
1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abhinav Ganesh: aganesh@andrew.cmu.edu  
Krishna Vudata: kvudata@andrew.cmu.edu 

 
Group #7 

18-551 Spring 2012 
 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:aganesh@andrew.cmu.edu
mailto:kvudata@andrew.cmu.edu


2 
 

Table of Contents 

1. Project Overview ....................................................................................................................................... 3 

1.1 Introduction ......................................................................................................................................... 3 

1.2 Problem/Motivation ............................................................................................................................ 3 

1.3 Novelty/Previous Work ...................................................................................................................... 4 

1.4 Methodology for Solution ................................................................................................................... 4 

1.4.1 Data Set ........................................................................................................................................ 4 

1.4.2 Breakdown of the Code Base ....................................................................................................... 5 

1.4.3 Method ......................................................................................................................................... 6 

2. Object Detection ....................................................................................................................................... 6 

2.1 Keypoint Detection ............................................................................................................................. 7 

2.2 Feature Extraction ............................................................................................................................... 8 

2.3 Matching ............................................................................................................................................. 9 

2.4 Match Grading .................................................................................................................................. 10 

3. Tracking .................................................................................................................................................. 13 

4. Demo ....................................................................................................................................................... 15 

5. Discussion of Results .............................................................................................................................. 18 

6. Addressing Feedback .............................................................................................................................. 18 

7. Future Work ............................................................................................................................................ 18 

8. Work Breakdown .................................................................................................................................... 20 

9. References ............................................................................................................................................... 20 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

1. Project Overview 
 

1.1 Introduction 

 

Augmented Reality is pushing the bounds of integrating what is computer generated with what 

we experience on an everyday basis. This concept has been introduced in video games and 

movies as having many futuristic applications but has yet to be relevant to real world problems. 

Until recently, augmented reality has generally been an impractical technology that can only be 

used with unwieldy headsets and visors backed by clunky hardware that is unable to handle the 

rigors of modern day computing. We intend to bring augmented reality to a more practical 

mindset and take advantage of its potential by utilizing the portability and computing power of 

our Android powered tablets to bring a more real time and useful user experience. We 

demonstrated the practical use of augmented reality in the form of a mobile game. The concept of our 

game is a scavenger hunt where one user marks locations and leave clues while other users must find 

these clues by viewing them on their mobile devices. These clues only exist virtually and are 

displayed as an overlay on real world artifacts. 

 

1.2 Problem/Motivation 

 

Augmented reality essentially involves finding some landmark or marker and then using the 

location of this marker to overlay video with realistic augmentations e.g. insert objects and 

pictures which seem realistic but do not actually exist. 

We feel that in order to make augmented reality a more 

practical technology we must move away from 

classical augmented reality technology that uses 

specialized preset markers like the one in Figure 1.  
Preset markers don’t provide the flexibility or 

immersive user experience that natural landmarks can. 

Given the relatively new nature of markerless 

augmented reality, we would like to forge our own 

path in the domain by creating a fun and challenging 

game that showcases the potential everyday 

applicability of augmented reality.       

 

  

Figure 1 – A typical AR marker used by 

traditional AR technologies 
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1.3 Novelty/Previous Work  

 

Though many groups in the past have done projects relating to pattern recognition, we are 

looking to apply this in a very different way. Due to the increase in flexibility and computing 

power (inherent with having a tablet and the Android platform) we are able to execute more 

processes in real-time. Due to limitations with hardware in previous years, groups were not able 

to experiment with up and coming technologies like augmented reality. Our idea of exploring 

this technology in the form of an interactive game also provides a unique and fun twist to our 

project. In addition, our usage of natural landmarks is novel because many AR technologies are 

still limited to using preset standardized markers. 

 

1.4 Methodology for Solution 

 

The main problem involved in performing augmented reality is finding and recognizing the 

natural landmark i.e. object detection. There are several different algorithms which perform 

object detection, the following subsections provide a high level summary of how the object 

detection algorithms were tested and compared.  

