
CMU ECE 18-760 Fall01 VLSI CAD Paper Review 3 November 27, 2001 1

CMU ECE 18-760 Fall01 VLSI CAD
Paper Review 3

Out: Tue Nov. 27, 2001. Due: Thu, Dec 13, 2001 in Lyz Knight’s Office

1.0 Intent

At this point in this class, you (should) now know a fair amount about basic physical
design problem: placement, routing, etc. The 3rd paper assignment is about an interesting
router from DEC called Contour.

The intent here is for you to write a short Powerpoint-style review analyzing the paper:

• Jeremy Dion, Louis M. monier, “Contour: A Tile-based Gridless Router,” Digital
Equipment Corp. Western Research Laboratory Technical Report, March 1995.

Your “talk” should not exceed 6 slides, in a reasonable font, including any title slide

Also included just for reference here is the classic paper about tile planes:

• J.K. Ousterhout, “Corner Stitching: A Data Structuring Technique for VLSI Layout
Tools,” IEEE Transactions on CAD, vol. CAD-3, no. 1, January 1984.

You already know that if you can draw a grid on the surface on the layout, you can do a
maze routing algorithm that expands partial paths in least-cost-first order from source to
target, until you find a path. Unfortunately, in modern VLSI design rules, simple grids
don’t work very well. In other words, every wiring layer, via, design rules, etc., is a unique
width, and those widths are no multiples of some “large” fundamental grid. Although you
may still see “lambda” rules in a VLSI class, in the real world, lambda-rules don’t work
anymore.

The response to this has been the development of a class of routers called “gridless” rout-
ers. These things can still behave just like maze routers--they search paths through the
empty spaces in some representation of the layout surface--but they use much more inter-
esting data structures.

2.0 Style Issues

We want you to summarize the paper, analyze what new ideas it is offering, connect it to
other ideas that are already well-understood (in this case, gridded maze routers), and cri-
tique how well the results presented actually measure up to the goals set forth by the
authors.

CMU ECE 18-760 Fall01 VLSI CAD Paper Review 3 November 27, 2001 2

Unlike the first two reviews, this one is actually in the form of a Powerpoint presentation.
You don’t actually have to use Powerpoint--though it is the standard for these sorts of doc-
uments. Anything that let’s you generate a pdf for the talk, and print it, is OK. It is increas-
ingly common for slide-based presentations to be used for short overviews of technical
material for technical audiences (eg., the zillion slides RAR does for 18-760). Making
such a talk is a different thing than writing a paper for review, however:

• Selectivity: you need to be a lot more careful in selecting what material to include. You
just don’t have the space to write thousands of words.

• Illlustration: you need to be more careful where to use a picture, since nobody likes a
talk that is only text slides.

• Writing style: on a slide, you type bullets, not paragraphs. Good bullets are 1-2 lines
long, and don’t need to be in complete sentences. Your organic brain can handle about 6
major points on any slide. Less is fine (add a picture). More is bad (people will lose the
point, and get annoyed).

• Fonts: big is good. Nothing less than 18point is the usual rule. You can’t read it in the
back of a big room if you go much smaller than this. Stay with the sans serif fonts
(Arial on a PC, Helvetica on a Mac) if you don’t actually spend your spare time reading
about graphic design. Usual rule is also never to mix more than 2-3 fonts on a slide
unless you are a professional.

• Colors: fewer is better. Stick with the ones that come with whatever Powerpoint tem-
plate you choose. If you plan to print the slides in black/white to hand them in, look at
how your colors print before you do this: you may be surprised at how different things
look.

• Backgrounds, slide templates: unfortunately, many of the stock Powerpoint templates
are rather ugly. We advise you to pick the simpler ones. If you’re into window shop-
ping, check out www.templatecentral.com -- there is one place where “power users” go
to get ideas for interesting Powerpoint templates.

• When in doubt: look at the 18-760 slides. They basically follow all of these rules (with
a few exceptions...). This is the style we are asking for.

What you actually hand in is the printed version of these slides. Color is nice (if you have
access to a color printer) but it’s not essential if you don’t.

3.0 About Contour

Contour is actually a maze-router, but instead of chopping up the layout into a set of iden-
tically sized square grids each of which can hold one wire, it uses a different representa-
tion. Contour uses tile planes, which represent both the rectangles of the layout layers, as
well as the unoccupied empty spaces, at as a set of “tiles” (think “tiles” like on a bathroom
floor: little rectangles that are all adjacent, but occupy the entire area of the floor).

The big trick in gridless routing is how to handle the design rule checking (DRC) neces-
sary to tell that a wire of a particular width with particular spacing rules can fit in a partic-

CMU ECE 18-760 Fall01 VLSI CAD Paper Review 3 November 27, 2001 3

ular place on the layout. The trick is to “bloat” every object in the layout by 1/2 the
relevant spacing rule plus 1/2 the width of the wire to be routed. Suppose you have a blue
wire that is 12 units wide, and it has spacing rules to other blue rectangles of 6 units, and
spacing rules to green rectangles of 16 units. Then, we “bloat” all blue rectangles by
3+6=9 units on each side, and bloat all green rectangles by 8+6=14 units on each side.
This turns out to be easy to do in a tile plane. The result is a set of shapes--they call them
contours--that represent the boundaries of all places in the layout that are wide enough to
fit this 12-wide wire and still be far enough away.

