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1 Introduction

1.1 Abstract

This report, together with our project’s code can be found on the CD. Instructions are
included inside on the setting up of the environment and running the code. The source
code is also available online, for browsing at https://github.com/aurofable/18551 Project

As our capstone project for 18-551, we implemented an Optical Character Recogni-
tion (OCR) system on the android platform. At the end of 6 weeks, our final demo was
able to accurately decode digits 0-9 with an approximate accuracy of 96%, as shown by
our cross-validation results. This was translation invariant, and slightly robust to noise.
This report will give an introduction to our project, followed by an elaboration of our
algorithm design and our training and testing results. We will conclude a rundown of
final demo implementation, as well as some challenges and possible future work.

1.2 Problem

With the increasing power and rise in use of smartphones and tablets, the informational
world has opened up tremendously. However, some of the less-widely known, yet critical,
processes required for a large variety of applications focuses on visual input to generate
and manipulate data. One such process is optical character recognition, a method used
to convert captured image data to ASCII text. As there are several different types of
OCR techniques, a large part of our project focused on writing, testing, and comparing
the various methods to better understand which types work well in different situations.
Another significant portion of our project revolved around using the Android-powered
Motorola XOOM tablets to implement these OCR methods. We used the tablet cameras
to obtain input images, pre-processed them before feeding them to the OCR code, and
displayed the results on the screen for debugging and user convenience. While certain
processes of our project worked better than others, there is still plenty of room to continue
development, potentially even using our results for a more complex Android application.

1.2.1 Background

The problem we have chosen to address is that of text recognition using computer vision;
more specifically, mobile embedded vision. As mobile devices gain increasingly powerful
processors and access to quicker networks, data input becomes the bottleneck. A typical
user on a smartphone virtual keyboard has an input rate of 15 bits/s [2]. The camera,
a feature found in nearly every mobile device today, is the highest-bandwidth input
device. Here, image extraction and recognition become increasingly crucial procedures
as mobile applications develop. The application we selected to work on dealt with image
processing, focusing mainly on OCR.
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1.2.2 Specifics

Today’s world is filled with information that consumers generally take for granted,
whether traffic signs, menu items, or instructions pertaining to shopping sales, appli-
ances, and many other details. While people assimilate large amounts of textual data
very quickly, easily translating visual input to communicated information, technology
has difficulty relating images and text. This poses a problem for a variety of potential
applications ranging from scanners, data organizers, translators, and other such helpful
tools. In the end, however, a simple, unnoticed consumer means of data conversion be-
comes a far more critical and lengthy process.

1.3 Proposed Solution

1.3.1 Background

There are currently a wide variety of optical character recognition methods, and many
of them are used in more complex mobile applications.

1.3.2 Novelty

While text recognition is not a revolutionary process, our project sought to compare sev-
eral different optical character recognition methods in relation to the Motorola XOOM
mobile tablet, powered by Android. We emulated and tested a variety of pattern recog-
nition processes in Matlab and on the tablet itself, amplifying the success rate of our
methods with pre-processing segmentation algorithms and displaying the results for ver-
ification on the tablet’s screen.

1.4 Previous 18-551 Work

So far, no previous 18-551 group has compared the variety of OCR methods we have,
and none of them have worked with the Motorola XOOM tablets before. There were,
however, sections of a few past projects that streamlined our outlook on several processes.

1.4.1 Spring 2011 Group 6

The Automatic LP Digitalization group worked with OCR to convert album labels in
their project. While our project focused far more heavily on different OCR methods, we
were able to use some of their experimental findings to anticipate potential problems that
could have occurred during the debugging phase. For example, they noticed that the
characters ”EX” were being read as a single letter due to the characters’ proximity. We
were able to avoid this issue, for the most part, by choosing to convert regulated inputs,
though a more robust solution would involve focusing on a segmentation algorithm that
windows sections of input data more carefully.
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1.4.2 Fall 2007 Group 3

The Cursive Handwriting Segmentation and Character Recognition group had several
steps we considered when developing the majority of our project. Because they focused
on cursive handwriting for input, their segmentation methods differed from ours, as they
needed to break each letter without using the typical whitespace between characters.
Another detail from their project we looked at was the OCR they implemented: SVMs,
one of the methods we used as well.
This group also used thresholding to convert input images to grayscale, and normaliza-
tion to eliminate slanting and skew from different inputs. We used several of these steps
in our own project, as will be discussed in later sections. They also implemented a few
processes to improve efficiency, including zero padding and thinning, methods that, while
potentially convenient for our project, serve a much better purpose for distinguishing
cursive handwriting.