1.4.1 Data Set 

 

In order to test our object detection algorithms, we compiled a set of images and videos of 

landmarks in various camera poses. These landmarks were chosen to be items that would be 

found in a natural setting (that a user might want to use in a scavenger hunt). Hence these 

landmarks need to be detailed enough that they can be recognized and distinct. The types of 

landmarks we chose were posters, labeled objects (i.e. ketchup bottle), and distinct patterns.  Our 

choices were also motivated by having prior knowledge as to what types of landmarks worked 

well with the QCAR framework (this was explored in Lab 3).  
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Here a few samples of the different landmarks we tested on. 

 

 

 

 

 

1.4.2 Breakdown of the Code Base 

 

The object detection and tracking algorithms that we used were written in C++. We greatly 

leveraged the OpenCV C++ library because of our familiarity with the library (due to prior labs) 

and due to the numerous object detection algorithms it provides. OpenCV is also a very active 

open source library making it a very well tested and reliable source. The code we implemented 

used the various image processing and object detection algorithms as building blocks to 

construct an augmented reality application. We will go into more detail later on as to how these 

OpenCV functions were combined. 

 

The user interaction and game logic of the Scavenger Hunt was implemented on the Android 

platform. The Android platform provided us with an easy way to build a user interface on top of 

the native detection and tracking. More precisely, Android provides a Java UI framework that we 

used to construct the Scavenger Hunt application. 

 

We also utilized Adobe Photoshop to design some of the custom UI elements in our application 

(such as backgrounds, widgets, and icons).     

 

Figure 2 Figure 3 

Figure 4 
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1.4.3 Method 

 

The objective of our testing was to determine which object detection algorithms to use. Object 

detection is a process comprised of keypoint detection, feature extraction, feature matching, 

and match grading. There are several different ways to implement each of these steps. In order 

to test these various implementations we mixed and matched algorithms across these key steps 

and gathered performance statistics such as frame rate and time taken. In the end there is also a 

qualitative assessment (of the augmented reality experience) necessary to choose which 

implementations would work best and provide the best user experience.             

2. Object Detection 

 

Object detection is the task of detecting instances of semantic objects of a certain class (Object 

Detection, 2011). In essence this is the main logic in an augmented reality application. In relation 

to our scavenger hunt we need to be able to detect the landmarks specified by a user so we can 

augment them appropriately.  

 

For the purposes of this discussion, the trackable refers to the image of the landmark that we are 

trying to detect and the frame is the image we are searching in. As mentioned previously, object 

detection can be broken down into multiple steps. .  

 

 

 

Figure 5 outlines these steps as a dataflow pipeline. The first step of object detection is to reduce 

the trackable and the frame to a set of meaningful points that describe the unique features of the 

image (keypoint detection). The next step is to describe these meaningful points as a feature 

vector (feature extraction). The next step is to search for the trackable in the frame by matching 

the trackable feature vectors with the frame feature vectors (matching). The final step is to rate 

Figure 5 – Object Detection Pipeline 
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the matches and determine if we have successfully found the trackable (match grading). Now 

we will get into the details of each of these steps.            

 

2.1 Keypoint Detection 

 

Keypoint detection is the process of reducing the trackable and the frame to a set of interesting 

points that specify the location of unique features in the image.  

 

The algorithm that we decided to use was the SURF (Speeded Up Robust Feature) detector. The 

specifics of how SURF works are outside the scope of this paper, but the general idea is that 

SURF determines points of interests or keypoints by looking for distinct locations in the image 

such as corners, blobs, and t-junctions (Bay, Tuytelaars, & Lucl). The idea is that these keypoints 

are resistant to scale, noise, differences in illumination, orientation, and partially invariant to 

affine distortion. SURF takes a variety of parameters which tweak the detection process, we 

found that the default values recommended by OpenCV to be quite effective. An example of 

keypoint detection in an image can be seen below in Figure 6. 

 

 

 

We also tried many other detectors apart from SURF. These other detectors have similar goals as 

SURF (which are to find points resistant to affine transformations) but differ in how these goals 

are attained. We found some detectors to be very fast but they lacked in accuracy or robustness. 

A comprehensive list of these results can be seen in table A. In the end we chose to use SURF 

because it provided the greatest combination of accuracy and speed.  

