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SECTION 1: PROJECT OVERVIEW

Music is wide and varied, with divisions among genres being almost entirely
subjective. For our capstone project, we decided to attack the timeless problem of
classifying songs into genres. During this semester, we built a classifier which

automatically classifies music into user-selected genres.

SECTION 1.1: MOTIVATION

No human can effectively wade through the ocean of digital music available on
the Internet, finding all the songs he likes. Thus, researchers have explored numerous
ways of automatically identifying, classifying, and organizing music based on their
waveforms alone. This is a difficult problem because the music covering any given genre
is composed from instruments and musicians of various types and backgrounds, and
thus, is extremely diverse and constantly evolving. An automatic music classification
Android application would be practical to the average user for multiple reasons. One
potential use is to help the user sort through a large set of unlabeled music, perhaps
from mix CDs obtained from friends. Another potential use is to recognize music
recorded by the tablet’s built-in microphone.

Group 5 from Spring 2011 had a similar project idea as ours, but they mapped
songs to emotions. We were motivated towards classifying songs into predefined genres
because we could perform more objective tests than that group. While both problems
may be subjective, the emotions stirred from person to person upon hearing a song

probably vary much more than the people’s opinions of the song’s genre. Group 5’s final



implementation utilized an SVM for separating music based on its arousal and valence.
While our final Android implementation uses a naive Bayes classifier instead of an SVM,
we have discovered through our Matlab implementation that an SVM classifier would

work well too.

SECTION 1.2: SOLUTION

Most approaches that apply rigid hard-coded rules to separate music are
eventually rendered obsolete due to the mercurial nature of musical genres. In their
paper “Musical Genre Classification of Audio Signals” [1], Tzanetakis and Cook present a
way to extract three sets of features from music waveforms that could be used for
classifying music into genres. These sets of features are identified as Timbral Texture,
Rhythmic Content, and Pitch Content. Using these features, standard machine learning
techniques can be applied to identify music of various genres and a classifier can be
trained to accurately classify music provided by a user. For our project, we implemented

a feature extraction system as well as classifiers for this very purpose.



2 FEATURES

For the feature extraction part of the project in Matlab, we initially started out
with a framework for feature extraction set up by Professor Richard Stern. With his
approval, we heavily modified his code to compute the features we used in this project.
The computation of MFCC coefficients in Matlab was done via an external library of
functions, while the extraction of pitch content and rhythmic content features was done

with in-house code.

2.1 Timbral Texture

According to [3] and [4], the features which comprise the timbral texture are
commonly used in music-speech discrimination and speech recognition. To obtain these
features, we first break the input signal into small blocks of a particular size, window
each block, and take the discrete Fourier transform (DFT) of each block. This process is
also known as the short time Fourier transform (STFT) and is commonly used in music
processing. Then, using the STFT of the input signal, we compute the spectral centroid,
spectral rolloff frequency, and spectral flux attributes. Finally, we compute the time-
domain zero crossings and Mel-Frequency Cepstral Coefficients (MFCC). The latter,
motivated by how humans perceive frequencies, represent the short term power
spectrum of a given sample of sound. Further details regarding STFT and MFCC are in [2],

while the definitions of the other four timbral texture attributes are below.



Spectral Centroid: During a frame for STFT, think of the frequency in the song as
a random variable whose probability distribution is the period’s normalized magnitude
spectrum. Then the spectral centroid is the expected value of the song’s frequency for

the time period of that STFT.
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where M.[f] is the magnitude of the Fourier transform.
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Figure 2.1.1: The frequency at the dividing line represents the spectral centroid of the frequency spectrum.

Spectral Rolloff Frequency: This is the frequency below which 85% of the song’s

content is contained.

R¢ N
Z M.[f] = 0.85 Z M.[f] where R, is the spectral rollof f frequency.
=1 =1
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Figure 2.1.2: The frequency at the dividing line represents the spectral rolloff frequency for this spectrum.



Spectral Flux: This is the squared difference between the normalized magnitudes

of temporally consecutive spectral distributions.

N

F, = Z(Nt [f]1— N._1[f]D? where N;[f] is the normalized M,[f].
=1

Time Domain Zero Crossings: This provides a measure of the noisiness of the

signal by computing the number of times the signal crosses zero in the time domain.

N
1
Z; = EZISign(x[n]) — sign(x[n — 1])| where x[n] is the input signal.
n=1
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Figure 2.1.3. The number of highlighted points represent the time domain zero crossings of the signal



2.2 Rhythmic Content

This set of features is based on the detected major beats in the music. To extract
the main beats, the input is broken into three-second length windows, on which the
Discrete Wavelet Transform (DWT) is computed [3]. The outputs of the DWT are N sets
of samples, one set for each octave range. Each set is downsampled so that they all lie in
the same octave. To this resultant set, we apply full wave rectification and low pass
filtering to extract the envelope of the samples. We then downsample the result again,
this time to reduce computation time. Finally, we estimate the strongest beats of the
result by finding the peaks of correlating the signal with itself. After cleaning this signal
and normalizing it, we have a histogram of the beats, from which we can extract known
relevant features. The steps required to obtain Rhythmic Content features are explained

below:

Full Wave Rectification: This is used to extract the time-domain envelope of the
signal.

y[n] = |x[n]| where x[n] is the input signal.

