
Page 1

© R. Rutenbar, CMU 18-760, Fall99 1

(Project3) Timing-Driven Floorplanning(Project3) Timing-Driven Floorplanning

n Input
u A netlist of malleable rectangular blocks, nets connecting them, and

“timing arcs” for block delay

n Output
u A placed floorplan for the blocks, and information about overall area,

netlength, critical path timing

n Strategy
u Combine annealing placement ideas with static timing ideas

n Logistics
u You can work in groups of 2

u No paper writeup: web-page required

u Demo to TAs also required

n Due: last week of class

© R. Rutenbar, CMU 18-760, Fall99 2

Copyright NoticeCopyright Notice

© Rob A. Rutenbar 1999
All rights reserved.
You may not make copies of this
material in any form without my
express permission.

Page 2

© R. Rutenbar, CMU 18-760, Fall99 3

About FloorplanningAbout Floorplanning

n Floorplanning is placement of “complex” blocks
u In general, arbitrary shaped blocks, and flexible blocks

u Flexible = you don’t know the final shape of the blocks

u Example: a block that will be ~ 120,000 gates can get laid out in many
different shapes when you actually place/route std cell gates in rows

120k
gates 120k

gates

120k
gates

or… or… or…

© R. Rutenbar, CMU 18-760, Fall99 4

Our Block Model for FloorplansOur Block Model for Floorplans

n Simple rectangles, but with variable shape
u Blocks numbered consecutively: 1,2,3, … ,B

u Blocks have a finite number (eg, a few) alternative shapes

u Each shape is a rectangle

Input file:
Block id #shapes x1 y1 x2 y2 … xn yn

…
block 7 3 10 10 8 12 15 7
… Block 7

X=10
Y=10

Block 7
X=8
Y=12

Block 7
X=15
Y=7

Block #7 has
3 rectangular
shapes, shown

at right

Page 3

© R. Rutenbar, CMU 18-760, Fall99 5

Our Block Model for FloorplansOur Block Model for Floorplans

n Blocks have pin sites at which nets connect
u Pin sites are an abstraction of the real locations of the pins--a

simplification to a small set of fixed “sites”

u Pins are always at the 8 compass points: n, s, e, w, ne, se, nw, sw

u We name pins and refer to them in the netlist input file using these
1char & 2char lower case names

Block 7
X=10
Y=10

Block 7
X=8
Y=12

Block 7
X=15
Y=7

n nenw

w

sw s se

e

This pin is referred to as the pair <blockID, pintype>
which is “7 se” for this pin, in the input file

© R. Rutenbar, CMU 18-760, Fall99 6

Our Block Model for FloorplansOur Block Model for Floorplans

n Blocks can be placed anywhere on chip
u Blocks have integer width (x) and height (x) for all shapes

u Chip itself is an integer grid: blocks can be placed anywhere on grid

u Blocks can be rotated in increments of 90 degrees: we name the
rotations: 0, 90, 180, 270

u Blocks CANNOT be reflected (about x or y axes)

w This just makes life a little simpler….

n Specifying a block in a layout: location & rotation & shape
u To specify the location of a placed block, we use the CENTER coords of

the block (note, they will be ints, or int+1/2, write them out as floats

u To specify rotation of a placed block, we use one of {0, 90, 180, 270}, ie,
write this out as an int

u To specify the of a placed block, we use the order in which shapes were
listed in input netlist: 1, 2, 3, … A block with 1 fixed shape gets a “1”

Page 4

© R. Rutenbar, CMU 18-760, Fall99 7

Our Block Model for FloorplansOur Block Model for Floorplans

n Example:
u Assume this block has just one shape

u This block placed at constant center, but all in 4 different orientations

Block 3
X=8,Y=12

R

B
lo

ck 3
X

=
8,Y

=
12

R

Block 3
X=8,Y=12

R

B
lo

ck
 3

X
=

8,
Y

=
12

Rcy

cx
Block is:

(cx,cy,0,1)

cx
Block is:

(cx,cy,90,1)

cx
Block is:

(cx,cy,180,1)

cx
Block is:

(cx,cy,270,1)

cy cy cy

© R. Rutenbar, CMU 18-760, Fall99 8

Our Block Model for FloorplansOur Block Model for Floorplans

n How does pin naming work for rotations?
u Pins rotate too: you have to remember to figure out where the pin

ends up (pinX, pinY) when block rotates

u This block placed at constant center, but all in 4 different orientations

Block 3
X=8,Y=12

R

B
lo

ck 3
X

=
8,Y

=
12

R

Block 3
X=8,Y=12

R

B
lo

ck
 3

X
=

8,
Y

=
12

R

90 180 270n

n

n

n

Here is north pin

Now north is here

Now north is here

Now north is here

Page 5

© R. Rutenbar, CMU 18-760, Fall99 9

Our Block Model for FloorplansOur Block Model for Floorplans

n What if there are more shapes?