The Contour paper describes this basic “contour” construction process, and then also how
they actually do expansion on the tiles (which are like the grids in a gridded router, but are
now arbitrarily big rectangles of “white space”, and can now allow multiple paths through
an individual tile). Your goal in this analysis is to figure out how the basic tile contour data
structure works here, and how all the steps you know from vanilla maze routing--expan-
sion, reaching, cost-first search, inconsistent cost function, Rubin-style distance to target
prediction, backtrace, cleanup, etc--get done in the Contour algorithm. You may be sur-
prised: all these things exist in fairly obvious form in the Contour router.

18-760 Spring’01 VLSI CAD Review 3: Contour Gridless Tile-based Router [100 pts]November 27, 2001 4

18-760 Spring’01 VLSI CAD
Review 3: Contour Gridless Tile-based Router [100 pts]

NAME:

What is the Problem? [25 pts]: What is the paper trying to solve? What assumptions are
they making that determine the style of their solution?

Essential Ideas In Solution [25 pts]: How do they actually solve their formulation of the
problem? What are the new ideas they offer? Are there any holes or vague parts?

Experimental Results [25 pts]: What do they do to suggest that their ideas really work?
Are the benchmarks, measured results, etc., convincing? Any holes or suspicious bits?

Slide Style (Yours Slides) [25 pts]: Professional, neat, word-processed, coherent, graphi-
callyclean, etc. Good pictures where they make the point best. Concise organization? Pays
attention to basic rules of slide-making?

Contour: A Tile-based Gridless Router

Jeremy Dion
Louis M. Monier

March, 1995

Abstract

We present an automatic maze router based on a corner-stitching data structure.
The router is gridless and can deal with arbitrary wire width and spacing rules in
any number of layers. It is versatile enough to route dense VLSI chips automati-
cally with results comparable in quality with hand layout.

d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA

ii

1. Introduction

Routing wires in VLSI circuits has been one of the most heavily studied problems in
computer-aided design. Most work has been in constrained sub-problems, such as channel and
switchbox routing, or routing with a limited number of layers, where a simplified model can
yield simpler solutions. In this paper, we describe a router designed for fully automatic connec-
tion of wires in dense custom VLSI circuits. It produces hand-quality layout fast enough to have
been used to connect all the wires in a custom microprocessor chip without manual intervention
[7]. The router is an integral part of a hierarchical VLSI design system [11, 2] in which layout
is assembled recursively from hand-crafted circuits and automatically synthesized cells. This
design style requires an automatic router which can add wires on top of existing wires and logic
on no particular grid, in any wire width, using any number of layers, with results comparable to
hand quality over tens of thousands of wires, and without any manual intervention. We knew of
no available router which could accomplish this.

Routing a cell is done by breaking each net into a spanning tree of pairwise connections be-
tween disconnected terminals. These connections are then ordered by likely difficulty in order to
produce a connection schedule for the cell. The connections are then attempted in order of in-
creasing difficulty. Each connection is completed by finding a design-rule-correct path between
its terminals. If a path can be found, the next connection is attempted. In case of blockage,
previously made connections are removed and re-routed later.

Routers based on the corner-stitched data structure [15, 8] have been explored previously. Ar-
nold and Scott [1] implemented an interactive router using contours to prevent design-rule errors.
Tsai et al [16] described a router using both horizontal and vertical tiling planes for each layer.
Margarino et al [9] combined all layers into a single tiling plane. None of the above solved the
problem of design-rule correct connections of new wires to arbitrary geometry. None have ex-
plicitly represented multiple search paths through a single space tile.

2. Tiles and Contours

Early experiments with gridless maze routers taught us that two facts dominate the problem:
the importance of local geometrical operations and the strong constraint of generating only
design-rule correct geometry.

2.1. Tiling planes

In the discrete geometrical world of VLSI chips, we need to represent hundreds of millions of
rectangles, but the local complexity of any neighborhood is limited. The local nature of
geometrical operations is a direct consequence of the way a search operates: explore the neigh-
borhood of a point in order to direct further searches. As a consequence, it is critical to use a
data structure which implements local operations in a time related to the local complexity, in-
stead of the total complexity. This excludes quad-trees and other sorted structures, and explains
our choice of corner-stitching [15] for the following reasons:

• all local operations are performed in near-constant time.

1

A Tile-based Gridless Router

• both geometry and space are explicitly represented; space rectangles are the basis of
the search structure described in the next section.

• the memory requirements are linear in the number of rectangles represented.