Low-pass Filtering: This is a one-pole filter to smooth out the envelope.

y[n] = (1 — a)x[n] + ay[n — 1] where a = 0.99

Downsampling: This reduces the computation time for the subsequent

autocorrelation of the function.



y[n] = x[kn] where k = 16.

Mean-removal: This is required to make the signal’s average amplitude zero for

correct autocorrelation.

y[n] =x[n

ZI'—‘

Enhanced Autocorrelation: The peaks of this output signal designate the major

beat periodicities in the signal.

L
:NZ nlx[n — kJ.
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2.3 Pitch Content

This set of features is computed on a time scale over two orders of magnitude
less than that used to obtain the Rythmic Content features. The histogram peaks (as
obtained by the description in section 2.2) are mapped to MIDI note numbers which are
used to compute the folded and unfolded histograms. From these two histograms, the
following features are computed—amplitude of the maximum peak of the folded
histogram, period of the maximum peaks of the unfolded and folded histograms, pitch
interval between the two highest peaks of the folded histogram, and finally, the overall

sum of the histogram.

FAO: This is the dominant pitch class of the song. This peak is higher for songs
that do not have many harmonic changes.

UPO: This is the maximum peak of the unfolded histogram, corresponding to the
major octave range of the song.

FPO: This is the maximum peak of the folded histogram, corresponding to the
major pitch class of the song.

IPO1: This is the interval between the two most prominent peaks in the folded
histogram, which corresponds to the major tonal interval relation.

SUM: Adding up the values of the histogram measures how strong the pitch

detection is for the song.
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3 CLASSIFIERS

We experimented with three classifiers for our system. Specifically, we started
off with the classifier easiest to implement—the naive Bayesian classifier. Upon
obtaining promising results, we decided to test how well our features distinguish
between genres by modifying the Bayesian classifier to one which accounts for the
correlation between features. Finally, we implemented our system using completely
different machinery in the form of support vector machines. For the remainder of this

section, m refers to the number of features and n refers to the number of classes.

3.1 Naive Bayesian

This was the first classifier we implemented in Matlab and the one we ended up
with on the Android tablet. This classifier makes several strong (and highly unlikely)
assumptions, rendering its positive results all the more surprising. This classifier
assumes, first of all, that all features for each genre are distributed normally, with some
defining mean and variance. This assumption is proven to be reasonable as it follows
from the Central Limit Theorem, which states that the distribution of a random variable

I
X = Z X; where X,, are independent from each other
i=1

converges to a Gaussian as I — oo. But this classifier also assumes that the features
being used are independent of each other, which is most likely an oversimplification [7].
Because of these strong assumptions, the naive Bayesian classifier had the worst

(although satisfactory) results out of our three classifier implementations. The
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combination of these assumptions can lead to learning distributions of classes as shown

in Figure 3.1.1.

Class 1

Feature 2

Or Class 3

Class 2

Feature 1

Figure 3.1.1: Distributions of classes determined by a naive Bayesian classifier

3.2 Full Covariance Bayesian

This was the second classifier we implemented in Matlab and one that can be
implemented on Android in the future without too much trouble. This classifier no
longer assumed that all the features were independent from each other. This weakening
of our assumptions could allow the classifier to learn distributions as shown in Figure
3.2.1. Like the naive Bayesian classifier, we assumed that all features for each genre had
a normal distribution. In this case, we defined each multidimensional Gaussian
probability density function with a mean vector and a covariance matrix. We computed
the mean vector by finding the mean of all the features for each class from the training

data. The covariance matrix was computed by taking the covariance for each pair of
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features for each class from the training data. Since we were computing a total of
%(m + 1) total covariances for this classifier as opposed to m variances in the naive
Bayesian classifier, training took longer, especially as the number of features m
increased. In terms of classifier performance, the full covariance classifier did better
than the naive classifier when we had more than three classes. Due to the fact that our
self-validation results were good, we believed that poor performance for a smaller

number of classes was due to overfitting.

Class 1

Feature 2

Class 3
2t R ' _ Class 2

Feature 1

Figure 3.2.1: Distributions of classes determined by a full covariance classifier
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3.3 Support Vector Machine

This was the third classifier we implemented on Matlab and one that we tried to
import to the tablet but failed. Since typical SVMs can only handle 2-class problems, we
used multiple SVMs to classify between all of our n classes. There are two possible ways

to approach this problem—either using a 1 vs. all or a 1 vs. 1 algorithm [6].

1 vs. all: This algorithm was initially more attractive to us since we could use a
smaller number of SVMs. However, due to a variety of issues, we decided not to use this
implementation. Thus, it was not fully completed and is not in our included MATLAB
code. Specifically, the algorithm works as follows: for each class from our training set of
data, define the selected class to be the respective class name (such as “rock”), and
define all other n — 1 classes to be NOT the selected class (such as “not rock”). After this,
train the SVM on these two classes and save the SVM trained object. Repeat this
process for all other n — 1 classes to get an array of n SVM classifiers. To classify a song,
we input the extracted features into each of the n SVM obijects. Ideally, one of then
classifiers should return a positive result (IS class X) and all other classes should return a
negative result (IS NOT class X). In this case, classify the song to be the positive class. In
the case where two or more SVMs give a positive result, we randomly picked between
the positive results. Finally, in the case where all SVMs gave negative results, we simply
refused to class. The biggest issue for us is that in our preliminary tests, our beta
implementation was giving poor results, so we completely scrapped our code for our 1

vs. 1 implementation. Although this wasn’t heavily tested (since 1 vs. 1 worked well and
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we decided to go ahead with it), we believed the reason the 1 vs. all implementation did
not work was due to the fact that the “not X” class had a multimodal distribution, which

is something linear SVMs handle rather poorly.