Figure 6 – Trackable 

image with detected 

keypoints marked 
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Keypoint Detector/Feature 

Extractor 

FPS (640x480 px) Time taken to find all 

keypoints 

SURF/SURF 0.476 672.3 ms 

SIFT/SURF 0.447 1104 ms 

STAR/SURF 5 53 ms 

MSER/SURF 3.33 108.667 ms 

GFFT/SURF 1.875 105 ms 

FAST/SURF 1.875 9 ms 

Table A 

*SIFT (Scale-Invariant Feature Transform) 

*MSER (Maximally-Stable Extremal Region Extractor) 

*GFFT (Good Features To Track) 

*FAST (Features from Accelerated Segment Test) 

 

2.2 Feature Extraction 

 

Feature extraction is the process of describing these aforementioned meaningful points as a 

feature vector.  

 

The algorithm that we decided to use was again that of SURF. The SURF feature extractor works 

by computing a histogram of local gradients around keypoints. SURF speeds up the computation 

time by using integral images and only using a 64-dimensional feature vector (Bay, Tuytelaars, 

& Lucl). In essence the feature vector describes the region around the keypoint, capturing what is 

interesting (or its property of being resistant to affine transformations) about the keypoint. Again 

the parameters we decided to use were default values provided by OpenCV.  

 

Similar to what we did with keypoint detection, we tried other feature extractors. Again we 

found some feature extractors to be fast but lacking in accuracy. A comprehensive list of results 

can be seen below in table B.             

 

Keypoint Detector/Feature 

Extractor 

FPS (640x480 px) Time taken to find 

descriptors 

SURF/SURF 0.476 1227.67 ms 

SURF/SIFT 0.361 1774 ms 

SURF/BRIEF 0.469 39.33 ms 

Table B 

*BRIEF (Binary Robust Independent Elementary Features) 
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2.3 Matching 

 

Now that we have transformed both of the trackable and frame images to sets of feature vectors, 

we perform a matching operation to try to determine which frame feature vectors could 

correspond/be the same as trackable feature vectors. Performing the matching essentially equates 

to finding the “nearest” feature vector in the frame feature vector set for each of the trackable's 

feature vectors. The nearness of a feature vector is determined using a standard distance metric in 

the vector space; in our case we used Euclidean distance. The intuition behind this step is that if 

the trackable landmark exists within the frame image, then the frame should contain feature 

vectors which closely resemble the trackable feature vectors. So in this step we generate a 

potential matching and submit it for grading at the next step. 

 

The matching can be computed in a brute force manner, where a distance is calculated for each 

frame feature vector and the closest one is chosen. If there are n trackable feature vectors and m 

frame feature vectors, this operation takes O(nm) time. This is pretty expensive, especially when 

the trackable or frame contain a large number of keypoints. We instead perform an approximate 

nearest neighbor search for improved performance. The approximate search is done by storing 

the data into kd-trees. The advantage of this structure is that it serves as a sort of index of the 

vectors, allowing for efficient searching without necessarily viewing every element. At a high 

level, kd-trees partition the vector space in an incremental fashion such that entire partitions can 

be ruled out of the search at a time. This still offers worst case O(m) search time if we want to 

find the guaranteed nearest neighbor, but much better performance can be achieved by 

heuristically performing an approximate search. This is done by generating a fixed number of 

trees which are constructed by randomly choosing a fixed number of partitions and searching the 

trees in parallel for a closest neighbor. This does not necessarily return the optimal solution i.e. 

the guaranteed nearest neighbor, but in practice it performs reasonably well and many orders of 

magnitude faster. As seen in table C, the FLANN matcher performs 5 times faster than the brute 

force Matcher. This algorithm of performing approximate nearest neighbor searches in higher 

dimensions is implemented in the OpenCV FLANN (Fast Library for Approximate Nearest 

Neighbors) interface. 