A tiling (or corner-stitching) plane is a type of planar map restricted to orthogonal geometry; it
is a partitioning of the 2D plane into rectangular tiles, with a preferred direction (horizontal or
vertical) along which tiles have maximum length. A tile is a simple object described by its
origin, four corner stitches (pointers towards neighboring tiles in the same plane), and a color;
every point lies in exactly one tile. Once a maximal direction is chosen, the representation of
geometry by a tiling plane is canonical. We represent integrated circuits by a collection of tiling
planes, one per layer. In an early version of this router, we used two planes with different orien-
tations per layer as in [16], but we later found this to be unnecessary. Each tiling plane contains
tiles of two types: solid and clear.

• A solid tile describes actual geometry. Its color encodes the type of material, and
the connected component of a particular net it belongs to. Simple materials like
polysilicon or metals appear only on one layer. Materials for contacts and vias have
related tiles on adjacent layers.

• A clear tile represents space between solid tiles. Instead of having a single space
color, we have several clear shades, each representing transparency to wires less
than a particular width.

2.2. Contours

A gridless router must generate geometry satisfying the design rules. Any added wire must
touch its end points with at least a minimum width, and must stay a minimum spacing away from
any other geometry. This problem manifests itself not only when a new wire is drawn, but also
during the search, since any valid path must define a design-rule correct wire. For example, it is
important to detect quickly that a local search is doomed by the lack of space to accommodate
the width and spacing requirements of the current wire.

Figure 1: Finding a path by assembling space tiles can be expensive

The brute force approach assembles enough space tiles to check the width and spacing re-
quirements. This operation is critical as it is at the core of the search, and the local geometry can
be fragmented enough to make this extremely inefficient, as shown in Figure 1. We ex-
perimented with this approach in an early version of the router and found two fundamental flaws:
the cost of scanning the space tiles repeatedly was prohibitive, and we were unable to eliminate
all design-rule errors.

2

A Tile-based Gridless Router

5 42 2

For width=4
 spacing=3

For width=3
 spacing=1

3 4 31 3 1

centerline wire
1 1

actual wire

Figure 2: Two wire geometries and their contours

Instead, we opted to preprocess the geometry, bloating it by half the space needed for routing
a wire (2⋅spacing+width−1) and transforming the problem into a unit-width centerline routing as
in [1]. This greatly simplified the basic search step and the generation of design-rule correct
geometry. Figure 2 shows two examples of converting a wire width and space into a centerline
wire. The shading around each centerline wire defines a contour which is painted around each
solid object, and guarantees that any centerline wire outside the contour bloated appropriately
satisfies the spacing requirement. Where the total width 2⋅spacing+width is even, as in the
second example in the figure, the bloat is asymmetric; we choose arbitrarily to bloat the right and
top side by one more unit (in this case 5 units) than the bottom and left (4 units).

Figure 3 shows that centerline routing, shown in (b) and (c) on the right column, is strictly
equivalent to routing with real widths and spacings, as shown in (a) and (d) on the left.

The general routing problem, however, is not limited to a single layer and a single set of
design rules: it usually involves routing wires with different width and spacing requirements on
several layers. In order to capture all parameters for one routing problem, one must paint the
contours corresponding to all desired wire geometries. When routing a particular wire, contours
corresponding to smaller or equal design rules are opaque to the centerline, while others are
treated like space.

2.3. Memory requirements

The use of contours cuts down the time spent on the search, at the expense of preprocessing
time and storage for the contours. The explicit representation of space tiles in corner stitching
requires on average one space tile per solid tile, with a worst case of 3⋅n+1 space tiles for n
isolated solid tiles. Painting contours further fractures the space tiles, and increases the storage
requirements. This cost depends on the actual geometry involved. When the solid geometry is
widely spaced, each edge of the solid geometry requires a contour tile, for a worst case of four
contour tiles per solid tile. When the solid geometry is packed at the minimum spacing, painting
contours simply exchanges space tiles for contour tiles, and the overall cost is negligible. An
average routing problem on a VLSI circuit is tightly rather than loosely packed, and becomes
tighter as new wires are added.

As a practical but pessimistic example, consider the first metal layer for a 64-bit floating-point
divider, consisting of 84K solid rectangles, and a family of wires each two units wider than its
predecessor. The storage costs for the contour representation are shown in figure 4. As each
contour is added, some space tiles are replaced by tiles of the new contour but overall, a large
majority of tiles are contours tiles. For example, with 3 contours, each solid tile is associated
with 0.566 space tiles, and 5.678 contour tiles, for a total of 6.244 non-solid tiles.