Block 7
X=10
Y=10

B
lock 7
X

=
8

Y
=

12 Block 7
X=15
Y=7

Block is:
(cx,cy,0,1)

Block is:
(cx,cy,90,2)

Block is:
(cx,cy,180,3)

Shape 1 Shape 2 Shape 3

…
block 7 3 10 10 8 12 15 7
…

3 different shapes for block 7

90 180

© R. Rutenbar, CMU 18-760, Fall99 10

Our Block Model for FloorplansOur Block Model for Floorplans

n Implementation hint: rotations
u Make a table for each block, for each shape

u Entries for each of the 4 rotations: 0, 90, 180, 270

u Save the ∆∆X and ∆∆ Y values you need to add to the (centerX,centerY)
location of the block to compute location of pin

u These (∆∆X , ∆∆ Y) values are constant, independent of the block location,
only depending on the block, the shape of the block.

u This saves you the grief of computing these every time a block move;
you only do it once, at start of the program

Page 6

© R. Rutenbar, CMU 18-760, Fall99 11

Our Chip Model for FloorplansOur Chip Model for Floorplans

n Example:
u Chip itself is an integer grid, blocks can go anywhere

u Question we deal with later: so, how big is the chip? We don’t know
yet, since we don’t have the floorplan…

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R
Block 3

X=8,Y=12

R

Block 3
X=8,Y=12

R

B
lock 3

X
=8,Y

=12

R B
lock 3

X
=8,Y

=12

R

© R. Rutenbar, CMU 18-760, Fall99 12

Our Chip Model for FloorplansOur Chip Model for Floorplans

n The “chip” itself is treated as a “special” block -- block 0
u It has flexible shape--we don’t know what it is until we are done with the

floorplan.

u It has pins just like an ordinary block: n, s, e, w, ne, se, nw, sw

u It is defined to be the min bounding box of all placed blocks

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Chip == ??

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Chip area =
min bounding box

of whole placement

Chip referred to
as ‘Block 0’, it has

8 pins like any block

For example
this pin is
“0 e”

Page 7

© R. Rutenbar, CMU 18-760, Fall99 13

Our Chip Model for Floorplans Our Chip Model for Floorplans

n What is the coordinate system?
u Origin for chip is at lower left; all (x,y) coord positive numbers

u All placed objects specified by their center coords in this frame

u Center coords will be ints or 1/2 ints, eg (45, 64), (45.5, 52), (57.5, 88)…

u But you only have to print this out at the end of the placement; while its
evolving, you will probably want to use a different coord system; more
later on this

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

(x=0, y=0)

(maxX, maxY)

(x3,y3)
(x2,y2)

(x1,y1)

© R. Rutenbar, CMU 18-760, Fall99 14

Our Net Model for FloorplansOur Net Model for Floorplans

n A net is just a set of 2 or more pins
u

u blockID pinSide”; pins on whole chip are “0 pinSide”

u First pin listed is the driver (eg, gate output), next ones listed are inputs

w You need to know this direction stuff for timing

Input file:
Net id #pins block pin …. block pin

…
net 6 3 3 se 2 sw 1 n
…

Net #6 has
3 pins on the
blocks, shown

at right

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Page 8

© R. Rutenbar, CMU 18-760, Fall99 15

Our Net Model for FloorplansOur Net Model for Floorplans

n Examples

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Simple 2 pt net:
net i 2 3 e 2 w

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Another 2 pt net:
Nets can have all their

pins on one (real) block:
net i 2 3 ne 3 e

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

A 5 pt net:
This one goes to a chip pin
and to 4 other block pins;
chip outline drawn bigger

here for clarity:
net i 5 0 n 3 n 3 ne 1 nw s sw

© R. Rutenbar, CMU 18-760, Fall99 16

Our Net Model for FloorplansOur Net Model for Floorplans

n What do we care about for the nets?
u Length: we want a placement of blocks to make them short

u Timing: we will also have a detailing timing model, so we can work
directly on the critical path itself

n Netlength model
u Simple: 1/2 perimeter metric for each net

u Total netlength = add them all up = ΣΣ (all nets i) (net length i)

u Pins are modeled as a single dimensionless point: a pair of ints

u Find leftX, rightX, topY, bottomY for all pins on your net #i

u 1/2 perimeter length metric is just: | rightX - leftX | + |topY - bottomY|

Page 9

© R. Rutenbar, CMU 18-760, Fall99 17

Our Net Model for FloorplansOur Net Model for Floorplans

n Net length examples

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Length for this 2pt
net is box ∆∆ X + ∆∆ Y

Length for this 2pt
net is also box ∆∆ X + ∆∆ Y,
But = 0 + ∆∆ Y in this case

Length for this 5pt
net is also box ∆∆ X + ∆∆ Y.
It’s a much bigger box now,
And remember that the
chip pin is on the top,
at X center, Y top coord
of the layout bounding box

© R. Rutenbar, CMU 18-760, Fall99 18

Floorplan Goals: SimplifiedFloorplan Goals: Simplified

n So, what do we want the floorplanner tool to do?

