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Abstract: 
 
Transferring sensitive data wirelessly using the internet is not the safest option. 
Also depending upon the internet implies relying on the service provided by your 
ISP for the functioning of your system. 
 
With Project SDR we aim to establish a private, safe wireless channel between two 
terminals using SDRs (Software Defined Radios). This channel can be used to 
transfer access request data from users (here a picture of the user’s face) which 
can then be verified at the receiving terminal and access to the user can be either 
granted or denied. 
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1. Introduction: 
 
The internet is the most popular and convenient mode of communication. But it is 
plagued with several problems such as: 
 

 Lack of Security :  
Since the internet is easily accessible and open to all, any terminal connected to 
the internet can be hacked. This could be the cause of potential security threat as 
the hacker can get access to confidential information and spoof identity. 
 

 Virus Threat: 
Any terminal connected to the internet is open to the potential threat of a virus 
attack which can disrupt the normal functioning of the system. Private and 
confidential information could be extracted and misused. 
 

 Reliability: 
Using the internet implies that the system is dependent on an ISPs for service. 
Thus any failure on the ISP’s part would affect the system. 
 

 Limited by wired distance: 
Setting up a private network would require a combination of wired and wireless 
medium, bringing in complexity. 
 
 
Through Project SDR we provide an alternate to the use of the internet for short 
range communication for transferring sensitive data. The goal of our project is to 
establish a private wireless link which is secure and robust.  
 

 Ensuring Security: 
Since the specifications of the system are designed by us, security is ensured. We    
control the frequency of transmission, modulation, encoding schemes and can  
implement encryption techniques to keep the network exclusive. 
 

 Robustness: 
Since the system setup, running and maintenance is all performed by us, we 
ensure no third party dependence. 
 

 Medium Homogeneity: 
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Since the system deals only with wireless mode of communication, setting up and 
maintaining the system becomes comparatively simple. 
 
 

Since the aim of our project is to design our own channel, we implemented different 
modulation and encoding schemes and compare their performance while transferring 
an image. 

 

 
2. System Implementation: 

 
2.1 HARDWARE: 
 
We implemented our wireless channel using Software Defined Radios. Working 
with SDRs is a lot easier than working with radios with fixed specifications as they 
offer a lot of flexibility. SDRs utilize an external general purpose processor instead 
a specialized one on its hardware. This feature allows the SDR to be compatible 
with a variety of platforms. SDRs typically consist of an ADC, DAC and RF front 
end.  
 
2.2 ADVANTAGES OF SDRs: 
 
SDRs offer the following advantages over traditional fixed radios: 
 
a) They have the ability to receive and transmit using various modulation and 
encoding methods using a common set of hardware. 
b) Allow user to alter functionality by downloading and running new software at 
will. 
c) The possibility of adaptively choosing an operating frequency and a mode best 
suited for prevailing conditions. 
d) The opportunity to recognize and avoid interference with other 
communications channels. 
e) Elimination of analog hardware and its cost, resulting in simplification of radio 
architectures and improved performance. 
f) They provide the chance for new experimentation. 
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2.3 DISADVANTAGES OF SDRs: 
 
While SDRs offer benefits as outlined above, a few obstacles remain to their 
universal acceptance. Those include: 
 
a) The difficulty of writing and maintaining software for various target systems. 
b) The need for interfaces to digital signals and algorithms. 
c) Poor dynamic range as compared to fixed radios 
 
Due to the above drawbacks, the use of SDRs is usually restricted to academic and 
research purposes for testing and experimentation. 
 
2.4 WHICH SDR? 
 
We choose to work with the SDR, USRP1 (Universal Software Radio Peripheral) 
manufactured by the Ettus Research Group. We are grateful to Prof. Negi 
providing us with a pair of USPR1 hardware kits for the duration of our project. 
 

 
Fig: USPR1 Hardware 
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2.5 KEY FEATURES OF USRP1: 
 

 Four 64 MS/s 12-bit analog to digital converters 
•    Four 128 MS/s 14-bit digital to analog converters 
•    Four digital down converters with programmable decimation rates 
•    Two digital up converters with programmable interpolation rates 
•    High-speed USB 2.0 interface (480 Mb/s) 
•    Capable of processing signals up to 16 MHz wide 
•    Modular architecture supports wide variety of RF daughter boards 
•    Auxiliary analog and digital I/O support complex radio controls such as RSSI  
      and AGC 
•    Fully coherent multi-channel systems (MIMO capable) 
 
For details about the Ettus Research Group: 
http://www.ettus.com/ 
 
Further details and specifications of USPR1 can be found on: 
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf 
 
 
2.6 SOFTWARE INTERFACE: 
 
The USRP1 can be interfaced to a computer with a few options, GNU Radio or 
MATLAB or SIMULINK. For our implementation we use MATLAB to link to the 
SDRs. 
      