1 vs. 1: This is the algorithm that we used in our final Matlab implementation.
Specifically, the algorithm works as follows: for all pairs of classes, we trained an SVM
object using these two classes (such as rap and rock), and saved the resultant SVM

object, obtaining 2 (n — 1) total SVM objects. One way to represent this set of SVM

objects is to have a symmetric SVM matrix where rows and columns both refer to
classes. Notice that although we generated more SVM objects for the 1 vs. 1

implementation, the generation of each SVM object was faster since, on average, we
used only % of the training data for each object. For testing, we took the extracted

features from our test song and tested on all (121) SVM objects. We then selected the
class represented by the song based on summing up the votes from each SVM

object. Furthermore, we easily obtained our class rank list by counting up the votes.
Example: Consider four classes: [rock rap classical country]. If we test a new country

rock song, the votes may look like [rock vs. rap, rock vs. classical, rock vs. country, rap vs.
classical, rap vs. country, and classical vs. country]. In this case, our votes are [country:
3, rock: 2, classical: 1, rap: 0]. So we would say that this song is most likely to be country,

somewhat likely to be rock, not very likely to be classical, and almost surely not rap.
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4 CHALLENGES

We faced a major challenge in porting an SVM implementation to Android. We
initially found a library named WEKA which contained a (tested) working SVM
implementation. But after numerous attempts to include the WEKA jar file with our
project, we discovered that Android does not support the use of the WEKA library. As
there was not enough time to implement our own SVM classifier in Java, we stuck with
5the naive Bayesian classifier.

We had trouble implementing the final ten of the timbral texture set of
features—the means and variances of the first five MFCC coefficients--on Android. The
external libraries containing the code for computing MFCC coefficients were quite
difficult to utilize. So taking into account the relative difficulty of porting their
computation to Android, the delay to the user from having to wait for MFCC coefficient
computation, and the fact that we were already obtaining reasonable results using just
the first eight of the timbral texture features, we decided not to add these features to
our Android app.

We wanted to see whether our classifier could distinguish between songs sung in
different languages. Thus, on top of rock, rap, classical, country, and techno, we tried
adding Hindi music to our classifier. But the results obtained were, although better than
random, completely unsatisfactory compared to our previous results. This showed us
that our classifier only worked for distinguishing genres which were disjoint (as we
should have guessed). We also tried testing Hindi music against just one other genre,

which combined rock, rap, and country English songs. We hoped this would provide a
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greater distinction between the classes. However, as can be seen by the results in the
following matrices, the features we use do not work well for distinguishing between
songs of different languages. They are apparently better at distinguishing the
instruments in the music than the language being spoken.

Note: For six genres, the amount of training music used for self-validation was
the same as described in Section 5.2 for the five genres, adding on 94 Hindi songs. For
cross validation, the amount of each genre is as described in Section 5.2 for the first five
genres, with 21 Hindi songs. In the two-genre case of English vs. Hindi, there were 100
English and 94 Hindi songs used for training in self-validation. 25 English and 21 Hindi

songs were separated from the rest of the songs for testing in cross-validation.



Naive Bayesian:

Six Genres:

18

Self-Validation Accuracy:

Rck  Rap Cls Cnt  Tch Hnd
Rck -ﬁ 0.04 0.16 0.08 0.07
Rap 0.03 0.01 0.02 0.04 o0.10

Cls

Cross-Validation Accuracy:

Rck  Rap Cls Cnt Tch Hnd
Rck -ﬁ 0.02 0.14 0.02 0.04
Rap 0.05 0.00 0.00 0.03 0.15

Cls 0.00 0.00

Cnt 0.18 0.01 0.08 Cnt 0.20 0.04 0.16 0.00 0.04
Tch 0.08 0.11 0.01 0.01 Tch 0.07 0.08 0.00 0.07
Hnd 0.10 0.16 0.03  0.27 Hnd 0.05 024 005 0.19 0.10
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank Rank
(Wt) Rck | Rap Cls Cnt (Wt) Rck | Rap Cls Cnt | Tch | Hnd
1(1) 1(1)
2 (4/5) 2(4/5) | 0.4 | 0.10 | 0.00 | 0.35 | 0.11
3(3/5) 3(3/5) | 0.04 | 0.03 | 0.00 | 0.04 | 0.13 | 0.14
4(2/5) 4(2/5) | 0.08 | 0.03 | 0.08 | 0.06 | 0.06 | 0.00
5(1/5) 5(1/5) | 0.02 | 0.08 | 0.04 | 0.00 | 0.04 | 0.00
6 (0) 6(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00
Rank Rank
Acc: Acc: 0.89 | 0.90 | 0.92 | 0.88 | 0.83 | 0.85
Two Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
English  Hindi English  Hindi
English 0.45 English 0.40
Hindi 0.16 Hindi 0.19
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank (Wt) English Hindi Rank (Wt) English Hindi
1(1) 1(2)
2 (0) 0.45 0.16 2 (0) 0.40 0.19
Rank Acc: 0.55 0.84 Rank Acc: 0.60 0.81