3

A Tile-based Gridless Router

(a) The original routing problem (b) Painting the contours

(c) Finding a unit-width path(d) Bloating the path to satisfy the design rules

Figure 3: Contour-based routing

contours space/solid contour/solid non-solid/solid
0 0.734 0 0.734
1 0.967 2.269 3.236
2 0.608 4.151 4.759
3 0.566 5.678 6.244
4 0.535 7.119 7.654
5 0.507 8.503 9.010
6 0.457 9.787 10.244

Figure 4: Space and contour tiles per solid tile for increasing
numbers of contours

4

A Tile-based Gridless Router

3. The Routing Algorithm

CONTOUR uses a routing algorithm which is a hybrid between maze routing [12] and line
searching [6]. A single principle underlies this algorithm; postpone arbitrary choices. When
such choices arise, such as "should the connection start with a wire or a via?", or "should we turn
left or right around this obstacle?", all the alternatives are explicitly represented, maintained and
propagated until there is enough information to discriminate between them. During early at-
tempts to implement the router, we did not rigorously adhere to this principle, believing it to be
too complicated or too costly to implement. The result was always a router that would surprise
us by the paths it had chosen for some connections ("Why did it do that?"). Only when we
finally eliminated all arbitrary choices in the algorithm did the router choose exactly the paths a
person would. There are two parts to implementing this principle. First, a path is not a fixed
centerline path propagating in free space from a terminal. Instead, it represents a collection of
topologically equivalent paths which are resolved to a particular centerline path only when a
solution is generated. Second, there may be many paths from a terminal to a particular clear tile.
Each path to the tile represents a topologically distinct way of reaching a part of that tile with
minimum cost.

In this algorithm, the two terminals are treated symmetrically. The router searches outward
from both terminals, and paths starting from each terminal head toward the other. There are
three reasons for this. First, as mentioned in [4, 5], it is faster to search from both ends than from
one end toward the other due to the smaller area covered by a successful search. Second,
blockages are detected quickly, because when a connection fails, it is normally because only one
of the terminals is isolated. If a search started only from the unobstructed terminal, there would
be no easy way to detect that the obstructed terminal could not be reached. Third, finding legal
starting places for a path to leave a terminal is a hard problem. We chose to do this at both ends
of the connection rather than solve the symmetrical problem of legal entry to a terminal from
paths in free space.

3.1. Starting the Search

Postponing arbitrary choice, we start the search with all legal wires and vias. The terminals
need not be simple rectangular pins, and are in general the result of previous routings. Any initial
wire or via must touch the terminal geometry with at least a minimum width, and must not create
a spacing violation with any other geometry. We begin with the case of starting with a via, as
shown in figure 5.

The goal is to place the via inside the terminal geometry on this layer (L1), but in clear space
on the second layer (L2). We copy the geometry for the terminal on L1 which can contain a via
into a temporary tiling plane (metal1 in figure 5), and shrink it by half the width of a via on this
layer (figure 5b). This shrunken geometry defines the centers of vias which lie entirely within
the terminal geometry. Its intersection with via-clear tiles on L2 maps the location of legal vias,
as shown in figure 5c. For each such intersection, we create a path data structure containing the
identity of the clear tile and the intersection, and insert it in the path heap. In the figure, paths
would be created for both T1 and T2. Because a true via occupies only one unit square in one of
these rectangles, each path represents a collection of possible starting vias.

5

A Tile-based Gridless Router

metal1 via contour

(a) Existing terminal geometry.

(b) Metal1 copied and shrunk.

(c) Intersection with clear metal2 tiles T1 and T2.

T1 T2

via centers

metal2 contour

Figure 5: Starting With a Via

This algorithm cannot generate vias which are larger than the terminal geometry. This limita-
tion can be overcome with a more general algorithm related to design rule checking. In modern
VLSI technologies, however, plug or post vias tend to be as small as wires.

a) terminal geometry b) projection of shrunk geometry
 into adjacent clear tiles

C2

C1

C3

C4

C2

C1

C4

C3

T1

T2

S1

S2

Figure 6: Starting With a Wire

We next consider the case of generating initial wires, as shown in figure 6. Here, connecting
terminal geometry to a clear tile on the same layer requires crossing opaque contour tiles without
creating width or spacing errors, in particular notches. The first step is to shrink all terminal
geometry on this layer by half the width of wires, using a temporary tiling plane. In figure 6b,
tiles T1 and T2 produce tiles S1 and S2 in the temporary plane, here shown superimposed on the
original tiles for clarity. Next, for each of these shrunken tiles we explore the neighborhood
within width+space in the original plane, looking for clear tiles which overlap the shrunken tile
in one dimension. In figure 6, the search around S1 will find clear tiles C1, C2, and C3. All such

6

A Tile-based Gridless Router

tiles will be within width/2+space of the terminal geometry. Between each of these tiles Ci and
the shrunken tile Sj, there is an intervening area covered by opaque tiles, and normally forbidden
to wires. But any horizontal strip of height 1 starting in the shaded area of C3 and connecting C3
to T1, for instance, will touch T1 with a full wire width, and will not create a design rule error
with any other part of T1 or T2. These shaded areas in clear tiles abutting opaque tiles around the
terminal define where the opaque tiles may be crossed legally. For each such clear tile, we create
a path data structure containing the identity of the clear tile and the rectangle connecting it to the
terminal geometry. Note that in the example, C1 has two paths created into it, one describing a
horizontal connection to T1, and one a vertical connection to T2.