 
1) GNU Radio:               
GNU Radio is a free software development toolkit 
that provides the signal processing runtime and 
processing blocks to implement software radios 
using readily-available, low-cost external RF 
hardware and commodity processors. It uses C++ 
to carry out the signal processing in the system. 
  It is widely used in hobbyist, academic and commercial environments to 
support wireless communications research as well as to implement real-world 
radio systems. 

http://www.ettus.com/
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf
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2) MATLAB and SIMULINK: 
Interfacing the USRP hardware with MATLAB and SIMULINK is explained in detail 
in: http://www.tools4sdr.com/wiki/Tools4SDR. 
The MATLAB codes we used to interface the SDRs with our computers is detailed 
in the codes section. 
 
We did encounter problems with the MATLAB interface codes provided by 
tool4sdr , while transferring continuous stream of data. The code works perfectly 
for transferring short bursts of data. 
 
From our experience with the MATLAB interface we recommend using the 
approach mentioned by GNU Radio and the use of C++ to interface with the 
radios. 
 
 

3. Block Diagram of the System: 
 
3.1 The Big Picture of the System: 

 

 
 
All signal preprocessing, implementation of modulation, encoding schemes have 
to be implemented on a PC before passing the digital data to the SDR. The USRP 
uses it D/A converters, and modulates the signal at a specified signal frequency 
and then transmits the signal over the wireless channel. At the receiver, the USRP 
receives the signal demodulates the carrier and converts it into a digital signal and 
passes it to the computer for processing. 
 

http://www.tools4sdr.com/wiki/Tools4SDR
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Since we were unable to transfer large streams of data we simulated the image 
transfer in MATLAB. 
 
 
3.2 Transmitter (Detailed Block Diagram): 
We convert the image to be transferred into a stream of pixels and then into a 
stream of bits. These bits are then encoded, followed by digital and then analog 
modulation. 
We implemented the rate ¼ and ¾ coding, decoding algorithms and the M-QAM 
and M-PSK modulation/ demodulation algorithms. 
 

 
Fig: Block Diagram of the Transmitter 
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3.3 Receiver (Detailed Block Diagram): 
The transmitted signal plus noise is received at the receiver, this anolog is first 
converted into a digital form. This digital signal goes through the reverse process 
as that in the transmitter. It first gets demodulated then decoded. This gives us a 
stream of bits which we ‘guess’ was sent from the transmitter.  
 
The number of bits different in the transmitted stream and the guess of the bit 
stream gives the number of bit errors.  
 

 
Fig: Block diagram of the receiver 
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4. Algorithms: 
 
4.1 Repetition Codes 
They are a type of forward error correcting codes. Described by k/n where k 
inputs give n outputs (n>=k).  
In the transmitter, the FEC code’s encoder encodes the information bits into 
coded bits, which are then modulated by the bits-to-symbol mapper to yield the 
symbol sequence (xk). The symbol sequence is transmitted into the equivalent 
baseband discrete-time channel, as usual. In the receiver, the received samples 
(zk) are decoded by the code’s sequence decoder to yield estimates of the 
information bits. In particular, symbol-by-symbol detection is not appropriate, 
due to the dependencies in (xk) created by the encoding operation. 
 
A convolution code is so called, because its encoder is simply a convolution 
operator, i.e., an LTI system. The only difference from LTI systems that we 
otherwise encounter is that the encoder processes bits (bits in and bits out), 
rather than real or complex numbers. 
 
 Repetition code (Why we opt for convolution codes) 

 
 
The description of the trellis above is as follows. Each discrete time t is called a 
stage of the trellis. Discrete-time t controls the encoder operation. It is related, 
but different, from the discrete-time k, which controls the symbol and sampling 
operations. The circle is called the state of the trellis. (Note the difference 
between stage and state.) The repetition code has only one state, which we have 
labeled as the null state.  
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What is a state of a system? The fundamental property of the state of any system 
is that the output of the system in the future depends only on the current state 
and on future inputs, but not on the past inputs. Thus, a state “summarizes all the 
past inputs” (which could be a long sequence of numbers) into one concise 
description. This is the convenience provided by a state machine.  
 