1.4.3 Other Handwriting Projects

Group 9 of Spring 2005 converted handwriting to ASCII characters, and they focused
more on the handwriting part of the process, allowing strokes to be part of the input.
Since our project focused on computer-generated text, we were only able to extract a
few helpful details from their project, parts mentioned in the previous section
Group 5 of Spring 2003 used methods similar to those of Group 3 of Fall 2007; they
have some notes on character segmentation that we looked at in order to be prepared
for correctly segmenting the characters ’i’ and ’j’ as one each, rather than two due to
the dots.
Group 8 of Spring 2002 also worked on converting handwriting to ASCII text; their
project was very similar to that of Group 5 in Spring 2003.

1.4.4 License Plate Recognition Projects

Group 8 in Spring 2003 worked on reading and recognizing license plates. While this
was clearly different from our project, their character recognition system implemented a
technique called Adaptive Binarization to enhance text and background contrast. They
also seemed to use a different character segmentation method than the handwriting
groups, one that partially influenced some of the decisions that went into finalizing our
own segmentation process.
Group 18 in Spring 2000 also worked on license plate recognition; their methods were
very similar to those of Group 8 in Spring 2003, but they implemented a Histogram
Equalization that may prove convenient for future work on our project.
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2 Algorithm Design

In this section, we will elaborate on the design of our algorithm, and our rationale
behind our design choices, as well as the our procedures and results and brought us to
our conclusions.

2.1 Overview

Figure 1 shows the information flow through our core algorithm. This core algorithm is
responsible for taking in images, and returning the text present in the image. As can

Figure 1: Information flow through Core Algorithm

be seen, we broke up our core algorithm into four main components: Pre-Processing
/ Segmentation, Feature Selection / Extraction, Dimension Reduction and Classifica-
tion. This approach had been used by other teams also implementing OCR previously
[6, 7, 12], and we decided to use it based on its simplicity and modularity.
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2.2 Principal Considerations

Due to the nature of our project, we were constrained by both time ( 6 weeks), as well
as resources (limited number of approaches to try, platform specifications). Our core
considerations, too, in choosing algorithms were:

Simple to implement Given our short time frame, we were looking for algorithms that
would be simple to implement, and quick to debug. Simple algorithms would also there
was a greater chance of successfully porting it over from MATLAB to Java to C, or in
some cases a built in function might already exist.

Modular Our project had been set up to be modular, with different components being
able interchangeable. This allowed us to quickly experiment with different algorith-
mic components and gauge the accuracy of that model. Naturally, it was much more
beneficial if the algorithm was modular to fit into our development framework.

Memory Efficient The Android platform does not provide large amounts of memory to
its applications. Given that we were also dealing with large bitmaps sometimes, it was
crucial to have a memory efficient algorithm to prevent Out of Memory Errors.

Fast, Minimum Computation We wanted our algorithms to run quickly, and efficiently.
In the long run, we hoped to scale up such that we could work on live data.

Robustness We wanted our OCR engine to be robust to noise, and having algorithms
that gracefully deal with this would be a plus.

We then used these considerations as a metric in choosing which algorithms to include
into our project. As a benchmark, all testing of the algorithms in this section was
done with the same dataset: Numbers 0-9, Binary images of varying font and rotation.
Training was done on 50 samples, and testing was done on 20 samples, of each number.
Figure 2 are some examples of the characters from the training dataset.

2.3 Pre-Processing / Segmentation

When choosing components, we first decided on Pre-Processing / Segmentation, as it
was the initial step before any computation, and would define the format of the data
we would be training on. We initially experimented with connected component based
methods [37, 41], whereby we would be applying local thresholding for binarization, and
detecting blobs of similarly textured grayscale as objects. Essentially, we were using
the gray-level difference of shapes and sizes to make a match. We found it worked
relatively well, but was susceptible to noise and illuminating conditions. Subsequently,
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Figure 2: Sample of Training Dataset used. Binary images of varying font, and rotation.

we tried another approach. This time we implemented a morphological approach [42],
essentially doing edge detection. We would form a weighted grayscale and identify the
edges using a morphological gradient operator. Use of dilation and erosion allowed us to
remove salt and pepper noise, as well as form candidate regions for segmentation. We
also found that using adaptive thresholding worked best for the binary edge image. The
algorithm became much more robust to noise and orientation, but was still suscpetible
to illumniation, as shown in the picture below. This was chosen as our segmentation
algorithm for the project

Figure 3: Morpohlogical Image Segmentation with Strong illumination from left, Above:
Image, Below: Detected text
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2.4 Dimension Reduction

We next turn our attention to Dimension Reduction. Dimension Reduction tends to have
some overlap with feature selection and extraction, but we decided to seperate it out, to
keep our project modular. Dimension Reduction was meant to ensure that the inputs
of the feature vector to the classifier would be uncorrelated, and that the dimensions
would be reduced to a set number. The idea was to decrease computational complexity
of the classification algorithm when training, by using a smaller feature vector that still
captured the majority of variance in the dataset.