3.2. Cost Function

It is our belief that the only good cost functions have a physical basis, usually related to the
amount of material needed to complete the connection. We use the A* heuristic [3], where the
cost of a path is the sum of the exact Manhattan distance from the source to the path (source
cost), and a lower bound on the remaining distance to the destination (destination cost). We
modify it by assigning a horizontal and vertical weight to each layer, which is multiplied by
distance travelled on this layer. Weights are used for the different materials and directions in
order to control the style of routing. For example, if one specifies that routing on metal1 has a
cost of 1 in the horizontal direction, and 10 in the vertical direction, and reverses these coef-
ficient for metal2, routing will have a very strong directionality, similar to the results of a chan-
nel router, where even the smallest vertical movement will require a layer change to metal2. If
the differences in relative cost is smaller, however, jogs or doglegs will be preferred to layer
changes for small distances.

3.3. Paths and Path Heaps

At the start of path propagation, we have two path heaps, one for each terminal, seeded with
paths for initial vias and wires. The heaps, or priority queues [14], are used to maintain all paths
in order of increasing cost. The paths stored in the path heaps describe the end points of design-
rule correct paths in clear tiles leading from a terminal to a tile. More precisely, a path is a data
structure containing:

• a tile pointer to the clear tile in which the path ends.

• the source cost of getting to this tile from the starting terminal.

• the minimal cost rectangle in the tile which can be reached for the source cost. This
defines a sort of "equipotential" for source cost; by definition any unit square in the
rectangle can be reached for the source cost recorded in the path. The rectangle may
often be a single unit square, but when it is not as in figure 7, it represents the end
points of a collection of topologically equivalent paths with the same cost.

• the destination cost, a lower bound on the cost with which the path to the destination
can be completed. This is simply the Manhattan distance from the minimal cost rec-
tangle to the bounding box of the other terminal.

• a back pointer to the parent path. By following the chain of back pointers in a path
to previous paths, we can find the sequence of paths - and therefore of clear tiles -
which lead from the current clear tile to the terminal.

7

A Tile-based Gridless Router

• a next pointer to the next path to the same tile. Each clear tile contains a path pointer
to the head of the list of all paths to this tile, linked by the next path pointer. When a
new path is generated, it is added to the path heap, and it is also linked to the chain
for its clear tile.

3.4. Path Propagation

The basic step during maze searching is path propagation, and it continues until either one
path heap is empty or an acceptable solution is found. If one path heap becomes empty with no
solution found, then all the accessible free space around one of the terminals has been explored,
and no solution is possible.

The path heaps are processed alternately during the search, by removing the least cost path
from one heap, and then the other. The path removed from the heap is the one whose sum of
source cost and destination cost is least. The least cost path defines a clear tile which can be
reached from the terminal. To propagate the path, we must find all connected clear tiles on this
and adjacent layers, and generate new paths to them. A path to a neighboring tile on the same
layer corresponds to extending a wire on the layer. A path to a tile on an adjacent layer cor-
responds to changing layers with a via. Following the principle of no arbitrary choices, we
generate all such paths which reach their tiles with minimum source cost. These become the
descendents of the current path, and are inserted into the heap.

p4

p1

p5

p9

p2

p6 p8

p7

p3

p10 p11

T1 T2

T3

T4 T5

T6

OBSTACLE

TERMINAL

path

solid tile

contour tile

Figure 7: Propagating Wires

The case of propagating a wire is shown in figure 7. Paths are represented by their minimal
cost rectangles within their tiles, and the back pointers from paths to the ones that generated
them are represented by arrows. The figure illustrates that a tile in general has many paths to it;
note that T3 has three paths, p2, p5, and p7. Suppose that p6 is the least cost path in its heap. To
propagate p6 from clear tile T4, we examine all tiles around the perimeter of T4. Any clear tile
which shares a border of at least one unit with T4 is eligible - diagonal abutment at corners is
not. Of T4’s bordering tiles, only T6 and T3 are clear. Of these, p6 can generate a minimal-cost
path only to T6 at p11. In the other clear tiles, paths from p6 are longer than paths from other

8

A Tile-based Gridless Router

sources, and they are discarded. Note that two paths survive in T6: p10-p9-p5-p1 and p11-p6-p2.
This is correct; depending on the precise location of the destination geometry, either could be the
better path. Note also that p6 is not a unit square, and so it defines a set of possible paths with
equal cost. Again, depending on the precise geometry of a solution through p6, any one of the
possible unit squares could be the best center for the actual wire.

T1

T2T3

T4

V1

V2

V3

V4

H4
H3

H2

H1

projection
on
vertical
axis

projection on
horizontal axis

Figure 8: Minimal Cost Path Through a Sequence of Tiles

3.5. Finding the Centerline Route

Once a neighboring tile of a path is found, a new path must be generated for it. Figure 8 shows
how the source cost and the minimal-cost rectangle for the new path is computed. The figure
shows a sequence of clear tiles T1 to T4, and the minimal-length centerline path which connects
them. Since the path lies entirely within the sequence of tiles, it would generate a design-rule
correct wire when expanded to full width. The general case of this problem has been explored in
[10].