n Let’s first ignore the timing issues

n Goals
u Place all blocks: determine (Xcenter, Ycenter, rotation, shape) for each

u Pick good shape for each block from among variants listed in netlist

u Make placement legal (ie, blocks do not overlap)

u Make chip area small

u Make total netlength small

n How?
u There is nice, fairly simple annealing formulation for this

Page 10

© R. Rutenbar, CMU 18-760, Fall99 19

Floorplanning by AnnealingFloorplanning by Annealing

n One cute idea
u Treat this like “ordinary” placement we did in lecture, where annealing

relocates the blocks, and minimizes wirelength

u But, big problem: these are not like checkers on a checker-board, there
are no grid-slots to ensure these complex shapes pack right.

u What happens if the blocks overlap?

n Big idea: let them overlap

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R
Block 1

X=17
Y=7

Block 1
X=17
Y=7

Block 2
X=7

Y=12

Block 2
X=7

Y=12

One annealing
move relocates
block 2 as shown

© R. Rutenbar, CMU 18-760, Fall99 20

Annealing FormulationAnnealing Formulation

n Allow overlaps, but use cost function to discourage them

n In any cost function C = ΣΣ i Ci, 2 distinct kinds of terms Ci
u Objectives:

w You don’t know the right final answer, but you know you want to
make this term small

w Example: area of layout

u Constraints

w You DO know the right final answer, so you construct the term Ci
to penalize the wrong answer

w This is called: doing optimization with penalty functions

w Example: overlap among blocks. You know bad==positive num.
You know overlap is never negative. You know good==0 overlap.
So, you construct Ci = overlap in such a way as to heavily favor the
no-overlap solution you want

w It’s a delicate business to do this right…

Page 11

© R. Rutenbar, CMU 18-760, Fall99 21

Annealing FormulationAnnealing Formulation

n Suggested cost function
u Wa, Wn, Wo empirically chosen weights to balance terms in cost

Cost = Wa *[Area] + Wn*[Netlength] + Wo*[ΣΣ i != j overlap(blocks i, j)2]

uWhy it works: makes area and netlength small, makes overlap -> 0

Objective:
Make area of

whole chip
(block #0)

=small

Objective:
Make

ΣΣ netlen’s
=small

Constraint as penalty function:
Compute and sum up all pairwise
squared-overlaps between blocks.

This “squaring&summing” is
the penalty “function”.

The “best” value we can get
for this individual term = 0.

© R. Rutenbar, CMU 18-760, Fall99 22

Overlap Penalty FunctionOverlap Penalty Function

n Simple idea: Calculate each pairwise overlap, square it, sum

1
2

3

No overlaps

Penalty==0

1
2

3

1 overlap:
Overlap(1,2)=0
Overlap(1,3)=0
Overlap(2,3)2=box 2

Add them up

1 2
3

3 overlaps
Overlap(1,2)2 =box2

Overlap(1,3)2 =box2

Overlap(2,3)2 =box2

Add them up

Page 12

© R. Rutenbar, CMU 18-760, Fall99 23

Overlap Penalty FunctionOverlap Penalty Function

n Why “square it”?
u Annealing folklore: if you have a cost term and you really want to drive

it to 0, squaring it makes it “hurt more” in the cost function (esp small
overlap terms)

u So, it “sticks out” in the cost, and the annealer works to minimize it

ΣΣoverlaps

Penalty
term

0

Penalty = [ΣΣ overlaps]

Penalty = [ΣΣ overlaps 2]

© R. Rutenbar, CMU 18-760, Fall99 24

Basic Annealing FormulationBasic Annealing Formulation

n Remember: all annealers have 4 parts

n State: what is the representation of floorplan?
u Just (centerX, centerY, rotation, shape) for all B blocks

u Overlaps are allowed

n Cost: what do want to minimize to measure goodness?
u Cost = Wa *[Area] + Wn*[Netlength] + Wo*[ΣΣ i != j overlap(blocks i, j)2]

n Moves: how do we perturb the floorplan?
u Pick random block, relocate it to new (centerX, centerY)

u Pick random block, reshape, from shape #i to shape #k; same centers

u Pick random block, rotate it, from rotation R to rotation R’

u Pick 2 random blocks, swap their center locations

u …others are possible, but this is a minimal OK set

n Cooling schedule: how we control hill climbing?
u Vanilla stuff from lecture notes and sample code is fine

Page 13

© R. Rutenbar, CMU 18-760, Fall99 25

Basic Annealing FormulationBasic Annealing Formulation

n Example moves

1 2
3

1 2

3 3

1

2
3

2

1

2
3

1

2
3

2

1
2

3

etc

After relocate 3 After relocate 2 After rotate 1

After relocate 2 After swap 1,2

© R. Rutenbar, CMU 18-760, Fall99 26

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n About the coordinate system
u This formulation works best if you give the floorplan a lot of “space” to

evolve in, a space much bigger than the final layout

u Make a box that has area ~2X bigger than ΣΣ (block areas)

u Conventionally called the playing field; lower-left corner is (0,0)

u Use (centerX, centerY, rotate, shape) coords on playing field for blocks

u …ie, blocks will fly around, find good topology, then squish down

u Where the final layout ends up is random, but overall packing should be
good; at end, print out “normalized” Block #0 coords for all blocks

1 2

3
4

Playing field

1
2

3
4

Playing field

12
34

Playing field
At end,
this is
(0,0) for
block #0
coords

. . .