 

Matching Algorithm FPS (640x480 px) Time taken to complete 

matching 

Brute Force Nearest Neighbor 0.297 1046.67 ms 

Brute Force 2-Nearest Neighbor 0.33 1103.33 ms 

FLANN Nearest Neighbor 0.395 202.33 ms 

FLANN 2-Nearest Neighbor 0.476 212.33 ms 

Table C 

*Measurements were taken assuming SURF to be both detector and descriptor algorithm 
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Below is an example screenshot of SURF features which have been matched from the trackable 

on the left to the frame on the right. 
 

 

 

 

 

 

 

 

 

 

There are various methods to perform matching beyond simply finding a single closest match. 

OpenCV provides 3 separate methods, DescriptorMatcher.match(), 

DescriptorMatcher.knnMatch(), and DescriptorMatcher.radiusMatch(). 

These methods respectively correspond to a closest neighbor search, k-nearest neighbor search, 

and a bounded radius search. Retrieving the closest match performs reasonably well, but after 

some experimentation, we found that k-nearest neighbor with k = 2 did not take too much extra 

time and provided additional information which was very useful for filtering and grading the 

matches in the next step. Radius match can be more efficient than k-nearest neighbor (especially 

when using the FLANN index as opposed to brute force), but we found it difficult to set a 

threshold which worked well across different landmarks. Thus we chose 2-nearest neighbor. 

Note that this results in a mapping of two frame feature vectors for each trackable feature vector. 

2.4 Match Grading 

 

Now that we have extracted features from the trackable and frame as well as computed a 2-

nearest neighbor matching on the sets of feature vectors, we grade these matches to determine if 

it is a good set of matches and we have indeed found the trackable within frame. Grading is done 

in a two-step process. First, we filter the matches according to some preset metric to retrieve a 

set of “good” matches. Then we compute a homography matrix between the “good” matched 

keypoints to determine what affine transformation must be applied to the trackable image to 

warp it into the shape and orientation that it has within the frame. If the homography matrix 

“fits” the data well (as will be discussed in more detail, we have methods to rate how well a 

mathematical model such as a homography transformation fits a set of data) i.e. the “fit” is 

greater than some threshold T, then the match is considered an accurate match and the trackable 

Figure 7 – The result of the matching operation 
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object is said to have been detected. Otherwise the trackable is declared to not have been present 

in the image. 

 

Let us go into more detail as to what it means to filter the set of 2-nearest neighbor matches into 

a set of “good” matches. The idea here is to filter out matches which seem too large in distance 

or too ridiculous to possibly be an actual match. Just because the distance from vector A to 

vector B is less than the distance to vector C does not mean that vector B is almost equal or close 

to vector A. Initially, we implemented a sort of radius matching/filtering in which the threshold 

would depend on the trackable in some way. Initially our algorithm was to retrieve the minimum 

distance match, then only keep those matches with a distance less than k*min_dist. We tried 

setting k to values from 1-10, but we did not get very reliable performance this way. The 

problem was that there was too much variance in the data which the homography matrix was 

being computed on in the next step, which resulted in it being difficult to establish a reliable fit 

threshold T. So we implemented a different match filtering algorithm that reduced the variance 

greatly. We realized that what we really wanted to accomplish by filtering the matches was to get 

a set of matches which can all be said to be accurate matches or inaccurate matches (this 

accuracy is calculated in the next step when computing the homography). Now, take the case of 

knowing the 2 nearest matches for a given trackable feature vector. Let vector A be the trackable 

vector, B and C be the 2 frame feature vector matches for A, and finally let B be closer to A than 

C. Note that there are two possible configurations here. Either B is clearly closer to A than C is, 

or it is not clear that B is a much better match than C. 

These two cases are pictured in figures 8 and 9. 

 

 

If we throw out matches where it is not clear that B is a much better match than C, then the 

resulting set of matches can be confidently said to be a consistent set of matches, we have no 

ambiguity in knowing whether some of these matches may be good but some of them aren't. 

With no ambiguity, the next step of calculating fit can be done much more precisely. In practice 

we found this method of filtering to result in a much larger discrepancy between the fit for when 

the object does exist in the frame as opposed to when it doesn't. 

