1_net_num>
.. for all circuit outputs

GATE_TYPE <num_inputs> <input1> <input2> ... <output_node>
... for all gates

END

© R. Rutenbar 2001, CMU 18-760, Fall 2001 60

This is the same circuit (c17) but at gate level
We guarantee that the input and output var numbers are same

Also, any “nodes” in the gate level netlist that still exist in the transistor
level netlist, will also be given same numbers

Example: Basic Gate-Level NetlistExample: Basic Gate-Level Netlist

--------- Example c17.GATE ---------

NUMMODS 6
NUMNETS 11
NUMINPUTPADS 5
NUMOUTPUTPADS 2

INPUT 1
INPUT 2
INPUT 3
INPUT 4
INPUT 5
OUTPUT 6
OUTPUT 7

NAND 2 1 3 8
NAND 2 3 4 9
NAND 2 2 9 10
NAND 2 9 5 11
NAND 2 8 10 6
NAND 2 10 11 7

END

3

1 8

4

9

2
10

6

7

115

3

1 8

4

9

2
10

6

7

115

Page 31

© R. Rutenbar 2001, CMU 18-760, Fall 2001 61

Example: Gate vs CMOS Circuit for c17Example: Gate vs CMOS Circuit for c17
Note it has 6
different channel
graphs to
deal with

Each graph
is numbered
here; this is
the first num
on each FET’s
input line

3

1 8

4
9

2

10

6

7
11

5

8 10

8

10

8 10

8

102 9

2

9

2 9

2

9

9 5

9

5

9 5

9

5

10 11

10

11

10 11

10

11

1 3

1

3

1 3

1

3

3 4

3

4

3 4

3

4

11

22

33

44

55

66

© R. Rutenbar 2001, CMU 18-760, Fall 2001 62

How to Deal with Different Channel GraphsHow to Deal with Different Channel Graphs
We will ID which graph each transistor belongs to, in input file

You need to make a 2nd graph, to tell you in which order to glue
together the results of the boolean analysis of each channel graph

Call this graph the “signal propagation” graph

Building the sig-prop graph
One distinguished vertix called “input”

One distinguished vertex called “output”

One vertex for each channel graph (labled in input deck)

Directed edge from “input” node to any channel graph node that
connects to an external input

Directed edge from any channel graph node to the output node for
every channel graph that connects to an external output

Direct edge from one channel graph node N to another channel graph
node M if a MOS diffusion output from N connects to a MOS gate input
in M

Page 32

© R. Rutenbar 2001, CMU 18-760, Fall 2001 63

Building the Sig-Prop GraphBuilding the Sig-Prop Graph

3

1 8

4
9

2

10

6

7
11

5

8 10

8

10

8 10

8

102 9

2

9

2 9

2

9

9 5

9

5

9 5

9

5

10 11

10

11

10 11

10

11

1 3

1

3

1 3

1

3

3 4

3

4

3 4

3

4

11

22

33

44

55

66

1

2

3

4

5

6

in out

Sig-prop graph

© R. Rutenbar 2001, CMU 18-760, Fall 2001 64

Using the Sig-Prop GraphUsing the Sig-Prop Graph
What do we do with it?

We use it to determine the right order in which to connect the Boolean
equations we have for node outputs to node inputs between diffusion
graphs

But--wait, isn’t the right order for this example 1-2-3-4-5?
Yes, but this one just got numbered in the right order

In general, you CANNOT count on the channel graph ID being the
same as the proper order

How do we order the nodes in the graph properly?
Topological sorting

A nice, simple depth-first search algorithm on the sig-prop graph

Page 33

© R. Rutenbar 2001, CMU 18-760, Fall 2001 65

Topological SortingTopological Sorting
Basic algorithm setup

Every node in sig-prop graph has a flag, initialized = “clear” (untouched)

We also need a global stack to store the nodes, call it S

Recursive algorithm is a variant of depth first search
topsort(sig-prop graph node N) {

mark node N as “first time we have seen it”
for(each node v that is adjacent to node N) {

if (flag(v)==clear)
topsort(v)

mark node N as “touched” (ie, we are done with it)
push node N on global stack S

}

To sort the sig-prop graph, just run topsort(in-node)
Result is nodes in right order, when you POP them off stack S

© R. Rutenbar 2001, CMU 18-760, Fall 2001 66

Topological Sorting ExampleTopological Sorting Example

3

1 8

4
9

2

10

6

7
11

5

8 10

8

10

8 10

8

102 9

2

9

2 9

2

9

9 5

9

5

9 5

9

5

10 11

10

11

10 11

10

11

1 3

1

3

1 3

1

3

3 4

3

4

3 4

3

4

11

22

33

44

55

66

1

2

3

4

5

6

in out

Sig-prop graph

Stack S

out5

Run topsort(in),
stack POPS nodes

in this left-right order,
assuming topsort visits

neighbors top-to-bottom
in our picture

13 62 4in

Page 34

© R. Rutenbar 2001, CMU 18-760, Fall 2001 67

Putting It All TogetherPutting It All Together
Overall algorithm

Read input transistor netlist
build sig-prop graph
topsort(in node)
while (global stack S not empty) {

G = POP stack S
if (G is unique input or output node in sig-prop)

continue
allocate (possible temporary) vars for BDDs for G’s inputs
compute x.0, x.1, x.indef for each vertex in channel graph G
compute final x.0 x.1 solution for each output in channel graph G
for (each MOS gate input “a” in graph G connected to the

output of some other MOS device in the netlist) {
substitute the BDD (equation) already computed for “a” from
a previous channel graph into the BDDs for each output of G

}
}

At this point, you have a BDD for out.1 out.0 for every “real” output of
this transistor level netlist

© R. Rutenbar 2001, CMU 18-760, Fall 2001 68

So, What Do You Actually Do?So, What Do You Actually Do?
Build a program that…

Reads in either:
(1) 2 transistor netlists or
(2) a transistor netlist and a gate netlist

Build the BDD behavior representation of each netlist you read in. Easy
for the gate netlist. A lot more work for the transistors.