2.4.1 Linear Discriminant Analysis

Linear Discriminant Analysis attempts to model the difference between the classes of
data, by taking into account class labels and maximizing the between-class scatter un-
der the constraint that the within-class scatter is minimized. This results in compact
clusters for each class, as far as possible from each other. To test LDA, we attempted to
reconstruct a test image, and measure the mean squared error compared to the original
image. LDA performed well, with almost no reconstruction error.

2.4.2 Autoencoder

Figure 4: Structure of an autoencoder. Implements Nonlinear PCA by attempting to
learn the function hW,b(x) ≈ x
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Autoencoders are essentially a way of implementing Nonlinear PCA. This is done
using a neural network applying backpropagation, where the hidden layers are used to
provide a nonlinear reconstruction. In order to train it, we set the target values to be
equal to the inputs, such that the network attempts to learn an approximation of the
identity function, so that the output is similar to the input. By varying the number of
output nodes (number of nodes in Layer L3, we can select the number of basis function
to use (similar to PCA in how we can choose how many eigenvectors to use). As such,
since the number of hidden units is much less that the input feature vector, Layer L1,
the network learns a compressed representation of the input. By imposing a sparsity
constraint on the network, as well as implementing a locally competitive algorithm,
could potentially provide us better, more meaningful representations too. Varying the
number of hidden layers also affects the output - multiple sigmoid hidden layers give us
our nonlinear representation. For our project, we tested the autoencoder to see if there
was significant benefit using a non-linear approach. We ran the data through a 5-layer
autoencoder. The representation we got out did not significantly improve beyond PCA.

2.4.3 Principal Component Analysis

PCA performed well, and is typically the most basic dimension reduction method to use.
For our purposes, we found the reconstruction error to be 1% or less, similar to LDA.

After our testing, we decided to utilize PCA, due to its simplicity and modularity. It
also had inbuilt functions in OpenCV and Matlab, allowing it to be quickly implemented.
The autoencoder might have performed well after additional research (We only tested
it thrice), but given the time constraints, and seeing that it did not bring significant
immediate benefit, plus we would essentially have to write the neural network on Android
ourselves, made us decide on using PCA.

2.5 Feature Selection / Extraction

In OCR, feature selection is key, and is closely tied to classification. For this section,
we will be decribing some of the features we opted to use [33, ?]. The analysis of their
effectiveness is in the Results section.

2.5.1 Vertical & Horizontal Projections

Figure 5 shows the vertical and horizontal projection feature. Essentially, it is taking
a spatial histogram of the number of black pixels row by row, and column by column.
The feature vector is then the concatenation of both histogram values. Initial results
showed this feature having a 6̃0% accuracy on the test dataset mentioned above. This
has the advantage of being simple, and quick to compute. However, it is susceptible
to rotation, as a rotation would shift both histograms by some amount. In addition, it
is also susceptible to illumination. Being in a shadow tends to increase the number of
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Figure 5: Diagram showing Vertical and Horizontal Projections

Figure 6: Diagram showing Zoning of Characters: a) Bitmap of Character b) Feature
Vector formed

black pixels shown, and hence will distort the feature vector. In order to test its effec-
tiveness, we varied the number of bins, to account for some rotation. We also equalized
the histogram, and normalized the feature vector. However, these did not significantly
improve the accuracy.

2.5.2 Zoning

Figure 6 Shows how the feature vector is computed during zoning. The rectangle cir-
cumscribing the character is divided into several overlapping, or nonoverlapping, regions
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and the densities of black points within these regions are computed and used as fea-
tures. Initial results showed this feature also having a 6̃0% accuracy on the test dataset
mentioned above. Again, this has the advantage of being simple, and quick to compute.
However, it is slightly susceptible to rotation. In addition, it is also susceptible to illumi-
nation. Varying the number of zones, and their overlaps did not. significantly improve
the accuracy.

2.5.3 Elliptical Fourier Descriptors

Figure 7: Diagram showing Zoning of Characters

Figure 7 shows the construction of the curves from the contours. The closed outer
contour curve of a character is a closed piecewise linear curve that passes through the
centers of all the pixels which are 4-connected to the outside background, and no other
pixels. This is because we are only using numbers and upper-case alphabets. Following
the curve, the pixels can be visited in counter-clockwise order, and the curve may visit
an edge pixel twice at locations where the object is one-pixel wide. As such, the contour

13



is made up of line segments, each a straight line between the pixel centers of two 8-
connected neighbors. By approximating the contour curve by a parametric expression,
the coefficients of the approximation can be used as features. By following the close
contour successively, a periodic function results, which are well suited to Fourier series
expansion. This requires an arbitary stating point to be chosen. To mitigate this, we
calculate the phase shift from the first major axis, and rotate the coefficients to achieve a
zero phase shift. For rotational invariant descriptors, the rotation of the semi-major axis
is found and descriptors are rotated once more. Size invariance is achieved by dividing
by the magnitude of the semi-major axis. Elliptical Fourier Descriptors are used to
reduce the dimensionality of the feature vector and the extract features made invariant
to global deformations such as translation and rotation.