The centerline path is generated by projecting the general two-dimensional problem onto the
horizontal and vertical axes, as shown below and on the left of the figure. Each tile becomes a
line segment in both projections. For each projection, we solve the one-dimensional problem of
moving a unit line segment from the nearest point in the H4 or V4 to the nearest point of H1 or
V1. This is done by maintaining for each line segment an entry point, and by looking at succeed-
ing segments for the exit point. The exit point is found when a successor segment does not over-
lap the current segment, as for example, when H2 does not overlap H4. The exit point is then
fixed as the point in the current segment nearest the non-overlapping successor. Each intervening
segment is then trimmed to have the entry and exit points as ends. The entry point floats for the
first segment. The exit point floats for the last segment.

This algorithm tries not to move the entry point into a segment until necessary. When the two
one-dimensional solutions are projected back into two dimensions, a centerline path with the
minimal number of bends is generated. The algorithm yields the minimal cost rectangle for the
path directly, and its source cost is the sum of the horizontal and vertical distances weighted by
horizontal and vertical unit costs of this layer.

9

A Tile-based Gridless Router

The case for generating path descendants on adjacent layers involves simple extensions of the
case for a wire. Instead of searching the tiles bordering the clear tile on its own layer, we search
for clear tiles intersecting it on a neighboring layer. Any areas of intersection of clear tiles on the
two layers must be unobstructed on both layers and therefore legal places for the centers of vias.
The centerline path generation algorithm for computing the source cost and minimal cost rec-
tangle illustrated in figure 8 works just as well when the sequence of clear tiles lies on several
layers; some tiles in the sequence will properly intersect, rather than merely abut. The algorithm
must be generalized slightly to move preferentially on the horizontal and vertical line segments
having minimal unit cost.

3.6. Pruning Paths

In the previous section, we indicated that a path is added to a tile only if it has minimal cost.
We now make this notion precise.

p1=10 p3=80
p2=60

a) multiple paths to a tile

b) cost cones (one dimension)

p1

p3

p2

cost

horizontal distance10

60

80

Figure 9: Redundant Paths to a Tile

Figure 9a shows a single tile with three paths to it from the same terminal. Each path is
represented by a rectangle and the cost of reaching any point in that rectangle. Suppose that this
wiring layer has unit cost in both dimensions. We can represent the paths by a cost versus dis-
tance graph as shown in figure 9b. In this figure, each path defines a cone of the cost for which
any point in the tile can be reached. The lowest point in the cone is the source cost of the path;
the interior of the minimal-cost rectangle can be reached for this cost. Points outside the
minimal-cost rectangle can be reached for the additional cost of a wire in this tile. In the figure,
we have drawn only the one-dimensional horizontal projections of these cones for simplicity,
though they are in reality two-dimensional cost functions of x and y. The figure illustrates in one
dimension the principle that we may eliminate any path whose cost cone lies entirely within the
cone of another path. Thus, in the example, p3 is made redundant by p1, but p1 and p2 are not
mutually redundant, since each can reach points in the tile for minimal cost.

10

A Tile-based Gridless Router

3.7. Selecting a Solution

A solution to the maze search is found when a path is added to a tile which already has a path
from the other terminal. When this happens, a connected sequence of clear tiles exists between
the source and destination. The algorithm for finding the minimal-cost centerline path described
above will generate the cheapest path through these tiles, and its ’source cost’ is the actual cost
of the solution.

via into tile
from source

via into tile
from destination

x cost = dx * 1000

y cost = dy * 1

Figure 10: An Unacceptably Expensive Solution

Is the first solution found the best one? Often not, as shown in figure 10 where initial via paths
from both terminals are created in the same tile on a layer with expensive horizontal movement.
The source cost of each via is small, and the estimated cost of completing the paths through these
vias is also small, because the estimate uses best-case costs. But since the direct solution con-
necting these two vias requires horizontal movement on an unfavored layer, it is very expensive.

Even if the first solution is not the best, it gives useful upper bounds on the cost of any further
solutions.

• If all paths in the heaps have a combined source and destination cost larger than the
solution cost, we stop the search since any future solution will be more expensive.
This is an easy test, since heaps are sorted by this combined cost.

• A new path should be added to a heap only if its combined source and destination
cost is less than the current best solution. We may limit the area searched for neigh-
boring tiles by using simple Manhattan distance as a lower bound on the estimated
cost: all paths whose Manhattan distance to the destination is larger than the best
solution cost minus the path source cost are discarded. This defines a Manhattan
ellipse between the path’s minimum-cost rectangle and the destination terminal, as
shown in figure 11.

As further solutions are generated, some may have lesser cost, and we continually retain the
best, further tightening our criterion for stopping the search.