Output whether the netlists are the same or not, logically

If not, output something “illuminating”, like some counter example
input values

One final technical trick…
How do we compare transistor and gate-level netlists?

Page 35

© R. Rutenbar 2001, CMU 18-760, Fall 2001 69

Comparing Logic to CMOSComparing Logic to CMOS
Our transistor analysis supports “X”, but we don’t expect you
to do this for the gate-level netlists

So, each CMOS node will have [q.0 q.1] BDDs built for it

But, the SAME node in the gate-level description just gets BDD Q

How to compare

Simple answer: ignore the “X” stuff
Only insist that the “real” 1s and 0s outputs always agree

Ignore the other possibilities, ie, [q.0 q.1] = [0 0] or [1 1]

Logic gates BDD

Transistor
output BDDs What small

logic
function?

Q

q.1

q.0 isEquivalent

It’s just a couple
of gates in here…

© R. Rutenbar 2001, CMU 18-760, Fall 2001 70

For CreditFor Credit
Logistics

You can work in groups of 2 or alone. STRONGLY suggest 2 people

Code
C++ on SUN Solaris or on IBM AIX

You get to use a “real” BDD package, CUDD from U Colorado
Boulder.

See class web page for more info/examples on how to use CUDD

Checking
We will provide a CHECKER program that can tell you if your code is
doing the right thing.

You will have to dump program output in a specified form for the
CHECKER to check.

We will make an executable of CHECKER publicly available

Page 36

© R. Rutenbar 2001, CMU 18-760, Fall 2001 71

For CreditFor Credit
Writeup

Not paper. Web page. You submit it to us via email of the URL.

PLEASE make it portable: we copy the whole directory structure to
our machines to grade it. If you put absolute pathnames, links, it
messes up

Suggestion
Make a directory: <yourname>760Web, eg, bubba760Web
Inside it, put all your html web pages: foo*.html
Inside it, also make 2 directories: 760Stuff and 760Code
Inside 760Stuff, put ALL your graphics and pics and sounds and
explanatory video clips, etc. Inside 760Code, put all your code.
Use only relative link names for internals: ./760Stuff/foo.gif etc
If its on the machine in your dorm room, and it will disappear at
random times--TELL US WHEN.
If we don’t see a web page, you don’t get a grade…

As in all things in 760 (and in life): style counts

© R. Rutenbar 2001, CMU 18-760, Fall 2001 72

For CreditFor Credit
About Writeup--basic pieces

Introduction: summarize the problem

Formulation: you had to make some assumptions, since there are some
degrees of freedom in this project. Explain them. Justify them.

Optimization goals: tell us what you tried to do well.

Implementation: describe any interesting data structures, algorithms,
optimizations, tricks, etc

Results: what did you run, how well did you do?
Explain your results: why did they happen like this

Post mortem: given you could do it over, what would you do different?

Code: put it someplace in the web page (preferably in 760Code dir)

Page 37

© R. Rutenbar 2001, CMU 18-760, Fall 2001 73

For CreditFor Credit
You have to demo, too

Last week of project on a couple days--signup sheets

We will release some new benchmarks during the demo, and ask you to
run 3 of them. They will be small; available in a couple of flavors.

You should print something enlightening

You run the CHECKER, we look over your shoulder and see what it says

Goal: it works, it gives an OK answer.

© R. Rutenbar 2001, CMU 18-760, Fall 2001 74

Points = [120] (But Weighted Big Overall)Points = [120] (But Weighted Big Overall)
Breakdown

[30 pts] Web Writeup: Approach & Implementation

[30 pts] Web Writeup: Results & Analysis

[10 pts] Code: Reasonableness

[30 pts] Demo: Works, Quality, Style, Discussion

[20 pts] Coolness
Results (you created some bigger benchmarks, you ran them
better, your code was faster, your webpage was slicker, etc)
You actually implemented Bryant’s Gaussian Elimination algorithm,
rather than the simpler iterative technique from class
Interesting algorithms (more sophisticated attacks)
Interesting implementation (eg, did it in PERL, but its not slow…)
You have graphical output of the solver process
Etc etc

Page 38

© R. Rutenbar 2001, CMU 18-760, Fall 2001 75

BenchmarksBenchmarks
Will be in /afs/ece/class/ee760/proj2/benchmarks

5 kinds of test cases
Level 0: sanity checks with only one diffusion graph in them.

Simple things like one inverter, 2-input
NAND, etc., labeled clearly, for your debugging

Level 1: sanity checks with multiple diffusion graphs in them.
Simple things like N inverters in a chain, small trees of
NAND gates, etc., labeled clearly, for your debugging

Level 2: small transistor-level netlists. You tell us: what are they?
as logical functions.

Level 3: pairs of transistor-level netlists. You tell us: equivalent or
not? If not, give us one counter-example of input values

Level 4: pairs of netlists, one transistor, one gate-level. You tell us:
equivalent or not? If not, give counter-example input values

Size
Num of transistors or gates: from 2 up to a few thousand.