(0,0)

Page 14

© R. Rutenbar, CMU 18-760, Fall99 27

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n Cost function
u It’s going to hurt (CPU time) if you re-evaluate every net length after

every move, and every overlap after move

u This IS the easiest way to get started to get functionaly, but slowest
code will result

n Tricks
u Only re-calculate the length of the nets that are attached to blocks that

move. Store with each net it’s “current” length, so you can subtract out
the “old” ΣΣ netlens, and add in “new” ΣΣ netlens quickly for a move

u It’s OK to do compare each block against other blocks for overlap
(don’t double count though); slow but easy to code

u Ask RAR for tricks on how to do the block-block overlap faster…

© R. Rutenbar, CMU 18-760, Fall99 28

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n How do you compute overlap of 2 boxes?
u Fast hacks: see any good computer graphics book (Foley & Van

Damm), look up “outcodes”; these guys know tricks to do it FAST

u Vanilla way:

w a, b, c are rectangle objects, with data items:

llx (lower left x), lly (lower left y),
urx (upper right x), ury (upper right y)

w Overlap(a, b, c) does a = intersect(b, c), computes area of a

Overlap(b,c) {
rectangle a;
// try to build a = overlap rectangle itself
a.llx = Max(b.llx, c.llx);
a.urx = Min(b.urx, c.urx);
a.lly = Max(b.lly, c.lly);
a.ury = Min(b.ury, c.ury);

if((a.llx > a.urx) || (a.lly > a.ury)) {
// they don’t really overlap

return (0);
}
else return ((a.urx - a.llx) * (a.ury - a.lly))

}

(urx,ury)

(llx,lly)

Page 15

© R. Rutenbar, CMU 18-760, Fall99 29

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n How do I know what random move to pick?
u Implement so you can easily pick, up front, fraction Fi of total moves

that will go to moves of type-i

u Suppose we have these moves:

w Relocate block

w Swap 2 blocks

w Rotate block

w Reshape block

u We want 4 fractions Freloc, Fswap, Frot, Fshape that sum to =1

u We want to guarantee that if we do N moves at this temp, that:

w ~ N* Freloc block relocations get tried

w ~ N* Fswap block swaps get tried

w ~ N* Frot block rotates get tried

w ~ N* Fshape block reshapes get tried

© R. Rutenbar, CMU 18-760, Fall99 30

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n Easy trick
u Suppose you want: Freloc =50% Fswap =20% Frot =30% Fshape =20%

u Make an array with 100 entries

u In the first 50 entries, put a marker that says “do relocate”

u In next 20 entries, put a marker for “do swap”

u Ditto remaining entries: next 30 = “do rotate”, last 20 = “do s

0
1
2

R

99

Generate random
num R uniform

on [0,1]
R = (int)floor(100.0*R)

Use R
as index
into this
array

Do whatever move
you marked in
this R’th slot;
Probabilities
guaranteed to be
approx. right

Page 16

© R. Rutenbar, CMU 18-760, Fall99 31

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n Think about range limiting: it helps speed/quality a lot
u Try not to propose moves that have a high probability of being rejected,

because they perturb layout too much

u Easiest one to do: shrink the max DISTANCE you are willing to try to
do a relocate or a swap as the temp T gets colder

u You need some normalization hints or this is hard--have to tweak for
each problem

n Normalization
u It is mechanically easier to make this distance a function of accept rate

(= #accepted moves / #tried moves at this temperature)

w Reason: accept rate ALWAYS starts ~1, goes to ~0

w Temperature will vary widely with different problems

u It is mechanically easier to make this distance itself a fraction of the size
of the max distance across the playing field

© R. Rutenbar, CMU 18-760, Fall99 32

Restrict max
allowed dist
as we cool

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n Range limiting
u Example: with normalization, you can set this once and forget about it

Accept rate

Max distance
for relocate

and swap
= fraction of
playing field

dimension

0 1

1.0

0
0.3

0.2

0.8

When it’s hot,
all moves are OK

When it’s cold,
don’t try any move
bigger than this

Note: 0.2, 0.3, 0.8
are empirical tuning
numbers here.

Page 17

© R. Rutenbar, CMU 18-760, Fall99 33

Basic Floorplanning: Implementation HintsBasic Floorplanning: Implementation Hints

n Range limiting: gotchas
u If you don’t do it: your annealer is WAY slow, since you need to do a

zillion moves to get a decent answer

u If you do it, but you don’t range limit “hard” enough: annealer still
slow, still do a lot of dumb moves

u If you do it, but range limit too fast, too “tight”: annealer is fast but
answers are always lousy, since you are precluding moves you really
wanted to do

u Need to do some empirical tuning on the shape of the range limiting
function on previous slide