Despite the additional pruning which can be done once the first solution is found, experience
showed that most of the search is done to prove that a very good solution found early on is
indeed optimal. For each solution, we define a cost ratio as the actual cost of the path divided by
the cost of a Manhattan path between the same endpoints on the cheapest layers. The cost ratio

11

A Tile-based Gridless Router

source
terminal

destination
terminal

path of current best solution

clear tile

source path to clear tile

useless
neighbor

useful
neighbor

ellipse of destination paths
which can improve
on current best solution

Figure 11: Manhattan Ellipse of Path Completion

can never be less than 1. By stopping the search when the cost ratio of the current best solution is
below a user-settable threshold (say 1.05), simple connections can be stopped early while
guaranteeing that the solution is within 5% of Manhattan length. This provides a large speed
increase for a limited loss in routing quality.

3.8. Design-Rule Errors in the Solution

The contour structure prevents design-rule errors of new geometry with existing geometry. It
cannot tell us whether a solution will have design rule errors with itself when converted into real
geometry. Width errors are not possible, because a centerline path always bloats into geometry
touching the terminals with legal width. Spacing errors on one layer are also not possible. They
require two parallel edges of the geometry to be separated by less than a minimum spacing. No
legal geometry can lie between these edges, and so they must form part of a U-shaped loop.
Therefore there must be a shorter solution which does not contain the loop, and prolonging the
search will find it. Vias are the remaining source of potential design-rule errors. A simple ex-
ample is a solution requiring a change from first-level to third-level metal. It would be quite easy
to create an illegal spacing between the second-metal images of the first-to-second and second-
to-third vias. These are prevented by special-case code as mentioned in [1].

4. Special Wiring Problems

4.1. Busses

A feature obvious to the eye in VLSI circuits is the regular routing of large data busses con-
sisting of tens or hundreds of wires. Maximum density dictates that when a wide bus is used to
connect different functional units on a chip, the individual wires in it should run in parallel and
that turns and layer changes should be done in a regular and stylized way. On one layer, this
style of routing is known as river routing [13].

We make no special provision for routing of many wires in parallel. Instead, we note that
regular wiring is by definition easy to describe, and we provide a mechanism to add segments of

12

A Tile-based Gridless Router

wire for particular nets during cell placement. Like all placement operations, this is done by
writing code, not by editing layout graphically. By making this relative to edge and corner align-
ments, wiring can be added in a flexible way which will adapt to future layout changes. An
example of such a wiring command might be "add a vertical metal2 bus for dataIn running on the
left of the data path and extending for its full height". Because the individual wires of the bus are
associated with the netlist, the router sees the bus as just another piece of geometry to be con-
nected on each of the nets of the bus. By judiciously inserting wiring in this way during place-
ment, we have found it extremely easy to direct the router to make the obvious right choices
without further assistance.

A second situation requiring regular wiring is busses embedded in data paths, where a track in
each repeated bit pitch is used to carry one bit of a bus over the length of the data path. Here, as
above, it is also possible to lay down explicitly the wire used for the bus in each bit pitch. We
have also used a simple and more flexible strategy with success. Most nets are broken down into
pairwise connections by repeatedly adding the shortest necessary connection in the normal span-
ning tree algorithm. However, busses embedded in data paths are more optimally routed as long
straight tracks running the length of the data path with short spurs to the individual device ter-
minals along the way. This can be easily described by beginning the spanning tree with the con-
nection between the two most distant terminals, rather than the two nearest, and then finishing
the spanning tree normally. The most obvious choice for the router will then be to make the first
connection with a single straight wire between the end points of the bus, and then to add short
stubs for all remaining connections.

When to use these bus routing strategies is at the discretion of the designer, not decided
automatically. Layout is an iterative process of improvement, not perfect first time. The first time
layout is generated for a cell, the result may be an unroutable mess due to lack of regularity. The
simplest strategy is then to select some nets in the cell to be routed with the bus spanning tree
algorithm and try again. This may produce sufficient improvement to route the cell. If not, track
assignment can be done by hand, and segments of wire added by code during placement to leave
no room for error.

4.2. Power Supplies and Clocks

Power supply nets, voltage reference nets, and clock nets provide special problems for a
router, since their primary function is analog, not digital. Voltage, current, capacitance and resis-
tance of these nets are critical issues, and they do not fit the model of a net in which all the
components may be connected by a spanning tree. Power and clock nets are often multiply con-
nected in a grid pattern, for instance. In general, the geometry of these nets must largely be
designed by hand as an integral part of the layout of a VLSI circuit, and automatic routing can be
only help with the details. For power nets, a useful routing primitive is to extend the ends of
power bars of subcells to abut with matching power bars in adjacent subcells, so that when sub-
cells do not abut perfectly along their boundaries, the gaps in the power routing are filled in.

In clock distribution trees, it is important to define the sources and sinks of clock signals at
each level in the tree so as to connect each sink to its source rather than to another nearer sink.