Full Cov. Bayesian:

Six Genres:

19

Self-Validation Accuracy:

Rck  Rap Cls Cnt  Tch Hnd
Rek -ﬁo.oz 0.15 0.01 0.06
Rap 0.05 0.01 0.01 0.03 0.05
Cls 0.03 0.00
Cnt 0.10 0.01 0.04

Tch 0.02 0.02 0.01 0.01
Hnd 0.14 0.06 0.00 0.16

Cross-Validation Accuracy:

Rck  Rap Cls Cnt Tch Hnd
Rk -ﬁo.oo 0.10 0.02 0.2
Rap 0.05 0.00 0.00 0.05 0.3
Cls 0.00 0.00
Cnt  0.16 0.04 0.10

0.00 0.06
Tch 0.11 0.04 0.00 0.01
Hnd 010 0.19 0.05 0.19 0.05

Self-Validation Rank Accuracy:
Rank
(Wt) Rck | Rap Cls Cnt | Tch | Hnd

1() | 071|086 | 036 | 080 | 052 | 062
2(4/5) | 0.20 | 0.09 | 0.02 | 0.14 | 0.04 | 0.18
3(3/5) | 0.07 | 0.03 | 0.01 | 0.04 | 0.02 | 0.17
4(2/5) |0.02 | 0.02 | 000|002 001|003

Cross-Validation Rank Accuracy:
Rank
(Wt) Rck | Rap Cls Cnt | Tch | Hnd

1) | 078|078 | 096 | 0es | 06| 0s3
2 (4/5) 0.10 | 0.13 | 0.00 | 0.18 | 0.07 | 0.19
3(3/5) 0.08 | 0.08 | 0.00 | 0.10 | 0.06 | 0.19
4 (2/5) 0.02 | 0.03 | 0.00 | 0.06 | 0.03 | 0.10

5(1/5) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 5(1/5) | 0.02 | 0.00 | 0.00 | 0.02 | 0.07 | 0.05
6(0) | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 6(0) | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.05
Rank Rank
Acc: | 0.92 | 0.96 | 0.98 | 0.94 | 0.97 | 0.88 Acc: | 0.92 | 0.93 | 0.96 | 0.87 | 0.88 | 0.74
Two Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
English  Hindi English  Hindi
English 0.19 English 0.28
Hindi 0.05 Hindi 0.33
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank (Wt) English Hindi Rank (Wt) English Hindi
1(1) 1(2)
2 (0) 0.19 0.05 2 (0) 0.28 0.33
Rank Acc: 0.81 0.95 Rank Acc: 0.72 0.67




Support Vector Machine:

Six Genres:
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Self-Validation Accuracy:

Rck  Rap Cls Cnt  Tch Hnd
Rck 0.01 0.14 0.01 0.08
Rap 0.00 0.01 0.01 0.08

Cross-Validation Accuracy:

Rck  Rap Cls Cnt Tch Hnd
Rck 0.00 0.12 0.02 0.02
Rap 0.00 0.00 0.08 0.13

Cls 0.03 Cls 0.04 0.00
Cnt 0.14 0.01 0.04 Cnt 0.12 0.02 0.08
Tch 0.02 0.02 0.00 0.01 Tch 0.04 0.04 0.00 0.01
Hnd 0.2 0.06 0.01 0.13 Hnd 0.05 019 005 0.19 0.00
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank Rank
(Wt) Rck | Rap | Cls Cnt | Tch | Hnd (Wt) Rck | Rap | Cls Cnt | Tch | Hnd
1) | 072|086 096071092 067 | 1 | 076|070 | 092 069|079 | 052
2(4/5) | 017 | 0.09 | 0.04 | 0.24 | 0.03 | 0.19 2(4/5) | 0.6 | 0.18 | 0.08 | 0.20 | 0.04 | 0.29
3(3/5) | 0.09 | 0.03 | 0.00 | 0.04 | 0.03 | 0.11 3(3/5) | 0.06 | 0.08 | 0.00 | 0.08 | 0.04 | 0.14
4(2/5) |0.02 | 0.02 | 0.00 | 001]0.01]0.03 4(2/5) |0.02 | 0.05 |0.00|0.02]| 004 ]| 0.05
5(1/5) | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 5(1/5) | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00
6(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 6(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00
Rank Rank
Acc: 0.92 | 0.95 | 0.99 | 0.93 | 0.97 | 0.90 Acc: 0.93 | 0.91 | 0.98 | 0.91 | 0.88 | 0.86
Two Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
English  Hindi English  Hindi
English 0.17 English 0.32
Hindi 0.24 Hindi 0.48
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank (Wt) English Hindi Rank (Wt) English Hindi
1(1) 1(2)
2 (0) 0.17 0.24 2 (0) 0.32 0.48
Rank Acc: 0.83 0.76 Rank Acc: 0.68 0.52
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5 RESULTS

To test our choices for our system’s classifiers and features, we ran numerous
Matlab simulations on both training and testing data. While we obtained promising
results for up to five different genres, we had several sanity checks in place while

measuring the accuracy to make sure our results made sense.