Figure 8: Character ’4’ reconstructed by elliptic Fourier descriptors of orders up to 1, 2,
... 10; 15, 20, 30, 40, 50, and 100 respectively

Figure 7 shows the reconstruction of the character using elliptic fourier descriptors.
As additional terms are added, the accuracy of the curve increases. This feature take
longer to compute, however, it is both rotational and size invariant. We are also able to
choose the number of ’harmonics’ we would like to use, therefore giving us flexibility in
choosing our feature vector. The initial implementation of the elliptical fourier descriptor
was written by us, however, later version referenced online sources.

2.5.4 Filter (Gabor, Laplacian)

We utilized both the Laplacian and Gabor filters in our filter bank. Both filters are useful
as spatial edge detectors, and produced good results when we initialized our Gabor filter
bank with different frequencies and orientations. As we learned in the homework, this
produced good features for discrimination. However, our feature vector was extremely
large, and slow to compute due to the numerous computations and convolutions.

2.5.5 Correlation Filters

The correlation filters will be elaborated in greater detail in the results section.
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2.6 Classification

In choosing our classification method, we decided to take two different approaches to
implement the OCR engine. We wanted to try both the feature matching and template
matching approaches, and as such chose to use SVMs and Correlation Filters in the final
product.

2.6.1 Linear Discriminant Analysis

LDA performed well in classification, with an accuracy of 9̃5%. This is probably as the
disciminatory information was in the mean of the data. However, it did not bear itself
well to implementation on the Android platform, and produced a hard bound of at most
number of classes -1 feature projections. When scaling up to the full alphabet, it did
not seem likely continue to be modular on the Android platform. As such, we decided
not to proceed with using LDA.

2.6.2 Nearest Neighbor

Nearest neighbor is a simple classifier that is based on the nearest-neighbor approach.
For classification, one simply finds the N-dimensional feature space the closest character
from the trainng set to an character being classified. if the neighbor is nearby, it is
likely to be similar to the character being classified and so can be grouped as such. It
is simple to implement, can be generalized to k-means, and worked reasonably well for
small datasets (8̃5% accuracy). However, when increasing the number of classes, as well
as the necessary training data, we found that accuracy decreased significantly. Choosing
parameters was also tricky, in that it seemed sensitive to the presence of irrelevant
parameters. In addition, the training set is retained in its entirety as a description of
the character distribution, and with our current memory constraints on Android, it did
not seem particularly fruitful.

2.6.3 Naive Bayes

The Naive Bayes classifier was fast to train and evaluate, and seemed to perform well
quickly on small datasets (5 characters, 50 training samples), with an accuracy of 9̃5%.
However, when scaling up the number of classes the algorithm did not seem to be able to
solve the harder classification problems with the same amount of accuracy. Naturally, the
algorithm assumes that the features are independent, which is probably not true given
our data. As such, we decided to not to pursue Naive Bayes in our implementation.

2.6.4 Support Vector Machine

Support Vector Machines are powerful non-linear classifier that gave us great potential
for an OCR engine, given that we could have good features. While they were slow to
train, they consistent produced good results (9̃9% accuracy with 10 classes). In addition,
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by increasing the dimensionality of the data, the characters get easier to separate, allow-
ing it to solve classification problems with arbitarry complexity. Using the dot product,
and the model’s support vectors (there is no need to store all the points in an SVM),
with biases, we thought it would be possible to move a trained SVM onto the android
platform, with less of a memory footprint than expected. As such, it seemed that given
the great potential, the only risk would be bad features and a long training schedule.
We later mitigated this by training our SVMs on the ECE Servers over command line -
with 8 Cores running lots of RAM, we could train our entire dataset of 25200 characters
in 2 hours.

2.6.5 Correlation Filters

The correlation filters will be elaborated in greater detail in the results section.

3 Results

3.1 Data

As shown earlier, Figure 2 is an example of some of the data we trained and tested with.
The training data consisted of 700 binary images for each character, with of different
rotation and fonts. The training data is a processed data set using our segmentation
algorithm. This helps to keep our training and testing data as realistic as possible. In
addition, we also used images captures from the tablet to perform periodic checks that
our OCR was working properly.