In the repetition code, there is only one state required to summarize all the past 
inputs, i.e., the null state. As time t progresses, the state changes, in general. 
However, in a repetition code, since there is only one state, the new state is 
always a null state. The arrows are called branches, and they are labeled as 
information bits/coded bits. 
 
 
 
4.2 Convolutional codes: Encoding 
 
The flaw in the repetition code can be observed from its trellis in Figure above. As 
there is only one state, any two paths that diverge from the state must 
immediately come back to the same state. Therefore, it is not possible to have 
two paths, which are at minimum distance d, differ by more than one branch. This 
puts an upper bound on how large the minimum distance d can be. We want d to 
be large, so that the BER is small.  
 
It is likely that the larger the number of stages in which two paths at minimum 
distance differ, the larger is the minimum distance, and so, the smaller is the BER. 
We can increase the minimum distance doubling the number of states from one 
to two, as shown by the trellis in Figure below. This trellis represents a 2-state 
convolutional code. 
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As in the case of the repetition code, the circles are called states of the code. We 
now have two states, labeled as ‘0’ and ‘1’. As time t progresses, the state can 
change, in general. The branches are again labeled as information bits/coded bits, 
just as in Repetition code. Since each information bit produces 2 coded bits, 
hence the rate of this code is ½. As time progresses, information bits enter the 
encoder, and get encoded into coded bits. The bold branches indicate the path 
through the trellis, which is taken when the information bit sequence is 1, 1, 0, 1, . 
. .. The path shown produces the coded bit sequence 11, 10, 01, 11, . . ., which is 
different from that produced by the earlier example of rate ½ repetition coding. 
 

 
 
The path (xk) is shown by the bold branches, while the path (yk) is shown by the 
branches crossed by two segments. Enabled by the larger number of states of the 
trellis, these two paths differ from each other in two stages, unlike the case of the 
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repetition code (No pairs of paths differ in only one stage.) Thus, they differ from 
each other in 3 coded bits (i.e., 11, 10, 01, 11,...  versus 00, 11, 01, 11, . . .). 
 
The coding gain of 3 of this rate 1/2 convolutional code is more than the coding 
gain of 2 of the rate 1/2 repetition code, resulting in lower BER. However, both 
these codes have the same information bit rate, since they are both rate 1/2 
codes. 
 
To summarize, the key idea is that by introducing more states in the trellis, we 
prevent divergent paths (which represent two competing allowed symbol 
sequences – the error events) from re-merging quickly. Thus, any two allowed 
symbol sequences differ in several stages, which we hope results in a larger 
minimum distance. (There is no guarantee that longer error events will result in a 
larger minimum distance – this will require an intelligent choice of trellis.) So, if 
we want a larger coding gain code at the same rate of 1/2, we need to double the 
number of states in the trellis again. 
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Encoder of a 4 state rate ½ code 
 
 
4.3 Convolutional Codes: Decoding 
 
The Viterbi algorithm is a special type of dynamic program, which casts the 
sequence detection problem for a convolutional code as a shortest path 
computation problem. 
 
For a rate k/n code, pick a branch appearing in the th stage of the trellis and 
calculate its 

 
The path metric is the cumulative branch metric over a particular path and the 
path with the shortest metric is the selected path. 
 
Notice also that at a given code rate k/n, the code can be made stronger by 
increasing the number of states 2^v , but the price paid is the increased decoding 
complexity of the Viterbi algorithm. 
 
(Terminal bits): A practical point to note is that the encoder of a convolutional 
code is a causal (and LTI) system. This means that each information bit only 
affects future coded bits, and thus, only affects future symbols (xk). Therefore, in 
a finite length packet, the last few users bits are not protected sufficiently against 
errors. For example, the last user bit would only affect encoding in the last stage. 
Such a bit would not receive a coding gain of code, since that gain is achieved by 
making the error events span several stages. To reduce errors in these last few 
user bits, as a practical matter, several ‘0’ bits, which are called terminal bits are 
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appended to the end of the user bit sequence. For example, if the user bits are 
11011, then the information bit sequence can be produced by appending, say, 
terminal ‘0’s, to get 11011000. This information bit sequence is now encoded by 
the transmitter, as usual. (Since the memory of the encoder is v bits, the terminal 
‘0’ bits return the encoder to the all-zeros state. Thus, now, the source as well as 
the destination state is the all-zeros state.) At the receiver, the detector knows 
that the last bits are ‘0’ terminal bits, and thus, selects the ‘0’ labeled branches at 
the end of the packet, returning it to the all-zeros state. Essentially, the terminal 
bits serve to increase the length of the coded bit sequence, and thus allow full 
error protection to the last few user bits. 
 