5.1 Definitions
Assume our classifier is trained with m genres Cj, ..., C,,,. Let’s say we are given
N input songs A4, ..., Ay of genres g5, ..., gy, respectively. Then our initial naive

measure of classifier accuracy was simply to calculate

1, classifier chooses genre g; for song A;
0, otherwise ’

N
= (40 where fa) = |
i=1
This accuracy measure is shown in the plots in section 5.3 for all our implemented
classifiers. A more detailed version of this accuracy measure is shown in the confusion
matrices in section 5.2, where we show, given a song from a particular genre (row), the
likelihood that our classifier will classify it as any genre (column). This accuracy measure
is shown in the cells labeled “Self-Validation” and “Cross Validation”. For example,
“Naive Bayesian Results: Three Genres: Self-Validation” states that 86% of rock songs
were classified correctly, 7% were classified as rap, and 6% were classified as classical.

Moreover, 92% of rap songs were classified correctly, 7% were classified as rock, and 1%

were classified as classical. Finally, 93% of classical songs were classified correctly, 6%
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were classified as rock, and 1% were classified as rap. For comparison against a worst-

case baseline, we can determine this expected accuracy for a random classifier:

N

o> FA)

i=1

N

S n-5ied

i=1 i=1

E

Both our classifiers’ accuracies and the random classifier’s accuracy are plotted in

Figures 5.3.1 and 5.3.2.

Apart from the above accuracy measure, we also calculated an accuracy measure
which gave a more complete picture of our classifier’s accuracy. Specifically, if our
classifier gave an ordered list of its m trained genres [h4, ... h,,] for a song A;, then we
could determine where g; is in the list, assigning that position to 7;. So, if our classifier
could be allowed to make additional guesses for the genre of a song upon being told it
was wrong, 1; would be the number of guesses needed for the classifier to get song A;’s
genre correct. In that case, we can find a “rank accuracy” for our classifier by computing

the following:

N
N ¢ m-—1
=1

For example, given that the classifier has 4 genres and ranks the correct genre for a song

. 3-1 1
as number 3, then that song would contribute 1 — 13 to the total rank accuracy. A

variation of this accuracy measure is shown in the “Rank Accuracy” results in section 5.2.
Again, for comparison against a worst-case baseline, we can determine this expected

rank accuracy for a random classifier:



N N N N
(R[5 YR SR BN
N . m—1)| N NZim—1 Nm-1DZL M
=1 =1 =1 =1

m m
1 1 m(m—1)+m—7(m+1) 1
=1+ - Z-: ==
m-—1 m(m—l),ll m(m —1) 2

i=

Both our classifiers’ rank accuracies and the random classifier’s rank accuracies are

plotted in Figures 5.3.3 and 5.3.4.

As can be seen by all figures in section 5.3, our classifiers did much better than
random chance and work well enough to save most users the headache involved with

manually organizing their music.

23



5.2 Breakdown of Results
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A detailed breakdown of all our results are given in this section. Sections labeled

“Five Genres” refer to the genres Rock, Rap, Classical, Country, and Techno. Similarly, a

section labeled “Three Genres” refers to Rock, Rap, and Classic al. A total of 485 rock,

789 rap, 168 classical, 445 country, and 425 techno songs were used for training for self-

validation. The amount of testing music partitioned from the rest of the music for cross-

validation was 51 rock, 40 rap, 24 classical, 49 country, and 72 techno.

Naive Bayesian Results:

Two Genres:

Self-Validation:
Rock Rap
Rock

0.08
Rap 0.07

Cross-Validation:

Rock Rap
Rock 0.10
Rap 0.10

Self-Validation Rank Accuracy:
Rank (Wt) Rock

Rap

Cross-Validation Rank Accuracy:
Rank (Wt) Rock

Rap

1(1) 1(1)
2 (0) 0.08 0.07 2 (0) 0.10 0.10
Rank Acc: 0.92 0.93 Rank Acc: 0.90 0.90
Three Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
Rock Rap Classical Rock Rap Class.
Rock 0.07 0.06 Rock
Rap 0.07 0.01 Rap 0.10
Classical  0.06 0.01 Class. 0.13 0.00

Self-Validation Rank Accuracy:
Rank (Wt) Rock

1(1)
2(1/2) 0.12
3(0) 0.01
Rank Acc: 0.93

Rap

0.06
0.01
0.96

Class.

0.07
0.00
0.96

Cross-Validation Rank Accuracy:
Rap

Rank (Wt) Rock

1(1)
2(1/2) 0.12 0.10
3(0) 0.00 | 0.00
Rank Acc: 0.94 0.95

Class.

0.13
0.00
0.94




Four Genres:
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Self-Validation Accuracy:

Cross-Val

idation Accuracy:

Rock Rap Class. Count. Rock Rap Class. Count.

Rock 0.06 0.04 0.18 Rock 0.08 0.02 0.16
Rap  0.05 Rap  0.08

Class. 0.04 0.01 Class. 0.13 0.00

Count. 0.20 0.05 0.08 Count. 0.20 0.06 0.16
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:

Rank Rank

(Wt) Rock | Rap | Class. | Count. (Wt) Rock | Rap | Class.