© R. Rutenbar, CMU 18-760, Fall99 34

Floorplanning -> TimingFloorplanning -> Timing

n Project goals
u First goal is to be able to get a decent floorplan:

w Packed, small area, small wirelength, no overlap

w (or, not much overlap--hard to make it 0 without more fancy stuff)

u Next goal: good timing

n We also have a timing model
u Each block has a timing model: timing arcs

u Each net has a timing model: length-based delay

u You get to build, maintain, update timing graph

u As placement evolves, blocks move, so nets change, so net delay
changes, so critical path changes, so timing changes

u You get to track all this…

Page 18

© R. Rutenbar, CMU 18-760, Fall99 35

Our Timing Model for FloorplanningOur Timing Model for Floorplanning

n Big assumption: simple, edge-triggered, synchronous clock
u Every block, internally, looks like this

u 2 sources of delay: thru logic inside a block, thru wires that connect blocks

logic logic

la
tc

h

clock

logic
logicla

tc
h

clock

logic logic

la
tc

h

clock

wire

© R. Rutenbar, CMU 18-760, Fall99 36

Our Timing Model for FloorplanningOur Timing Model for Floorplanning

n 4 components of timing model

n Delays thru a block
u Pin to pin delay

u Pin to clock delay

u Clock to pin delay

n Delays thru a net that connects blocks
u Length-based delay for a net

n Delay thru a net that connects to a chip pin
u Length-based clock to pin delay (input pin)

u Length-based pin to clock delay (output pin)

Page 19

© R. Rutenbar, CMU 18-760, Fall99 37

Delays Thru a BlockDelays Thru a Block

n How fast can the chip go?
u Depends on maximum delay from latch to latch

u If we ignore wire delay (for now), where do these delays come from?

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

logic
logicla

tc
h

clock

A
clock-to-pin

delay

A
pin-to-pin

delay

A
pin-to-pin

delay

A
pin-to-clock

delay

© R. Rutenbar, CMU 18-760, Fall99 38

Delays Thru a BlockDelays Thru a Block

n How do we model these 3 delays
u Pretend the “latch” is like a pin; call it the “clock” pin

u We give a delay edge from a pin to a pin (clock counts here)

u Edge gives direction (which way signal goes) and delay number

u Standard name for these: timing arcs

logic
logicla
tc

h

clock

clock
5

11 7

19

Timing
model

Each arc always has one “from” pin,
one “to” pin, and a delay number.

Arcs legal between any pair of pins,
including the “clock” pin, inside a block

Note:
“5” is pin-to-pin
“11” is pin-to-clock
“19”, “7” are clock-to-pin

Page 20

© R. Rutenbar, CMU 18-760, Fall99 39

Delays Thru a BlockDelays Thru a Block

n Specifying these in input file
u We give all arcs with each block

u We number arcs globally, consecutively, across all blocks: 1, 2, … T

u Shape doesn’t affect timing arcs in our model: constant per block

u Format: arc arcID fromPin toPin delay

Input file:
…
block 7 3 10 10 8 12 15 7
timing 4
arc 21 n w 5
arc 22 sw c 11
arc 23 c se 7
arc 24 c ne 19
block 8 …..
timing ….
arc …

Block #7 has 4 arcs:
#21, #22, #23, #24,
and there is one line
per arc in input file

clock
5

11 7

19

n nenw

w

sw s se

e

© R. Rutenbar, CMU 18-760, Fall99 40

Delays Thru a WireDelays Thru a Wire

n Longer wires have longer delay
u How do we model this?

u Crudest possible model: delay = 1/2 perimeter wire length

u (This is a lousy model in reality--but we want to keep it simple here)

u Note that which pin is driver, which are receives matters for timing

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Delay = L

Page 21

© R. Rutenbar, CMU 18-760, Fall99 41

Delays Thru a WireDelays Thru a Wire

n Multipoint nets…?
u How do we model this? As multiple timing arcs from driver to receivers

u Which pin is driver, which are receives matters for timing

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L
Delay = L for all 3 arcs

4 point net,
driver at left Timing model has

4-1 = 3 arcs

© R. Rutenbar, CMU 18-760, Fall99 42

Delay Thru Wires to Chip PinsDelay Thru Wires to Chip Pins

n New problem: how to model wires to chip IOs?
u Question is: where is the “clock” for these external signals

u Turns out there is a standard assumption: external signals use same clk

u Model it explicitly

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Chip to pin wire

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Delay = L

Timing model:
Pretend this chip pin
is a “clock” pin, so this is
like a block clock-to-pin delay

c

Page 22

© R. Rutenbar, CMU 18-760, Fall99 43

Delay Thru Wires to Chip PinsDelay Thru Wires to Chip Pins

n Ditto for block-pin to chip

n Note: to make life easy, these nets are always 2 point nets

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Netlen = L

Chip to pin wire

Block 3
X=8,Y=12

R

Block 3
X=8,Y=12

R

Block 2
X=7

Y=12

Block 2
X=7

Y=12

Block 1
X=17
Y=7

Block 1
X=17
Y=7

Delay = L

Timing model:
Pretend again this chip pin
is a “clock” pin, so this is
like a block pin-to-clock delay

c

© R. Rutenbar, CMU 18-760, Fall99 44

Handling Critical PathsHandling Critical Paths

n Why are we doing this? We want to track critical path
u We can use delays thru a block + delays thru wires to build timing graph

u Consider a simple example with all arcs shown

5
9

62

11
len4

len3

le
n2

len1 2 chip pins
5 internal block timing arcs (dotted)
4 nets (solid)