Figure 8 – B is much closer to A than C Figure 9 – It is not clear that B is a much 

better match than C 
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Finally, once we have our set of filtered potential matches, we compute the homography matrix, 

a matrix which details exactly how to transform pixels in the trackable image to the 

corresponding ones in the frame. This is essentially the problem of seeing how well a given 

mathematical model fits the given data. In this case, the mathematical model is a homography 

matrix and the data is the set of filtered matched keypoints. This can be done by using a method 

called RANSAC (RANdom Sample Consensus). Basically, RANSAC is method which robustly 

finds the parameters for a given mathematical model which result in the best fit of the given data. 

Exactly how RANSAC works is outside the scope of this paper, but the important thing to note 

here is that RANSAC will output a percentage indicating what percentage of the data is 

accurately represented by the best fit model. So finally, we can determine if the object was 

successfully detected by judging if this percentage of “inliers” was greater than some threshold. 

Now we can see that if the set of filtered matches is mostly consistent, then this makes it easier to 

determine if the data fits or doesn't fit the homography transformation model. 

 

Once we know the homography matrix which relates points in the trackable coordinate space to 

the points in the frame coordinate space, we can use this matrix to transform any 2D image or 

structure and overlay it in frame to make it seem like it is actually overlaid on top of the 

trackable landmark in reality. In Figures 9 and 10 below, you can see the result of transforming a 

box the same size as the trackable image and overlaying it on the frame image. 

 

 

Insert homography pix 

 

 

 

 

 

 

 

 

 

 

  

Figure 10 – Bounding box 
Figure 11 – Warped Bounding 

Box in 640 x 480px frame 
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The following is a pseudocode implementation of the object detection pipeline discussed thus 

far. In the context of detecting a landmark in a video or live video feed, we would process each 

frame of the video/feed at a time and input the image of the landmark as well as the video frame 

into the object detection pipeline. 

 
int processFrame(Mat& frame) { 

     // object detection pipeline: 

 // extract descriptors from video frame 

 vector<KeyPoint> frame_kpts = getKeyPoints(frame); 

 Mat frame_kpt_descriptors   = getDescriptors(frame, frame_kpts); 

 // match to test if object present in frame 

 vector<DMatch> matches = getMatches(trackable_descriptors, 

frame_kpt_descriptors); 

 // Do initial thresholding to grade the match 

 // Compute homography using RANSAC error metric 

 // (RANdom SAmple Consensus) 

 // to further grade the match 

 if (good_match) { 

   // found Trackable! 

  } 

 } 

} 

3. Tracking 

 

As noted from the statistics mentioned in the previous sections, object detection is a 

computationally expensive and slow process. Running on a Motorola Xoom tablet with a 1 GHz 

dual core processor and 1 GB of RAM resulted in a frame rate of only .275fps! There is, 

however, one big adjustment we can make to the object detection pipeline to greatly decrease the 

expensive computations that we do. This is based on the observation that once we have detected 

the trackable within a video frame, it is unnecessary to go through the entire process of object 

detection again. All that really matters is the end result of object detection, the keypoints in the 

video frame that correspond to keypoints in the landmark we are looking for. If we can figure out 

where the pixels corresponding to the keypoints in the previous frame moved in the next/new 

frame, then we will have computed the keypoints identifying the landmark without the going 

through the computationally expensive process of feature vector extraction, matching, and 
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grading. This concept of tracking how pixels in an image move to a new position in a subsequent 

image is called optical flow. By applying optical flow techniques to the detected keypoints of a 

landmark within a frame, we can track where these points move frame to frame, and thus keep 

track of where the landmark is from frame to frame, all without the cost of going through object 

detection again. 

 

The actual algorithm we use to track keypoints is the sparse iterative version of the Lucas-

Kanade optical flow estimation method in pyramids. We chose this algorithm because it is 

designed to effectively track a sparse set of pixels, as is the case with keypoint tracking. This 

algorithm is implemented in the OpenCV Motion Analysis and Object Tracking module 

(OpenCV documentation, 2012). At a high level, a basic explanation of the Lucas-Kanade 

algorithm is that instead of considering single pixels at a time, it looks at small regions of pixels. 

Assuming that each region has not drifted much from one frame to the next, it performs a search 

within a bounded area in the new frame, centered at the last known location. The point to which 

the region has moved to is determined using a least squares error criterion. 