3.2 SVM

3.2.1 Training

AS mentioned above, we utilized the different features to come up with a composite fea-
ture vector. We took care to ensure that there was invariance with respect to rotation,
illumination and size, and that the algorithm did not take too long to run. We also
experimented with Hough Transforms, but it did not seem to suit our data, as it was
projecting obvious lines. Skeletonising the characters yielded little benefit if at all. We
also experimented with using some expert-driven features [46]. We found this method
from an online journal article about letter classification that spoke of a set of sixteen
numerical attributes that when used to classify the 26 characters of the alphabet would
completely separate the classes. These sixteen attributes were extracted after a pixel-
by-pixel scan of the character. Included in these sixteen attributes are:
1. The horizontal position, counting pixels from the left edge of the image, of the center
of the smallest rectangular box that can be drawn with all ”on” pixels inside the box.
2. The vertical position, counting pixels from the bottom, of the above box.
3. The width, in pixels, of the box.
4. The height, in pixels, of the box.
5. The total number of ”on” pixels in the character image.
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6. The mean horizontal position of all ”on” pixels relative to the center of the box
and divided by the width of the box. This feature has a negative value if the image is
”leftheavy” as would be the case for the letter L.
7. The mean vertical position of all ”on” pixels relative to the center of the box and
divided by the height of the box.
8. The mean squared value of the horizontal pixel distances as measured in 6 above.
This attribute will have a higher value for images whose pixels are more widely separated
in the horizontal direction as would be the case for the letters W or M.
9. The mean squared value of the vertical pixel distances as measured in 7 above.
10. The mean product of the horizontal and vertical distances for each ”on” pixel as
measured in 6 and 7 above. This attribute has a positive value for diagonal lines that
run from bottom left to top right and a negative value for diagonal lines from top left
to bottom right.
11. The mean value of the squared horizontal distance times the vertical distance for
each ”on” pixel. This measures the correlation of the horizontal variance with the ver-
tical position.
12. The mean value of the squared vertical distance times the horizontal distance for
each ”on” pixel. This measures the correlation of the vertical variance with the horizon-
tal position.
13. The mean number of edges (an ”on” pixel immediately to the right of either an ”off”
pixel or the image boundary) encountered when making systematic scans from left to
right at all vertical positions within the box. This measure distinguishes between letters
like ”W” or ”M” and letters like ’T’ or ”L.”
14. The sum of the vertical positions of edges encountered as measured in 13 above.
This feature will give a higher value if there are more edges at the top of the box, as in
the letter ”Y.”
15. The mean number of edges (an ”on” pixel immediately above either an ”off” pixel
or the image boundary) encountered when making systematic scans of the image from
bottom to top over all horizontal positions within the box.
16. The sum of horizontal positions of edges encountered as measured in 15 above The
best accuracy that was found using the sixteen attribute set as the feature selector was
72.45%, which isn’t nearly as accurate as the other combinations of features. Because of
these slow processes, training the images takes a very long time along the lines of four
to five hours. While training only needs to be done once in order to use the Support
Vector Machine, the testing also is not quick at all and takes awhile to calculate and
compare the images’ attributes making this process a very slow one. One solution we
considered is removing and adjusting some of the attributes as to speed up the process
while still maintaining the accuracy of this method. Since attributes thirteen through
sixteen were the main contributors to the speed issue, we chose to remove them and
try to see if the accuracy would still remain the same. When testing on the same test
data as the original data, the twelve attribute set accuracy was greatly reduced from
the set using all sixteen attributes. The accuracy we got from the twelve attribute set
was 48.15%. These results may have occurred because of many reasons. The reason
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for errors when using the sixteen attribute set seem to be from rotation, illumination,
and the various fonts used in the simulation. The rotation will affect many of the at-
tributes such as the edges and the horizontal and vertical positions which will throw off
the strength of the correlation between each character. With the illumination involved
in the image, the binary interpretation of the image would definitely change the image
because illumination would change multiple areas that were “off” pixels into “on” pixels.

Finally, we did further analysis on using differnt combinations, as well as differnt
feature vector length, of the previous elaborated features, e.g. fourier descriptors etc.
Training was sped up using the ECE servers. (8 cores were able to train 25200 images
in 2 hours).