1) [o7a]osofossioe7 | 1(y

2(2/3) | 0.20 | 0.04 | 0.06 | 0.31 2 (2/3)

3(1/3) | 0.08 | 0.05| 0.05 | 0.01 3(1/3)

4 (0) 0.01 {0.01 | 0.00 | 0.00 4 (0)

Rank Rank

Acc: 0.87 | 0.95 | 0.95 0.89 Acc:
Five Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:

Rock Rap Class. Count. Tech. Rock Rap Class. Count. Tech.

Rock 0.04 0.18 0.09 Rock 0.02 0.16 0.02
Rap  0.03 0.01 0.04 Rap  0.05 0.00 0.05
Class. 0.04 0.01 Class. 0.13 0.00

Count. 0.18 0.04 0.08 Count. 0.20 0.06 0.16

Tech. 0.08 0.14 0.01 0.02 Tech. 0.07 0.17 0.00 0.13
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:

Rank Rank

(Wt) Rock | Rap | Class. | Count. | Tech. (Wt) Rock | Rap | Class. | Count. | Tech.
1(1) | 063|088 | 089 | 067 |075 | 1) |073|0ss| 088 | 057 | 064
2(3/4) | 0.26 | 0.05 | 0.06 0.25 0.19 2(3/4) | 0.18 | 0.03 | 0.00 0.35 0.24
3(1/2) | 0.09 | 0.03 | 0.04 | 0.07 | 0.04 3(1/2) | 0.08 | 0.03 | 0.08 | 0.08 | 0.06
4(1/4) | 0.02 | 0.04 | 0.01 0.00 0.01 4(1/4) | 0.02 | 0.08 | 0.04 0.00 0.04
5(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 5(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.03
Rank ‘ Rank ‘
Acc: 0.87 | 0.94 | 0.96 0.90 0.91 Acc: 0.90 | 0.93 | 0.93 0.87 0.85




Full Covariance Bayesian Results:

Two Genres:
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Self-Validation:
Rock Rap
Rock

0.08
Rap 0.07

Cross-Validation:
Rock Rap
Rock

0.10
Rap 0.13

Self-Validation Rank Accuracy:

Cross-Validation Rank Accuracy:

Rank (Wt) Rock Rap Rank (Wt) Rock Rap
1(1) 1(1)
2 (0) 0.08 0.07 2 (0) 0.10 0.13
Rank Acc: 0.92 0.93 Rank Acc: 0.90 0.88
Three Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
Rock Rap Classical Rock Rap Classical
Rock 0.07 0.02 Rock 0.02
Rap 0.07 0.01 Rap 0.13 0.00
Classical  0.03 0.00 Classical  0.04 0.00
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank (Wt) Rock Rap | Class. Rank (Wt) Rock Rap | Class.
1(1) 1(1)
2(1/2) 0.09 0.07 | 0.02 2(1/2) 0.08 | 0.13 0.00
3(0) 0.00 0.01 | 0.01 3(0) 0.02 | 0.00 | 0.04
Rank Acc: 0.95 0.96 | 0.98 Rank Acc: 094 | 0.94 | 0.96




Four Genres:
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Self-Validation Accuracy:
Rock Rap Class.
0.07 0.02

Count.
0.17

Rock

Rap 0.06
Class. 0.03 0.00
Count. 0.11 0.02 0.04

Cross-Validation Accuracy:

Rock Rap Class. Count.
Rock 0.08 0.00 0.12
Rap 0.13
Class. 0.04 0.00
Count. 0.18 0.06 0.10

Self-Validation Rank Accuracy:

Cross-Validation Rank Accuracy:

Rank Rank

(Wt) Rock | Rap | Class. | Count. (Wt) Rock | Rap | Class. | Count.
1(1) |075|092| 096 | 083 | 1(1) |080|088| 096 | 065
2(2/3) | 0.23 | 0.06| 0.02 | 0.14 2(2/3) | 0.18 | 0.10 | 0.00 | 0.27
3(1/3) | 0.02 | 0.02| 0.01 | 0.03 3(1/3) | 0.00 | 0.03 | 0.00 | 0.08
4 (0) 0.00 | 0.00 | 0.01 | 0.00 4 (0) 0.02 | 0.00 | 0.04 | 0.00
Rank Rank

Acc: 0.91 | 0.97 | 0.98 | 0.93 Acc: 0.92 | 095 | 0.96 | 0.86
Five Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:

Rock Rap Class. Count. Tech. Rock Rap Class. Count. Tech.

