
1

Spring 2011: 18551

 PROJECT SDR
~ Remote Terminal Access Control System

Group # 7

Anish Menon
anishm@andrew.cmu.edu

Akash Gopisetty
agopiset@andrew.cmu.edu

2

Abstract:

Transferring sensitive data wirelessly using the internet is not the safest option.
Also depending upon the internet implies relying on the service provided by your
ISP for the functioning of your system.

With Project SDR we aim to establish a private, safe wireless channel between two
terminals using SDRs (Software Defined Radios). This channel can be used to
transfer access request data from users (here a picture of the user’s face) which
can then be verified at the receiving terminal and access to the user can be either
granted or denied.

3

CONTENTS:
1. Introduction……………………………………………………………………….4

2. System Implementation
 2.1 Hardware………………………………………………………5
 2.2 Advantages of using SDRs……………………………..5
 2.3 Disadvantages of using SDRs…………………………6
 2.4 Which SDR ?- USRP1……………………………………..6
 2.5 Key Features of USRP1………………………………….7
 2.6 Software Interface
 - GNU Radio………………………………………………7
 -MATLAB and SIMULINK…………………………..8

3. Block Diagram of the System
 3.1 The Big Picture………………………………………………8
 3.2 Transmitter……………………………………………………9
 3.3 Receiver

4. Algorithms
 4.1 Repetition Codes………………………………………….11
 4.2 Convolution Codes: Encoding……………………….12
 4.3 Convolution Codes: Decoding………………………15
 4.4 Modulation………………………………………………….16
 4.5 Demodulation………………………………………………20

5. Implementation
 5.1 Transferring Short Bursts of Data………………..21
 5.2 Simulating transfer of Data in MATLAB……….24

6. Results……………………………………………………………………………….26

7. Inferences………………………………………………………………………….26

8. Schedule…………………………………………………………………………….26

4

1. Introduction:

The internet is the most popular and convenient mode of communication. But it is
plagued with several problems such as:

 Lack of Security :
Since the internet is easily accessible and open to all, any terminal connected to
the internet can be hacked. This could be the cause of potential security threat as
the hacker can get access to confidential information and spoof identity.

 Virus Threat:
Any terminal connected to the internet is open to the potential threat of a virus
attack which can disrupt the normal functioning of the system. Private and
confidential information could be extracted and misused.

 Reliability:
Using the internet implies that the system is dependent on an ISPs for service.
Thus any failure on the ISP’s part would affect the system.

 Limited by wired distance:
Setting up a private network would require a combination of wired and wireless
medium, bringing in complexity.

Through Project SDR we provide an alternate to the use of the internet for short
range communication for transferring sensitive data. The goal of our project is to
establish a private wireless link which is secure and robust.

 Ensuring Security:
Since the specifications of the system are designed by us, security is ensured. We
control the frequency of transmission, modulation, encoding schemes and can
implement encryption techniques to keep the network exclusive.

 Robustness:
Since the system setup, running and maintenance is all performed by us, we
ensure no third party dependence.

 Medium Homogeneity:

5

Since the system deals only with wireless mode of communication, setting up and
maintaining the system becomes comparatively simple.

Since the aim of our project is to design our own channel, we implemented different
modulation and encoding schemes and compare their performance while transferring
an image.

2. System Implementation:

2.1 HARDWARE:

We implemented our wireless channel using Software Defined Radios. Working
with SDRs is a lot easier than working with radios with fixed specifications as they
offer a lot of flexibility. SDRs utilize an external general purpose processor instead
a specialized one on its hardware. This feature allows the SDR to be compatible
with a variety of platforms. SDRs typically consist of an ADC, DAC and RF front
end.

2.2 ADVANTAGES OF SDRs:

SDRs offer the following advantages over traditional fixed radios:

a) They have the ability to receive and transmit using various modulation and
encoding methods using a common set of hardware.
b) Allow user to alter functionality by downloading and running new software at
will.
c) The possibility of adaptively choosing an operating frequency and a mode best
suited for prevailing conditions.
d) The opportunity to recognize and avoid interference with other
communications channels.
e) Elimination of analog hardware and its cost, resulting in simplification of radio
architectures and improved performance.
f) They provide the chance for new experimentation.