2 are pin-to-pin
1 is chip-to-pin
1 is pin-to-chip

c

c

c

Page 23

© R. Rutenbar, CMU 18-760, Fall99 45

Handling Critical PathsHandling Critical Paths

n We want to build the timing graph (from next lecture…)
u It’s actually mechanical: for this timing model, has a simple structure

src

Nodes for each
block pin connected

to a net

Edges for each net,
and for each

timing arc

snk

One distinguished “start” node, called “source”

One distinguished “end” node, called “sink”

A lot of nodes and edges,
but we are guaranteed the overall
graph is a DAG -- no cycles

© R. Rutenbar, CMU 18-760, Fall99 46

Handling Critical PathsHandling Critical Paths

n Step 1. Build all the nodes in graph
u One per block pin that is connected to a net

u (no clocks now)

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

Page 24

© R. Rutenbar, CMU 18-760, Fall99 47

Handling Critical PathsHandling Critical Paths

n Step 2. Clock-to-pin edges
u For every timing arc FROM a clock node TO a block pin, add an edge in

graph FROM source TO correct pin node

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11

© R. Rutenbar, CMU 18-760, Fall99 48

Handling Critical PathsHandling Critical Paths

n Step 3. Chip-to-pin edges
u For every net FROM a chip pin TO a block pin, add an edge in graph

FROM source TO correct pin node

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1

Page 25

© R. Rutenbar, CMU 18-760, Fall99 49

Handling Critical PathsHandling Critical Paths

n Step 4. Pin-to-clock edges
u For every timing arc FROM a block pin TO a clock, add an edge in

graph FROM correct pin node TO sink

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1

9 2

© R. Rutenbar, CMU 18-760, Fall99 50

Handling Critical PathsHandling Critical Paths

n Step 5. Pin-to-chip edges
u For every net FROM a block pin TO a chip pin, add an edge in graph

FROM correct pin node TO sink

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w 1 se 2 nw 2 sw 3 ne 3 se

6 11len1

9 2
len4

Page 26

© R. Rutenbar, CMU 18-760, Fall99 51

Handling Critical PathsHandling Critical Paths

n Step 6. Pin-to-pin edges
u For every net and every arc FROM a block pin TO a block pin, add an

edge in graph FROM correct pin node TO correct pin node

5
9

62

11
len4

len3

le
n2

len1

c

c

c

src

snk

1
2

3

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne

© R. Rutenbar, CMU 18-760, Fall99 52

Handling Critical PathsHandling Critical Paths

n Done. This is the required timing graph
u Longest path form Source to Sink == worst-case delay, latch-to-latch

u One path highlighted below

src

snk

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne

5
9

62

11
len4

len3

le
n2

len1

c

c

c

1
2

3

Page 27

© R. Rutenbar, CMU 18-760, Fall99 53

ObservationsObservations

n Graph structure is constant--you only build it once
u Same nodes, same edges, always

n Timing arcs (dotted edges) are constant
u Placement does nothing to change intra-block timing in our simple

model of floorplanning

n Placement changes the net delays (solid edge nums) in graph
u Move a block, pins moves, net lengths change, delays change in graph

u So, the critical path delay can change…

u … and even what nets are on critical path

n If you update the net delays in graph during placement…
u You can track what the critical path is, and what worst delay is

© R. Rutenbar, CMU 18-760, Fall99 54

ObservationsObservations

n Aside
u This is why every net, and every timing arc, has its own ID in our netlist

u Makes it much easier to update edges in timing graph when all edges
have a unique name

n Engineering decision: How will you couple placement &
timing analysis?
u Could update timing graph after EVERY move.

Very accurate. Very slow.

u Could update timing graph every K moves. Just assume the SAME nets
comprise the critical path in between. To eval timing changes as a

result of a placement move, eval change is JUST ∆Σ∆Σ(these net delays)

u Could update timing graph only every temperature. Do same as above.

u Could do timing graph ONCE only near beginning of placement, HOPE
its always same critical path, never update it again till all done.
(Very, very dumb…)

Page 28

© R. Rutenbar, CMU 18-760, Fall99 55

Coupling ExampleCoupling Example

n Update every temperature. Assume same crit path in between

n So, how do we eval ∆∆ timing on subsequent placement moves?
u ∆∆timing == ∆∆(len1 + len2) !! That’s it. Very nice, very simple.

src

snk

1 w

1 se

2 nw

2 sw

3 se

6 11len1

9

2
len4

5

len2

len3

3 ne

5
9

62

11
len4

len3

le
n2

len1

c

c

c

1
2

3

Assume this path,
thru nets 1, 2,
is always the critical
path.

© R. Rutenbar, CMU 18-760, Fall99 56

Implementation HintsImplementation Hints

n Some messy issues
u What happens if several paths with same length, ALL critical?

w You could try to track them ALL (your call)

u You could pick one, only worry about it.

w When you update, if your placement changes screwed up other
paths, your timing update will automatically always pick A worst
path.

w It will work ~OK if you update often enough

w This is the easiest way to do it.

n Graph path mechanics
u Next lecture (for static timing stuff) and, actually, maze routing

mechanics (want now MAX path thru this graph).