3.2.2 Results

Figure 9: Figure showing the accuracy using different features for our SVM

Figure 9 shows that the filters together with zoning seem to be most effective. In this
case, we had used a filterbank of 6 different orientations of Gabor filters, and combined
with zoning, seems to have given the best accruacy at 96.3%. This is probably due
to the gabor filter’s effectiveness in detecing the differnt edges. Furthermore, research
has also shown that typically the sparse codes basis for natural images, tend to have
gabor like features. In this sense, our results confirm their findings. However, it is
very computationally expensive to run the characters through the filterbank and our
processing time suffers for it.
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3.3 Correlation Filters

Another optical character recognition method we used was correlation filters. Unlike
SVMs, correlation filters use templates based on far fewer training images to compare to
the input image. While less robust than SVMs, we found that the correlation filters were
much easier and quicker to train at the expense of requiring one filter per letter, font,
and greater than 5̃ degrees of rotation. Because we initially focused on recognizing only
capital letters in one font, however, the results showed high accuracy, often categorizing
all 26 input characters correctly.
All of the filters were first coded in Matlab for testing, and only once the most steadily
accurate filtering algorithm was confirmed did we attempt to convert the code into a
language able to be handled by the Android tablet. Unfortunately, the code conversion
was far more complicated than we anticipated, and only the simplified versions of the
correlation filters were able to be implemented. We did, however, use the Android
server/client system to send images through the Matlab code to ensure the filters would
work if the tablet could run the code.

3.3.1 Simple Correlation

Figure 10: Simple Correlation Energy Plane between input ’A’ and ’A’ filter.

Correlation = ifft2(fft2(input). ∗ conj(fft2(filter))); (1)
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The first correlation filter we implemented worked off a single template image (’fil-
ter’, in (1)) for the correlation equation ((1) documents the Matlab code used). While
we initially had some trouble generating the appropriate figures, we soon learned how
similar the training and testing images needed to be in order to achieve pleasing results
(see figure 10 for an example). Once the code was modified, the simple correlation filters
showed an average of an 89across over 100 tested characters, though our final testing set
for the demonstration yielded a 0% success rate across 26 capital-letter inputs. While
just under half of the initial testing characters were derived from the same images used
to generate the training data, we did not detect a noticeable difference across testing
sets. Further, the tested characters were passed through different filters than the train-
ing characters to provide noise and rotation in order to ensure variance between sets.
As our final testing set provided noisier inputs to thoroughly test the robustness of the
various OCR methods, we were not surprised to find that the simple correlation filter
had such a low accuracy.

The same training and testing data was used for all of the following correlation fil-
ter algorithms. While we would have liked to test on a larger number of inputs, the
illumination greatly affected the accuracy of the filters, leaving us with far less usable
images than desired. Though more rigorous testing may result in slightly lower success
rates, we are confident that the difference would not contradict the general overview
of our results. Further, because 26 filters could be generated in a matter of seconds,
tweaking the noise filters before correlation allowed us to increase categorization success
quickly depending on the location in which the input image was captured.

3.3.2 Equal Correlation Peak - Synthetic Discriminant Function

H = X(X +X)−1u (2)

The next filter we coded and tested was an ECP-SDF. The main difference between
this filter - and the two following - and the simple correlation filter is that these filter
algorithms allow more than one training image to generate the template for correlation.
In order to accomplish this, the Fourier transform of ’filter’ in (1) is replaced with H,
an aggregate vector of the training images in the frequency domain (X), as described in
(2) Further, this and the following filters allow training images to be weighted via u, a
one-dimensional vector containing 1s for a positive correlation and -1s for the opposite.
While this would mainly be used to differentiate similar characters from one another,
i.e. ’E’ and ’F’, we found that too many training images corrupted the filters, preventing
them from working as intended.

Surprisingly, despite the seeming increase in robustness of the pre-correlation algo-
rithm, the ECP-SDF performed more poorly than the simple correlation filter, with an
average accuracy of around 70% over the initial testing set. Despite the large decrease
in successful categorizations in the testing sets, the correlation energy planes are hardly
distinguishable from those of the simple correlation filters (figure 11), and the ECP-SDF
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Figure 11: ECP-SDF Correlation Energy Plane between input ‘A’ and ‘A’ filter

algorithm worked significantly better than the simple filters over the final demonstration
inputs, achieving a 61.5% categorization accuracy there.

3.3.3 Minimum Average Correlation Energy Filter

H = D−1X(X +D−1X)−1u (3)

Di(k, k) = |Xi(k)|2 (4)

The MACE filter alters the equation for H (3) by introducing D (4), a diagonal matrix
of the power spectrum of the training images. In Matlab, this was done by averaging
the magnitude square of the training images in the frequency domain.

As seen in figure 12, the MACE filter correlation energy plane differs dramatically
from those of the previous two correlation filters. The more pronounced peak yields far
better results as well, achieving an average accuracy of 100% over the initial testing sets,
and 88.5% categorization accuracy over the final demonstration set.