6

2.3 DISADVANTAGES OF SDRs:

While SDRs offer benefits as outlined above, a few obstacles remain to their
universal acceptance. Those include:

a) The difficulty of writing and maintaining software for various target systems.
b) The need for interfaces to digital signals and algorithms.
c) Poor dynamic range as compared to fixed radios

Due to the above drawbacks, the use of SDRs is usually restricted to academic and
research purposes for testing and experimentation.

2.4 WHICH SDR?

We choose to work with the SDR, USRP1 (Universal Software Radio Peripheral)
manufactured by the Ettus Research Group. We are grateful to Prof. Negi
providing us with a pair of USPR1 hardware kits for the duration of our project.

Fig: USPR1 Hardware

7

2.5 KEY FEATURES OF USRP1:

 Four 64 MS/s 12-bit analog to digital converters
• Four 128 MS/s 14-bit digital to analog converters
• Four digital down converters with programmable decimation rates
• Two digital up converters with programmable interpolation rates
• High-speed USB 2.0 interface (480 Mb/s)
• Capable of processing signals up to 16 MHz wide
• Modular architecture supports wide variety of RF daughter boards
• Auxiliary analog and digital I/O support complex radio controls such as RSSI
 and AGC
• Fully coherent multi-channel systems (MIMO capable)

For details about the Ettus Research Group:
http://www.ettus.com/

Further details and specifications of USPR1 can be found on:
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf

2.6 SOFTWARE INTERFACE:

The USRP1 can be interfaced to a computer with a few options, GNU Radio or
MATLAB or SIMULINK. For our implementation we use MATLAB to link to the
SDRs.

1) GNU Radio:
GNU Radio is a free software development toolkit
that provides the signal processing runtime and
processing blocks to implement software radios
using readily-available, low-cost external RF
hardware and commodity processors. It uses C++
to carry out the signal processing in the system.
 It is widely used in hobbyist, academic and commercial environments to
support wireless communications research as well as to implement real-world
radio systems.

http://www.ettus.com/
http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf

8

2) MATLAB and SIMULINK:
Interfacing the USRP hardware with MATLAB and SIMULINK is explained in detail
in: http://www.tools4sdr.com/wiki/Tools4SDR.
The MATLAB codes we used to interface the SDRs with our computers is detailed
in the codes section.

We did encounter problems with the MATLAB interface codes provided by
tool4sdr , while transferring continuous stream of data. The code works perfectly
for transferring short bursts of data.

From our experience with the MATLAB interface we recommend using the
approach mentioned by GNU Radio and the use of C++ to interface with the
radios.

3. Block Diagram of the System:

3.1 The Big Picture of the System:

All signal preprocessing, implementation of modulation, encoding schemes have
to be implemented on a PC before passing the digital data to the SDR. The USRP
uses it D/A converters, and modulates the signal at a specified signal frequency
and then transmits the signal over the wireless channel. At the receiver, the USRP
receives the signal demodulates the carrier and converts it into a digital signal and
passes it to the computer for processing.

http://www.tools4sdr.com/wiki/Tools4SDR

9

Since we were unable to transfer large streams of data we simulated the image
transfer in MATLAB.

3.2 Transmitter (Detailed Block Diagram):
We convert the image to be transferred into a stream of pixels and then into a
stream of bits. These bits are then encoded, followed by digital and then analog
modulation.
We implemented the rate ¼ and ¾ coding, decoding algorithms and the M-QAM
and M-PSK modulation/ demodulation algorithms.

Fig: Block Diagram of the Transmitter

10

3.3 Receiver (Detailed Block Diagram):
The transmitted signal plus noise is received at the receiver, this anolog is first
converted into a digital form. This digital signal goes through the reverse process
as that in the transmitter. It first gets demodulated then decoded. This gives us a
stream of bits which we ‘guess’ was sent from the transmitter.

The number of bits different in the transmitted stream and the guess of the bit
stream gives the number of bit errors.

Fig: Block diagram of the receiver

11

4. Algorithms:

4.1 Repetition Codes
They are a type of forward error correcting codes. Described by k/n where k
inputs give n outputs (n>=k).
In the transmitter, the FEC code’s encoder encodes the information bits into
coded bits, which are then modulated by the bits-to-symbol mapper to yield the
symbol sequence (xk). The symbol sequence is transmitted into the equivalent
baseband discrete-time channel, as usual. In the receiver, the received samples
(zk) are decoded by the code’s sequence decoder to yield estimates of the
information bits. In particular, symbol-by-symbol detection is not appropriate,
due to the dependencies in (xk) created by the encoding operation.