Page 29

© R. Rutenbar, CMU 18-760, Fall99 57

Coupling Timing into Annealing PlacementCoupling Timing into Annealing Placement

n How? 3 options
u Option 1: don’t. Just ignore timing issues.

u Option 2: as an objective to minimize, like area:

Cost = Wa *[Area] + Wn*[Netlen] + Wo*[ΣΣ i != j overlap2] + Wt*[max Delay]

u Option 3: as a constraint. We give you a target T, you try to meet it:

Cost = Wa *[Area] + Wn*[Netlen] + Wo*[ΣΣ i != j overlap2] + Wt*[TimeMiss]2

TimeMiss =
If (maxDelay > target T)

then |T - maxDelay|

else 0

© R. Rutenbar, CMU 18-760, Fall99 58

Overall Input File FormatOverall Input File Format

n All ints and short lower-case-only strings at start of a line

#blocks #nets timingSpec
block 1 #shapes x1 y1 … xn yn
timing #arcs
arc 1 fromPin toPin delay
arc 2 fromPin toPin delay
…
arc m fromPin toPin delay
block 2 #shapes x1 y1 … xn yn
timing #arcs
arc <m+1> fromPin toPin delay
arc <m+2> fromPin toPin delay

…
block B …..
timing ….
arc …

net 1 #pins blockID pin … blockID pin
net 2 #pins blockID pin … blockID pin
net 3 #pins blockID pin … blockID pin
…
net N #pins blockID pin … blockID pin

Page 30

© R. Rutenbar, CMU 18-760, Fall99 59

Timing Spec in Input FileTiming Spec in Input File

n About that first line:
#blocks #nets timingSpec

n timingSpec is an integer
u timingSpec < 0 => just ignore timing completely

u timingSpec ==0 => just try to minimize overall worst critical path

u timingSpec >0 ==> this is T, the target timing you should try to meet

© R. Rutenbar, CMU 18-760, Fall99 60

Output File FormatOutput File Format

n Philosophy
u You read the netlist, do timing-driven placement, write a file out

u File tells us the placement, and your numbers for area, wirelength,
overlap, critical path delay, and one critical path

u We (actually, your earnest, hardworking TAs) provide a CHECKER tool

u CHECKER tells you if your placement is OK, if your area, wirelength,
overlap, critical path delay, critical path are indeed CORRECT

w Very useful for your debugging

w Major pain in the butt for us to build (go hug a TA…)

Input
netlist

Floorplan
Tool

Output
File

CHECKER
Tool

Check
File

YOU US

Page 31

© R. Rutenbar, CMU 18-760, Fall99 61

Output File FormatOutput File Format

n Simple, minimal (nothing not already lying around in placer)

<ΣΣ netlengths number>
<ΣΣ pairwise block-block overlap area number>
<overallArea number>
<overallCriticalPathDelay number>
block 1 centerX centerY rotation shape
block 2 centerX centerY rotation shape
…
block B centerX centerY rotation shape
net 1 length
net 2 length
…
net N length
path #edges
<edge type> edgeID
<edge type> edgeID
…
<edge type> edgeID

<edge type> is
either net or arc

© R. Rutenbar, CMU 18-760, Fall99 62

Output File Format ExampleOutput File Format Example
src

snk

1 w

1 se

2 nw

2 sw

3 se

6 1110

9

2
20

5

11

8

3 ne

5
9

62

11
20

8

11

10

c

c

c

1
2

3

Critical path shown
shaded here in this
placement

49
0
area
35
block 1 cenX cenY rot shape
block 2 cenX cenY rot shape
block 3 cenX cenY rot shape
net 1 10
net 2 11
net 3 8
net 4 20
path 4
net 1
arc 1
net 2
arc 2

arc1 arc2 Output file

Page 32

© R. Rutenbar, CMU 18-760, Fall99 63

For CreditFor Credit

n Logistics
u You can work in groups of 2 or alone. Other ideas -- ask RAR

n Code
u Your will write a timing-driven placer.

u Your choice on platform, language

u BUT, it has to be something WE can get to, so YOU can demo for US

n Checking
u YOU will run the CHECKER, dump its output into your writeup

u This determines how well your program did (both correctness, and
competitive results against others in class)

© R. Rutenbar, CMU 18-760, Fall99 64

For CreditFor Credit

n Writeup
u Not paper. Web page. You submit it to us end of class.

u PLEASE make it portable: we copy the whole directory structure to
our 760 web pages. If you put absolute pathnames, links, it messes up

u Suggestion

w Make a directory: <yourname>760Web, eg, bubba760Web

w Inside it, put all your html web pages: foo*.html

w Inside it, also make 2 directories: 760Stuff and 760Code

w Inside 760Stuff, put ALL your graphics and pics and sounds and
explanatory video clips, etc. Inside 760Code, put all your code.

w Use only relative link names for internals: ./760Stuff/foo.gif etc

w If its on the machine in your dorm room, and it will disappear
before break--TELL US WHEN.