Because of the success rate, we selected the MACE filter for the majority of the
debugging and testing of the various PSR algorithms (see PSR Section). This was
mostly done before the final demonstration set was generated, though, which partially
helps to explain our decision.
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Figure 12: MACE Filter Correlation Energy Plane between input ‘B’ and ‘B’ filter.

3.3.4 Optimal Trade-Off Synthetic Discriminant Function

The final filter we coded and tested was the OTSDF. While very similar to the MACE
filter (see figure 13), the OTSDF alters D to handle noise (5). In the equation, α can
be selected based on the amount of noise to train for, and β simply depends on α (6).
Though we initially tested with α = 0.99, we found that α = 0.75 accounted for our
input better, especially for the final demonstration data set.

Dnew = αDMACE + βI (5)

β =
√

(1− α2 (6)

In testing, the OTSDF averaged 100% accuracy with the same testing data sets as
the other three correlation filters, but due to pre-processing, the value of α did not
affect results. However, during our preparation for the demonstration, we found that
the OTSDF, while more accurate than the MACE filter, repeatedly categorized ’F’ as
’E’. This was when we learned of the usefulness of the change to D; blurring the training
images to add noise after pre-processing, along with an adjusted α, allowed for 100%
correct categorization over the final demonstration inputs.
Because of the accuracy and superior robustness of the OTSDF, while we were unable
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Figure 13: OTSDF Correlation Energy Plan between input ‘B’ and ‘B’ filter.

to convert the Matlab code entirely to the Android application, we realize this is the
most promising of the correlation filters.

3.3.5 Peak-Sidelobe Ratio

As a way of measuring the success of a correlation (C), we computed the PSR of the
correlation energy planes. This allowed us to quickly tell which filter matched each input
best, allowing the categorization of each character to process smoothly. Initially, we cal-
culated a simplified version of the PSR in Matlab (7) to compare the various correlation
filters. While this computation worked for debugging, a more accurate algorithm was
necessary.

PSRsimple = (max(C)−mean(C))/std(C); (7)

In order to more properly calculate the PSR, by definition, we needed to take the
mean and standard deviation of the sidelobe of the correlation energy plane. To do so,
we essentially masked a 5x5 area of the correlation centered on the maximum value,
and used the rest of the values for the sidelobe. While this was not necessarily the
best way to compute the PSR, we saw a noticeable difference in our results (figure 14).
Unfortunately, the masking process did not convert to the Android easily, but we found
that the simplified PSR worked to a reasonable extent, at least allowing us to compare
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Figure 14: Simplified and masked PSR data for each correlation filter across serif and
sans-serif testing sets.

the correlation filter method of OCR to the other processes.
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4 Implementation

During the implementation phase, we encounter several challenges due to integration
issues, as well as in our developmental workflow. We constantly iterated and tried new
approaches. Our three main approaches that worked to product a functional OCR are
outlined below.

4.0.6 Native Android App - OpenCV

We initially attempted to implement a native android application, using the Java Native
Interface to run OpenCV C++ code. However, we were quickly bogged down by depen-
dency and programming environmental issues. After a painstaking week of debugging,
we realized that due to the android platform, we would not be able to run both JavaCV
and native OpenCV in the same application - an error was thrown about a duplicate in
the .apk file.
Nevertheless, we were able to get a quick prototype up and running. The code can be
found in the 18551 Prototype android project. We were able to get a touch-based selec-
tion box working. As a prototype, we also managed to linked tesseract - Google’s Open
Source OCR Engine - to our application giving us decent OCR capabilities. These were
done through different Views and Touchevents.

However, as mentioned there were integration issues, and we decided to move the
project fully onto JavaCV, rationale being that we had only one member - James - that
was knowledgeable about C/C++, and in this way more team members could contribute.

4.0.7 Android App - JavaCV

Figure 15 shows our framework for the Android JavaCV App. After the initial integration
issues with the native Android App, we transitioned over to a pure JavaCV application.
As shown, everything occurs on the Android platform itself. Naturally, however, this had
its drawbacks, namely being cumbersome to iteratively develop on. Loading of android
application (apk) files were slow - it could take up to 30 seconds to compile, upload and
install the application on the device. The Android platform itself also had a limited
amount of memory, and was unable to handle more than 3 large bitmaps (i.e. 1592 x
2944 size) bitmaps at a time, which slowed our debugging process. Processing speed was
also much slower than in Matlab on a laptop - early implementations took 14 seconds to
pre-process the image. Finally, little documentation for Java OpenCV functions existed,
slowing progress. Due to these conditions, and the fact that one of our team members
was only fluent in Matlab, spurred us to create another framework for debugging and
development. The code can be found in the 18551 Project android project.