13

A Tile-based Gridless Router

5. Results

CONTOUR is part of a set of tools which has been under development for several years. An
earlier version was used to route BIPS-0, a bipolar processor [7]. The layout generation of this
complete 700,000-device circuit took 10 hours, most of which was spent in routing. This al-
lowed one complete iteration per day. It has also been used for the layout of large sections of
BIPS-1, a 4,000,000-device BiCMOS microprocessor.

Figure 12: BIPS-1 Floating-Point Divider routed with CONTOUR

Figure 13: A synthesized cell; the 4-layer routing added by CONTOUR

The performance of CONTOUR is illustrated in the 64-bit floating-point divider of BIPS-1,
shown in figure 12. The routing is done hierarchically in 118 unique cells, 97 of which are
synthesized gate-level cells like the one shown in figure 13. The wiring added by CONTOUR in
figure 13, shown separately on the right, is on four layers (three metal layers plus polysilicon)
and the routing was done in a few seconds on a DEC 3000/800. Another 21 cells in the divider are
composite cells such as 56-bit registers, carry-lookahead adders, or blocks of control logic.
Routing the 7495 connections of the divider takes 532 seconds on a DEC 3000/800 for an overall
speed of 14 connections per second. Considering all 118 cell routings as a whole, 20% of the
time is spent painting the contours before routing starts, and 80% actually doing the routing. Of
this 80%, 38% of the time is spent generating the initial via and wire positions to start the search,
and 42% of the time is spent in path propagation.

14

A Tile-based Gridless Router

The speed and quality of CONTOUR are based on the combination of contour-based routing and
the avoidance of arbitrary choices in the search algorithm. We believe that this approach is more
effective than the restrictive channel model requiring an artificial partitioning of chip area, and
we see no reason to restrict routing to two or three layers at a time. In our design style,
CONTOUR is the only router for gate-level synthesized cells, data paths, random logic blocks and
global assembly; the conventional use of different algorithms at these levels seems a historical
accident. We also see no reason why CONTOUR’S algorithms and data structures cannot be
adapted in a straightforward way to gate arrays, printed circuit boards, and other routing
problems in electronic design.

th[1] M.H. Arnold , W.S. Scott. An Interactive Maze Router with Hints. In 25 Design
Automation Conference, pages 672-676. June, 1988.

[2] Jeremy Dion, Louis Monier. Design Tools for BIPS-0. WRL Technical Note 32, Digital
Equipment Western Research Laboratory, December, 1992.

st[3] G.W. Clow. A Global Routing Algorithm for General Cells. In 21 Design Automation
Conference, pages 45-51. June, 1984.

th[4] J. Dion. Fast Printed Circuit Board Routing. In 24 Design Automation Conference.
June, 1987.

[5] J. Dion. Fast Printed Circuit Board Routing. WRL Research Report 88/1, Digital
Equipment Western Research Laboratory, 1988.

[6] Hightower D. A Solution to Line Routing Problems on the Continuous Plane. Proc.
Design Automation Workshop :1-24, 1969.

[7] N.P. Jouppi, P. Boyle, J. Dion, M.J. Doherty, A. Eustace, R.W. Haddad, R. Mayo,
S. Menon, L.M. Monier, D. Stark, S. Turrini, J.L. Yang, W.R. Hamburgen, J.S. Fitch,

R. Kao. A 300-MHz 115-W 32-b Bipolar ECL Microprocessor. In IEEE Journal of Solid-State
Circuits. November, 1993.

[8] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G.S. Taylor. The Magic VLSI
Layout System. IEEE Design and Test of Computers 2(1):19-30, February, 1985.

[9] A. Margarino, A. Romano, A. De Gloria, F. Curatelli, P. Antognetti. A Tile-Expansion
Router. IEEE Transactions on Computer-Aided Design CAD-6(4):507-517, July, 1987.

[10] K.M. McDonald, J.G. Peters. Smallest Paths in Simple Rectilinear Polygons. IEEE
Transactions on Computer-Aided Design 11(7):864-875, July, 1992.

th[11] L.M. Monier, J. Dion. Recursive Layout Generation. In Proc. 16 Conference on Ad-
vanced Research in VLSI, pages 172-184. IEEE Computer Society Press, March, 1995.

[12] Moore E.F. Shortest Path Through a Maze. In Annals of the Computation Laboratory of
Harvard University, pages 285-292. Harvard Univ. Press, Cambridge Mass., 1959.

[13] R.Y. Pinter. River routing: methodology and analysis. In 3rd Caltech conference on
VLSI, pages 141-163. March, 1983.

[14] R. E. Tarjan. Data Structures and Network Algorithms. CMBS-Regional Conference
Series, Volume 44, 1983.

15

A Tile-based Gridless Router

[15] J.K. Ousterhout. Corner Stitching: A Data Structuring Technique for VLSI Layout
Tools. IEEE Transactions on Computer-Aided Design CAD-3(1):87-89, January, 1984.

[16] Chia-Chun Tsai, Sao-Jie Chen, Wu-Shiung Feng. An H-V Alternating Router. IEEE
Transactions on Computer-Aided Design 11(8):976-991, August, 1992.

16