 

To add augmented reality to the frame, we can use the tracked point information to infer a 

general location of the trackable within the frame and place the augmentation. But this does not 

change the orientation of the augmentation or tilt it as if it is truly overlaid on top of the 

landmark. There is an additional piece of information required to perform realistic augmentation 

on top of the trackable landmark, the homography matrix. We need a homography matrix 

relating the points in the previous frame to the next frame. Given the warped overlay image 

which would be overlaid on the previous frame and a homography matrix relating points in the 

previous frame to those in the next frame, we can apply the homography matrix to the warped 

overlay to get a new overlay image. To get this homography matrix, we compute the 

homography matrix between tracked points from the previous frame to the next frame. 

 

One problem that we noticed with repeatedly applying a homography transformation to an image 

was that it resulted in a blurring effect on the image. To handle this, we premultiplied the newly 

computed homography matrix with an accumulator homography matrix to compute an overall 

homography matrix. 

 

Essentially, the following relation is true for the homography matrices from frame to frame. 

[
  
  
 

]              [
 
 
 
] 

Where    is the homography matrix from frame n-1 to n (the tilde means that value is ignored). Thus 

we can clearly see that an overall homography matrix is given by the equation 

                      
 

This overall homography matrix can be applied to the original 2D augmentation image to get the 

overlay image. 
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The overall speedup achieved by implementing tracking versus just running object detection all 

the time is fairly significant. After setting the key point detector and descriptor with SURF and 

using FLANN 2-Nearest Neighbor as the matcher, we compared the frame rates for just running 

object detection versus object detection and tracking. The results are shown below.   

 

 

Method Specified FPS (640x480 px) 

Pure Object Detection .476 

Object Detection with Tracking 8.765 

Table D 

*Frame Rates calculated on a laptop with a dual core 2.1 GHz processor and 4 GB RAM 

 

Clearly, by combining tracking with object detection, we are able to achieve much faster frame 

rates.   

4. Demo 

 

For our demo we asked volunteers to play our Scavenger Hunt game which was present in the 

form of an Android application. The various screens and game rules will be detailed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the screenshot above we have the introductory splash screen. Here we give the user the option 

to play the game or get access to some other basic functionality that is typically found in Android 

applications. 

  

Figure 12 
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In the next screen we give the user the option of either creating a scavenger hunt or joining one. 

In the screen below, we provide the user with functionality to create a hunt. 

 

 

We can see above how the user has the ability to instantiate landmarks. This is done by taking a 

picture of the landmark or loading an image file. 

  

Figure 13 
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In the above screenshot we can see how the user has options to augment the landmarks that they 

have marked as clues with text. Once this process is complete the user has the option of adding 

more clues to the hunt or finishing the process and giving it the next player to find the clue.  

 

 

 

In the screenshot above we can see what a person who is joining the hunt and looking to find 

clues would see. The user has the opportunity to guess at landmarks by taking pictures of them 

and submitting their guesses. The user then receives feedback notifying the user of being correct 

or incorrect. If they are correct they have the opportunity to see the first players augmented text. 

The game ends when all of the hidden clues are found.  

 

Due to the limited space in the demo room we decided to print out pictures of various images in 

order to simulate the action of finding unique natural landmarks and marking them as clues. 

Figure 14 

Figure 15 
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5. Discussion of Results 

 

In this section we would like to discuss some of the errors we found and some of the steps we 

took to mitigate these errors. One of the first errors we found was that during tracking, some of 

the keypoints would drift erratically, hence causing the homography matrix to be calculated 

incorrectly. Another problem we faced was that we were not properly filtering out matches 

during the object detection. In order to address this problem we implemented the k nearest 

neighbor algorithm to filter more effectively. Another problem we faced was with the 

implementation of various detectors (in our object detection pipeline). We were not able to get 

the robust results that SIFT and SURF were providing and thus chose SURF as the faster but still 

robust keypoint detector.  