Rock 0.02 0.17 0.02 Rock 0.00 0.12 0.02
Rap  0.06 0.01 0.03 Rap  0.10 0.00 0.05
Class. 0.03 0.00 Class. 0.04 0.00

Count. 0.11 0.02 0.04 Count. 0.18 0.06 0.10

Tech. 0.03 0.03 0.01 0.01 Tech. 0.11 0.06 0.00 0.04

Self-Validation Rank Accuracy:

Rank
(Wt) Rock | Rap | Class. | Count. | Tech.
1(1)
2 (3/4) 0.22 | 0.07 | 0.02 0.13 0.04
3(1/2) 0.04 | 0.02 | 0.01 0.04 0.02
4(1/4) | 0.00 | 0.01 | 0.00 0.00 | 0.01
5(0) 0.00 | 0.00 | 0.01 0.00 0.00
Rank ‘
Acc: 0.92 | 097 | 0.98 | 0.95 | 0.97

Cross-Validation Rank Accuracy:

Rank
(Wt) Rock | Rap | Class. | Count. | Tech.
1(1)
2(3/4) | 0.16 | 0.08 | 0.00 0.22 | 0.06
3(1/2) 0.04 | 0.08 | 0.00 0.10 0.07
4(1/4) | 0.02 | 0.00 | 0.00 0.02 | 0.07
5(0) 0.00 | 0.00 | 0.04 0.00 0.01
Rank
Acc: 093 | 094 | 096 | 0.88 | 0.89




Support Vector Machine Results:

Two Genres:
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Self-Validation:
Rock Rap
Rock

0.05
Rap 0.05

Cross-Validation:
Rock Rap
Rock

0.08
Rap 0.13

Self-Validation Rank Accuracy:

Cross-Validation Rank Accuracy:

Rank (Wt) Rock Rap Rank (Wt) Rock Rap
1(1) 1(1)
2 (0) 0.05 0.05 2 (0) 0.08 0.13
Rank Acc: 0.95 0.95 Rank Acc: 0.92 0.88
Three Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:
Rock Rap Classical Rock Rap Classical
Rock 0.05 0.02 Rock 0.02
Rap 0.05 0.00 Rap 0.13 0.00
Classical  0.01 0.00 Classical  0.04 0.00
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:
Rank (Wt) Rock Rap | Class. Rank (Wt) Rock Rap | Class.
1(1) 1(1)
2(1/2) 0.07 0.05 0.01 2(1/2) 0.10 0.13 0.04
3(0) 0.00 0.00 | 0.00 3(0) 0.00 | 0.00 | 0.00
Rank Acc: 0.96 0.97 | 0.99 Rank Acc: 095 | 0.94 | 0.98




Four Genres:
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Self-Validation Accuracy:

Cross-Validation Accuracy:

Rock Rap Class. Count. Rock Rap Class. Count.

Rock 0.04 0.01 0.16 Rock 0.08 0.00 0.12
Rap  0.05 Rap  0.13

Class. 0.01 0.00 Class. 0.04 0.00

Count. 0.16 0.01 0.04 Count. 0.14 0.02 0.08
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:

Rank Rank

(Wt) Rock | Rap | Class. | Count. (Wt) Rock | Rap | Class. | Count.
1) |079(094| 096 | 079  1(1) |080|088| 092 | 076
2(2/3) [ 0.19 | 0.04| 0.04 | 0.20 2(2/3) | 0.14 |0.13 | 0.08 | 0.22
3(1/3) | 0.03 [0.02| 0.00 | 0.01 3(1/3) | 0.06 | 0.00 | 0.00 | 0.02
4 (0) 0.00 | 0.00 | 0.00 | 0.00 4 (0) 0.00 | 0.00 | 0.00 | 0.00
Rank Rank

Acc: 0.92 | 0.97 | 0.99 | 0.93 Acc: 0.92 | 0.96 | 0.97 | 0.91
Five Genres:
Self-Validation Accuracy: Cross-Validation Accuracy:

Rock Rap Class. Count. Tech. Rock Rap Class. Count. Tech.

Rock 0.01 0.15 o0.01 Rock 0.00 0.12 0.02
Rap  0.05 0.00 0.02 Rap  0.13 0.00 0.10
Class. 0.01 0.00 Class. 0.04 0.00

Count. 0.16 0.01 0.04 Count. 0.14 0.02 0.08

Tech. 0.03 0.03 0.00 0.01 Tech. 0.07 0.04 0.00 0.07
Self-Validation Rank Accuracy: Cross-Validation Rank Accuracy:

Rank Rank

(Wt) Rock | Rap | Class. | Count. | Tech. (Wt) Rock | Rap | Class. | Count. | Tech.
1@ | 078|092 09 | 079 |092 | 1()

2(3/4) | 0.19 | 0.05 | 0.04 0.19 0.05 2(3/4) | 0.16 | 0.18 | 0.08 0.20 0.04
3(1/2) | 0.04 | 0.02 | 0.00 | 0.01 | 0.01 3(1/2) | 0.06 | 0.05 | 0.00 | 0.04 | 0.06
4(1/4) | 0.00 | 0.01 | 0.00 0.01 0.01 4(1/4) | 0.00 | 0.00 | 0.00 0.00 0.07
5(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 5(0) | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
Rank ‘ Rank

Acc: 0.94 | 0.97 | 0.99 0.94 0.97 Acc: 0.93 | 0.93 | 0.98 0.93 0.90




5.3 Results Summary
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Figure 5.3.1: Regular Accuracy for Self-Validation Tests over Different Number of Genres
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Figure 5.3.2: Regular Accuracy for Cross-Validation Tests over Different Number of Genres
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Figure 5.3.3: Rank Accuracy for Self-Validation Tests over Different Number of Genres
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Figure 5.3.4: Rank Accuracy for Cross-Validation Tests over Different Number of Genres
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5.4 Final Demo

For our final demo, we were able to showcase a working prototype of our
automatic music classification application on the Android tablet. We ended up creating
an application with several major functionalities but not the optimal classifier.
Specifically we ran out of time to implement a full covariance Bayesian classifier on the
tablet; for our final demo, the tablet contained a naive Bayesian classifier that performs
almost as well. The user can, first of all, look at a helpful tutorial to understand how to
use our app.