 
4.4 Modulation: 
 
Modulation is the process of converting information bits into signals which can be 
transmitted via an analog medium. The message presented to the communication 
sequence is digital for our system, this bit sequence has to be grouped into bit symbols 
which are translated into analog voltage levels which are transmitted into the channel. 
Modulation schemes are required to increase the bit rate and yet keep the bit error rate 
low. 
 
4.4.1 M- QAM 
In M-QAM, we assume that the symbols (xk) are complex-valued. Thus, M-QAM is 
applicable only to pass band modulated systems. This constellation maps b (b>2)bits 
into one complex-valued symbol xk. Note that the number of points in the constellation 
is M = 2b. There are three different possibilities here: 
 
• Square-QAM:  
Here, b > 2 is an even integer. A square QAM constellation is produced by defining root 
M = 2b/2 equi-spaced levels on each axis, the real and the imaginary axis, of the signal 
space.  
Therefore, the total number of points is 2b/2 × 2b/2 = 2b = M. This is shown in figure 
below, for a 16-QAM constellation, which has b = 4. The minimum distance of the 
constellation is defined to be d. The requirement that b should be an even integer arises 
from the requirement that pM = 2b/2 must be an integer.  
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          16 QAM               32 QAM 

 
• Cross-QAM: Here, b>5 is an odd integer. Therefore, a Square-QAM cannot be defined 
because root M is not an integer. However, a ‘Cross-QAM’ constellation can 
be produced as follows. First, draw a M/2 = 2b−1 point Square-QAM constellation. 
This is possible, because (b − 1) is even. Then, add the remaining M/2 = 2b−1 points 
evenly on all four sides. Thus, these remaining 2b−1 points are placed in four groups of 
2b−3 points each, along the four sides of the Square-QAM constellation. This is shown in 
the figure above for a 32-QAM constellation, which has b = 5. From the shape of the 
constellation, it is clear that the ‘corners’ of the constellation do not contain points. The 
intuition behind this idea is that, the further away the points are from the origin, the 
more is the power required for transmitting them. So, keeping them closer to the origin 
saves power. 
 
 8-QAM: The special case of 8-QAM, which has b = 3 (odd integer), but does not 
precisely follow the construction of Cross-QAM 
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4.4.2 M- PSK: 
 
In M-PSK, we assume that the symbols (xk) are complex-valued. Thus, M-PSK is 
applicable only to passband modulated systems. This constellation maps b bits 
(b>1) into one symbol. The number of points in the constellation is M = 2b. The M 
points are arranged uniformly on a circle of radius r. 
 
The M-PSK constellation is not as dense as the M-QAM constellation, because it 
does not utilize the interior of the disk. Therefore, it is not very power efficient. 
However, |xk| is constant (equal to radius r) for the M-PSK constellation, unlike 
the M-QAM constellation. Hence, wireless systems that use the PSK constellation 
can tolerate non-linearities in the various electronic amplifiers (primarily in the 
high power transmitter amplifiers). Such Further, in PSK, only the phase carries 
information, and so, even if the channel attenuation is unknown (i.e., unknown 
|h0|), decoding of PSK is unaffected. Thus, PSK is a robust constellation. 
 

 

 
         Fig: 8 PSK Constellations 
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4.4.3 Algorithm for Modulation: 
 

 
 
 
 

 
 
 
 
 



20 
 

4.4.4 Example of Modulation: 
 
1) Input stream of bits: 10001011011100            
2) For 4 QAM modulation. 
3) b= log(4)/log(2)= 2 
4) Group bunches of 2 bits, so we get 10 00 10 11 01 11 00. 
5) Create conversion table of bit combinations to symbols. 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

6) Looking up corresponding symbols from the table: 
                Symbols Transmitted:    1-j   -1-j  1-j  1+j  -1+j  1+j  -1-j  

 
 
4.5 Demodulation: 
At the receiver we use minimum distance demodulation; the received symbol 
with noise is compared to all the possible symbols. The symbol from which it has 
least distance, would be the symbol that was most likely have been transmitted at 
the transmitter, this symbol then becomes the guess of the symbol transmitted. 

 
 
 

Bit Combination  Symbol  

00  -1 -j  

01  -1 + j  

10  1 - j  

11  1 + j  
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5. Implementation: 

 
In the first part of this section we describe how we transferred a short burst of 
signal from the transmitting SDR to the receiving SDR. 
In section 5.2 we describe what we actually implemented for the demo. Since we 
were unable to transfer an image using the SDRs we simulated the wireless 
transfer of the image and then carried out a face recognition algorithm at the 
receiver. 
 