w If we don’t see a web page, you don’t get a grade…

u Check out last Spring’s offerings on current 760 page; style counts

Page 33

© R. Rutenbar, CMU 18-760, Fall99 65

For CreditFor Credit

n About Writeup--basic pieces
u Introduction: summarize the problem

u Formulation: you had to make some assumptions, since there are lots
of degrees of freedom in this project. Explain them. Justify them.

u Optimization goals: tell us what you tried to do well.

u Implementation: describe any interesting data structures, algorithms,
optimizations, tricks, etc

u Results: what did you run, how well did you do?

w Think neat tables, plots, pics of layouts, graphs of cost vs temp, etc

w Explain your results: why did they happen like this

u Post mortem: given you could do it over, what would you do different?

u Code: put it someplace in the web page (preferably in 760Code dir)

© R. Rutenbar, CMU 18-760, Fall99 66

For CreditFor Credit

n You have to demo, too
u Last week of class on a couple days--signup sheets

u We will release some new benchmarks during the demo, and ask you to
run one. It will be small; available in a couple of flavors.

u You should print (or, better, draw) something enlightening

u You run the CHECKER, we look over your shoulder and see what it says

u Goal: it works, it gives an OK answer.

Page 34

© R. Rutenbar, CMU 18-760, Fall99 67

Points = [120] (But Weighted Big Overall)Points = [120] (But Weighted Big Overall)

n Breakdown
u [30 pts] Web Writeup: Approach & Implementation

u [30 pts] Web Writeup: Results & Analysis

u [10 pts] Code: Reasonableness

u [20 pts] Demo: Works, Quality, Style, Discussion

u [30 pts] Coolness

w You actually got the whole thing to work (place, timing, etc)

w Results quality (bigger, better, faster, etc)

w Interesting algorithms (more sophisticated annealing, interesting
coupling of timing to layout, etc)

w Interesting implementation (eg, did it in JAVA, but its not slow…)

w Graphics (animated like RAR’s placer videos)

© R. Rutenbar, CMU 18-760, Fall99 68

BenchmarksBenchmarks

n Will appear in /afs/ece/class/ee760/proj3/benchmarks

n 3 level of test cases
u Level 0: no timing at all, just pack the blocks, minimize wirelength,

area; blocks have only one shape apiece; you can ignore
rotations of the blocks to get a good layout

u Level 1: level-0, but blocks can have multiple shapes, and you need to
do rotations to get a good layout

u Level 2: level-0 geometry, but now we have timing arcs too

u Level 3: whole shebang -- placement, shapes, rotations, timing arcs

n Size
u 5-50 blocks, 5-100s of nets, 5-100s of timing arcs

u 3 different timing optimizations: none, minimize, and hit-target-timing

Page 35

© R. Rutenbar, CMU 18-760, Fall99 69

GraphicsGraphics

n Are a pain to do, but amazingly helpful
u It’s very hard to debug a layout algorithm if you cannot SEE it run

u Also, more points for some animation

n We can help
u We will put some graphics code on class acct

u C or C++ plus tcl/tk stuff: fires up a window, can draw boxes, lines,
circuits, text, in colors. Pretty simple to use.

u (You can use whatever you like here: JAVA, etc, is fine too)

u Think about drawing placement every K moves, or end of each temp

u Think about drawing the wires, and critical path

u Think about intelligent use of colors (blocks with overlap vs no, nets on
critical path vs no, etc. You will amazed how useful this can be…)

© R. Rutenbar, CMU 18-760, Fall99 70

Code ComplexityCode Complexity

n Not as bad as it sounds
u Parsing: moderate pain

u Annealer for floorplanner is pretty straightforward

w And, we already hand out source code for a complete point-placer
which you can use as starting point here

u Building timing graph: messy book-keeping, but conceptually OK

u Longest path: not too bad, you have to THINK how you will get not just
the length, but the nets on this path as well

u Coupling to annealing placer:

w Easiest is probably to update graph every K moves or every Temp

w Easiest is probably to just treat maxDelay as an objective to min

u Graphics: once past brief learning curve, not hard to do something
simple like dump blocks/nets as boxes/lines to screen

w We will also give you source code for some options here

Page 36

© R. Rutenbar, CMU 18-760, Fall99 71

Where Are We?Where Are We?

n About a month to do this--more if it drags over into finals.

23 24 25 26 27
30 31 1 2 3

M T W Th F

6 7 8 9 10
13 14 15 16 17
20 21 22 23 24

Aug
Sep

Oct
27 28 29 30 1
4 5 6 7 8

11 12 13 14 15
18 19 20 21 22
25 26 27 28 29
1 2 3 4 5 Nov
8 9 10 11 12

15 16 17 18 19
22 23 24 25 26
29 30 1 2 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15Dec

Thnxgive

A partner is a very good idea.

Be clear about your goals;
when in doubt, ask RAR.

Expect more updates on
benchmarks, etc, later

Look at the chapter from
Cohn,Garrod,Rutenbar,Carley
In the hardcopy handout with this lec
about how to do an annealing
floorplanner like this one: LOTS
of relevant details

6 7 8 9 10 FINALSDec