Upon starting the app, a default classifier is quickly trained from a database of
features collected from a website. The site’s owners (we) can constantly update the
website with features from new songs and new or old genres. If the user does not like
the default given genres (rock, rap, classical, country, and techno), then he has several
options. He can modify the downloaded database file directly to add or remove features
from specific songs or genres. He can also decide to make his own classifier genres from
scratch. All he has to do is place all his training music into separate folders based on
genre. At the click of a button, the app can then extract features from these songs
(about five seconds per song) and create classes named after the folders the songs were
organized into. Finally, the user can also load an old, previously saved classifier if he
doesn’t like the default or custom ones. This optionality gives the user freedom to
choose how to organize his library of music while maintaining the efficiency gained

through automatic classification.
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Once the user is satisfied with the genres being used by the classifier (which are
updated readily on the main screen), he can find out the classifier’s performance on an
individual song. He will be able to view how confident the classifier is that the beginning,
middle, and end portions of the song belong to any of the currently loaded genres. But
testing a song on three different portions multiplies the computations by the same
factor. If the user instead wants to organize hundreds or thousands of songs, he can
click a button and let the classifier sort all music files in a directory to subdirectories
labeled with the correct genre, based on just extracting features from the middle of the
song. The user has an easy-to-use interface for browsing through the tablet’s file system,
one we based off of Ol File Manager [5]. If the user mistakenly organizes his library
based on the wrong genres, we also provide an “Unorganize” option, which undoes the
organization by moving all the music files from the subdirectories back to the main
directory.

Thus, the final demo accomplished our goal; we created an app that allows the

user to easily sort his music however he wants with minimal effort.



6 TEAM LOGISTICS
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Week of: Apoorv: Karanhaar: Murium:

01/23: Brainstorm ideas for | Brainstorm ideas for | Join the class
the project the project
(translating other (translating other
language signs vs. language signs vs.
music classification) | music classification)

01/30: Develop proposal Develop proposal Develop proposal
for project for project for project

02/06: Read Tzanakis paper | Read Tzanakis paper | Read Tzanakis paper

02/13: Help finish timbral Help finish timbral Help finish timbral
texture Matlab texture Matlab texture Matlab
implementation implementation implementation

02/20: Start rhythmic Start rhythmic Start rhythmic
content implement. | content implement. | content implement.

02/27: Test naive Bayesian | Finish rhythmic Help test classifier
classifier w/ content features w/ implemented
implemented feats. feats.

03/05: Try naive Bayesian Try SVM classifier Try naive Bayesian
classifier on Android | and full cov. On on Android

Matlab

03/12: Research how to Collect results from | Try classifier w/
import WEKA onto Matlab implement. | different genre
Android music

03/26: Research how to Collect results from | Test classifier w/
import WEKA onto Matlab different genre
Android implementation music

04/02: Implement the basic | Test the classifiers Implement the basic
Android Ul on data partitions Android Ul

04/09: Try feature / Try out alternatives | Add to design of
classifier changes on Matlab Android Ul

04/16: Add to design of Add to design of Add to design of
Android Ul Android Ul Android Ul

04/23: Finish project Finish project Finish project
implement. On implement. On implement. On
Android Android Android

04/30: Default train reads Try neural network | Finish w/ Android
from a website on Matlab tutorial
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Our fundamental breakdown of work was as follows. Karanhaar was in charge of
implementing feature extraction and classifiers on Matlab, since he was also working on
the code for a research project with Professor Stern. Apoorv helped with the Matlab
implementation at roadblocks and figured out which machine learning algorithms to use
for classification. Murium figured out how to make the Android Ul user-friendly and how
to port our project to the tablet. Our contributions were extremely mingled though; we
often met for hours at a time to discuss problems and help each other get past each

other’s roadblocks.
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7 FUTURE WORK

Given more time, we could experiment and implement several options for our
application. Specifically, the next steps for our implementation would be to modify the
features being extracted from music as well as to experiment with other classifiers for
distinguishing the music.

To provide our classifier with more flexibility to adapt to new genres and music,
many of our features can be generalized so as to provide the greatest distinction
between genres. For example, our classifier can compute the spectral rolloff frequency
for several thresholds instead of merely 85%, choosing the threshold which provides
greatest distinction for the genres at hand. Another example of greater adaptability
would be changing the weight of the one-pole low pass filter used while extracting
rhythmic content features.

In terms of classifiers, we have successfully implemented the naive Bayesian, full
covariance Bayesian, and support vector machine for our system. In the future, we
could implement a working classifier using a neural network. Matlab has a Neural
Networks toolbox which allows training and testing over various network parameters,
such as the number of hidden layers of neurons. While we obtained preliminary results
from using neural networks, this classifier certainly has room for further research for the

purpose of music classification.
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Special Thanks to Professor Richard M. Stern for introducing us to this interesting
problem and spending time helping us understand the material behind the paper more

thoroughly.