6. Addressing Feedback 

 

One of the suggestions provided to us was to try some non OpenCV implementations for our 

object detection and tracking algorithms. As we looked into these implementations we realized 

that integrating non OpenCV code with OpenCV code was not going to be a trivial task. This 

realization also coincided with the fact that we had to devote a large portion of our resources 

towards Android programming. We had an especially heavy emphasis on Android programming 

because we needed to program game logic into our application that would seamlessly hook into 

the more signal processing oriented OpenCV functionality. Thus we relegated this task to future 

work. 

 

Initially we had decided that when looking for clues as part of our scavenger hunt we were going 

to run our object detection code in real time. Once we realized that this process was going to be 

very computationally expensive and slow, we received suggestions to use a more efficient 

approach that takes advantage of the GPS capabilities of the Motorola tablet (by turning on the 

heavy object detection algorithms only when you are close to the clue). We considered this 

suggestion but were concerned about getting enough resolution with the GPS. Thus we decided 

to instead change the paradigm of the game to avoid having to run the object detection code all 

the time. By making the second player (who is looking for clues) take pictures of what he thinks 

may be the clue and submitting the guess, we were able to keep the quality of the user experience 

high. 

7. Future Work 

 

Currently our object detection with regards to the descriptors and extractors we are using can 

definitely be improved. One of the ways to improve their effectiveness is by tweaking the 

parameters of various descriptors and extractors (includes SURF as well as other descriptors and 

extractors mentioned earlier). As mentioned earlier, we believe that we could try non OpenCV 

implementations of the aforementioned algorithms. These implementations might have been able 

to give us better performance or results. Continuing with this trend of trying different algorithms 

and methods we would also like to explore object detection in the context of machine learning as 

opposed to the matching pipeline. By having the opportunity to train on some of the images that 

we gathered we may have been able to increase the accuracy and robustness of our results. 
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Another potential optimization that we didn’t have a chance to look into would be to make use of 

GPU’s. Because GPU’s can do calculations in a more efficient manner than CPU’s we could 

offload some of the calculations necessary for object detection on to the GPU thus making our 

object detection process much faster. 

 

Now that we have addressed some of the algorithmic changes with regards to our application 

let’s talk about the potential for changes in terms of overall game logic and in game features. We 

had already alluded to this in the feedback section but the use of GPS would be very useful to the 

game structure. By having a GPS component, the player who is looking for clues can have a 

better idea as to where to look for hidden clues. This could be implemented as some sort of hot 

and cold meter that would assist the player. One of the concerns with having this GPS 

component would be getting enough resolution if the area of the scavenger hunt is very small 

like a room for example. One of the possible solutions that we didn’t get a chance to explore was 

the use of differential GPS. By using a separate device in a fixed location we may be able to 

gauge distances in a small room by having the main device get its direction with reference to the 

separate fixed device. Apart from the GPS component we would also like to have the game 

structured so that both players in the game have separate tablets (since we would like to simulate 

a real life scavenger hunt). This would require communication between tablets and a 

reprogramming of the application such that both tablets could play the same game despite being 

on two different devices.  

 

Building upon the future work that was mentioned previously we also felt that there could be 

more done with regards to how the clues in the hunt were being made and how we could add a 

dimension of competitiveness in the game. With regards to the clues currently we can only 

augment text but eventually we would like to be able to augment 3-D clues and potentially have 

more complex clues (such as slider puzzles) that would add a level of difficulty to the hunt. 

Because we are creating a game, we would like to eventually come up with a scoring system that 

would allow multiple users to join hunts and record their scores online and compare their 

performances. We see this as something that could be done by implementing a server that could 

communicate the necessary information.         
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8. Work Breakdown    

 

Week Tasks Both Primar

y 

Secondary 

2/27 Research existing AR libraries/Collect images for 

testing 

X   

3/5 Research existing AR libraries/Collect images for 

testing 

X   

3/19 Test chosen libraries on data and finalize algorithms 

to be used 

 K A 

3/26 Finalize implementation of algorithms for object 

detection and tracking 

 K A 

4/2 Prepare for Mid-Project Report X   

4/9 Port algorithms to Android/Develop UI  A K 

4/16 Port algorithms to Android/Develop UI  A K 

4/23 Test on Android Platform X   

4/30 Clean up code and prepare for demo/final report  X   
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