 
5.1 Transferring Short Bursts of Signal:  
 
We setup the SDRs transmitter with the following specifications: 

 

 
 
 

sock=SDR4All_Connect(0,'SlotA','TX'); % 0 stands for USRP #0 

Set the communication parameters: 

SDR4All_SetGain(sock,20); % Maximal TX gain 

SDR4All_SetFreq(sock,2422e6); 

SDR4All_SetInterpRate(sock,256); % set signal sampling period (and bandwidth) 

Generate the signal to be transmitted: 
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Basic  = kron(ones(5e5/10/2/4,1),[ones(10,1);-ones(10,1)]); 

Vide = zeros(125000,1); 

Base = [Basic;Vide]; 

Sig = kron(ones(20,1),Base); 

Te = (1:length(Sig))/(500e3); 

plot(Te,Sig); 

And perform the transmission: 

SDR4All_SendData(sock,Sig); 

 
We set the receiver with the following specifications: 

 
 
 
 

sock=SDR4All_Connect(0,'SlotA','RX'); % 0 stands for USRP #0 

The communication with the USRP should be confirmed with a message like: 

 Number of connected USRP: 2 

 Communication set with USRP 1 and daugtherboard on slot A 
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The next commands are: 

[gain_min,gain_max,gain_step] = SDR4All_GetGain(sock); 

[freq_min,freq_max] = SDR4All_GetFreq(sock); 

SDR4All_SetGain(sock,(gain_max+gain_min)/2); 

SDR4All_SetDecimRate(sock,128); % set signal sampling period (and bandwidth) 

SDR4All_SetFreq(sock,2422e6); 

You can now start the transmission with the TX bursts soft. Use the following command 

with matlab to record 5 seconds of signal (at 500kHz): 

[Data] = SDR4All_GetData(sock,5*1000*500); 

Te = (1:length(Data))/(500e3); 

 
 

With the above setup, the signal which we transmitted was: 
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The signal we received at the receiving SDR was: 
 

 
The signal received at the receiver in our simulation 
 

 
 
 
5.2 Simulating Transfer of Image in MATLAB. 
 
To reduce the time taken for processing in MATLAB we use wavelet compression 
on the image to be transmitted. This data is converted into a stream of bits, 
modulated using any one of the modulating schemes, encoding schemes and then 
sent over the simulated channel. 
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Transmitted Image                                     Received Signal with noise 
 
This received signal was then feed into the face recognition algorithm to search in 
the OpenCV database for a match. Even with significant amount of noise in the 
image, the algorithm was successful in finding a match in the database. 
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6. Results: 
 
We tried running different combinations of modulation and encoding schemes for 
transferring the different images for different SNR values. Following are the 
results for transferring a particular image at an SNR of 10dB. 
 

 
Time here refers to the time taken for MATLAB to finish processing. And the bit 
error rate is calculated as the number of bits in error to the total number of bits 
transmitted. 
 

 
7. Inferences: 

• For the same SNR, M= 4 produces lesser errors than M=16. This is expected 
as distance between symbols is more for M=4, hence the chances of an 
error occurring is lowered. 
 

• M=4 modulation schemes takes longer to run and process this can be 
justified as M =4 produces a longer chain of symbols to be transmitted. Also 
the number of bits per symbol is lesser than M=16, hence it takes longer to 
transfer the same amount of data using M=4. 
 

• Rate ½ code should have produced less errors than the 2/3  code, as rate ½ 
introduces more redundancy hence reduces chances of making an error  
but our results are show otherwise. 
 

• M-QAM shows better results than M-PSK for this channel. This channel is a 
pure AWGN channel. If multipath and fading effects were considered then 
M-PSK would have done better, as wireless channel non-linearities would 
badly distort the QAM constellation. 

  M-QAM M-PSK 

  Time(s) BER Time(s) BER 

M=4 1/2 1120.96 14.5% 941 15.8% 

2/3 697.507 3.4% 578 3.9% 

M=16 1/2 545.138 22 % 419 18.66% 

2/3 368.906 4% 304 4% 
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8. Schedule: 
 

 
 
Work Distribution: 
Anish Menon: Codes for Encoding Schemes, Decoding, Face Recognition  
Akash Gopisetty: Digital & Analog Modulation/ Demodulation schemes 
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