4.0.8 Android Client Server Model

Figure 16 shows our framework for the Android Client Server Model. This was done so
that our team could test and iterate much quicker, in Matlab, while still interfacing with
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Figure 15: Framework for Android JavaCV App

the Android platform, and dealing with the noise of that system. As shown, the Matlab
server is now on our local computer, allowing us to quickly different algorithms and test
it in the real world. Training our SVM is also much easier on our computer. Essentially,
the Adroid device communicates with a local Java Server, which then presents the data
to our Matlab Server OCR enginer. After computation, the Java server then pushes the
data back to the Android device for it to update its display. The code can be found in
the 18551 Project Client and 18551 Project Server android projects.

4.0.9 Translation

Originally, we also wanted to implement a post-processing method to convert the correct
ASCII output to another language, allowing for a more convenient, directed application.
We planned to use the Google Translation API for the translation, but we came across too
many issues with the code. The limited documentation for our intended use, along with
server connection problems, eventually took up too much time of the project. Therefore,
instead of focusing on solidifying this part of our original project idea, we chose to spend
our efforts on developing the rest of the project, mainly the OCR methods.
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Figure 16: Framework for Android Client Server Model

4.1 Optimization

During our development, we were conscious to continue optimizing for the efficiency.
Using these optimizations, were able to decrease our time for computation from 1̃6s to
5̃s (given 8 characters).

Memory Due to memory constraints, we made sure to allocate efficiently, and utilize
the garbage collector as much as possible, to reduce our memory footprint.

Multi-Threaded Another optimization we used implementing a multi-threaded process-
ing thread to ensure that program could continue to run smoothly, even under heavy
processing load.

Bitmap formatting We also optimized the formatting of the bitmaps. Most of our com-
putation was done on single channel binary images, thus saving processing time (as
opposed to using 4-channel RGBA). We also experimented with different ways of load-
ing the bitmaps, or even saving it to the sdcard, when not in use (to conserve memory).
Using this method, we were able to compute quickly, and display the results (We are
actually overlaying the binary image results over the RGBA, making it seems as if we
calculated using RGBA values).
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Downsampling Downsampling provided great benefits too. By downsampling, we were
able to reduce our computational complexity greatly. In addition, this also had the
added benefit of removing noise to a certain extent. For global features (ie rotating the
image to correct position), we implemented downsampling to good effect.

Faster Search For the correlation filter, we quickly segmented and scaled the images
to the size of their correlation filters. Thus our correlation filters did not have search
the entire image for the character, merely searching our segmented characters, greatly
saving time. This is especially so considering the size of an image (1592 x 2944) vs a
character (128 x 128) multiplied by the number of classes (typically 36 - Numbers and
Uppercase Alphabet), is large.

5 Final Product Demo

Figure 17: Final Output of Android JavaCV App

Our final product included two applications, one being the JavaCV version, and the
other being the Android Client-Server Model.

JavaCV version Demo was able to rotate and segment characters using the Android
platform and JavaCV. It then implemented our correlation template matching for deduce
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the characters on screen.

Android Client Server Demo was running using a trained SVM on the local computer.
As shown in class, and during the demonstration, the SVM was able to classify text
correctly, with noise, and rotation.
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6 Conclusion

6.0.1 Future Work

Neural Networks We would hope to explore using neural networks more. Ideally, we
hope to develop on our research with Gabor filters and experiment with Boltzmann
machines to gradually develop a convolution neural network [28, 29]. We plan to continue
development, with the repository continuing to be updated on github.

Character Location One benefit of correlation filters we were unable to test is their
ability to provide the locations of the categorizations. This would be done by correlating
the input data with the filters in the position domain, essentially allowing the filter to
iterate across a larger image. Ideally, the results would yield a correlation energy plane
with peaks signifying the location and class of each character, removing the need for the
segmentation portion of pre-processing.

Correlation Filter Optimizations Additionally, there is still much that can be done to
optimize our correlation filters. We would like to improve our PSR algorithm to compute
a smaller sidelobe and test various sizes to find the most accurate and robust area
around the peak. Further, we can still optimize the correlation filter categorization
process as a whole, generating a larger number of filters with training data to account
for more characters, different fonts and rotation, and better noise handling. Because
the correlation filters did not take long to train, we anticipate that adding fonts would
not too greatly increase the time required to generate the filters; however, it would
be interesting to compare the time and power necessary for the correlation filters to
approach the versatility of other OCR methods.

Translation While we were unable to get the translation portion of the project com-
pleted, it remains a critical step in our original project idea. As such, we would intend
to resolve the issues we ran into previously and make the translation a working part of
the post-processing section.

6.0.2 Semester Schedule & Work Distribution
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Figure 18: Schedule of work done over semester
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Figure 19: Final Distribution of Work and Responsibilities
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