A convolution code is so called, because its encoder is simply a convolution
operator, i.e., an LTI system. The only difference from LTI systems that we
otherwise encounter is that the encoder processes bits (bits in and bits out),
rather than real or complex numbers.

 Repetition code (Why we opt for convolution codes)

The description of the trellis above is as follows. Each discrete time t is called a
stage of the trellis. Discrete-time t controls the encoder operation. It is related,
but different, from the discrete-time k, which controls the symbol and sampling
operations. The circle is called the state of the trellis. (Note the difference
between stage and state.) The repetition code has only one state, which we have
labeled as the null state.

12

What is a state of a system? The fundamental property of the state of any system
is that the output of the system in the future depends only on the current state
and on future inputs, but not on the past inputs. Thus, a state “summarizes all the
past inputs” (which could be a long sequence of numbers) into one concise
description. This is the convenience provided by a state machine.

In the repetition code, there is only one state required to summarize all the past
inputs, i.e., the null state. As time t progresses, the state changes, in general.
However, in a repetition code, since there is only one state, the new state is
always a null state. The arrows are called branches, and they are labeled as
information bits/coded bits.

4.2 Convolutional codes: Encoding

The flaw in the repetition code can be observed from its trellis in Figure above. As
there is only one state, any two paths that diverge from the state must
immediately come back to the same state. Therefore, it is not possible to have
two paths, which are at minimum distance d, differ by more than one branch. This
puts an upper bound on how large the minimum distance d can be. We want d to
be large, so that the BER is small.

It is likely that the larger the number of stages in which two paths at minimum
distance differ, the larger is the minimum distance, and so, the smaller is the BER.
We can increase the minimum distance doubling the number of states from one
to two, as shown by the trellis in Figure below. This trellis represents a 2-state
convolutional code.

13

As in the case of the repetition code, the circles are called states of the code. We
now have two states, labeled as ‘0’ and ‘1’. As time t progresses, the state can
change, in general. The branches are again labeled as information bits/coded bits,
just as in Repetition code. Since each information bit produces 2 coded bits,
hence the rate of this code is ½. As time progresses, information bits enter the
encoder, and get encoded into coded bits. The bold branches indicate the path
through the trellis, which is taken when the information bit sequence is 1, 1, 0, 1, .
. .. The path shown produces the coded bit sequence 11, 10, 01, 11, . . ., which is
different from that produced by the earlier example of rate ½ repetition coding.

The path (xk) is shown by the bold branches, while the path (yk) is shown by the
branches crossed by two segments. Enabled by the larger number of states of the
trellis, these two paths differ from each other in two stages, unlike the case of the

14

repetition code (No pairs of paths differ in only one stage.) Thus, they differ from
each other in 3 coded bits (i.e., 11, 10, 01, 11,... versus 00, 11, 01, 11, . . .).

The coding gain of 3 of this rate 1/2 convolutional code is more than the coding
gain of 2 of the rate 1/2 repetition code, resulting in lower BER. However, both
these codes have the same information bit rate, since they are both rate 1/2
codes.

To summarize, the key idea is that by introducing more states in the trellis, we
prevent divergent paths (which represent two competing allowed symbol
sequences – the error events) from re-merging quickly. Thus, any two allowed
symbol sequences differ in several stages, which we hope results in a larger
minimum distance. (There is no guarantee that longer error events will result in a
larger minimum distance – this will require an intelligent choice of trellis.) So, if
we want a larger coding gain code at the same rate of 1/2, we need to double the
number of states in the trellis again.

15

Encoder of a 4 state rate ½ code

4.3 Convolutional Codes: Decoding

The Viterbi algorithm is a special type of dynamic program, which casts the
sequence detection problem for a convolutional code as a shortest path
computation problem.

For a rate k/n code, pick a branch appearing in the th stage of the trellis and
calculate its

The path metric is the cumulative branch metric over a particular path and the
path with the shortest metric is the selected path.

Notice also that at a given code rate k/n, the code can be made stronger by
increasing the number of states 2^v , but the price paid is the increased decoding
complexity of the Viterbi algorithm.

(Terminal bits): A practical point to note is that the encoder of a convolutional
code is a causal (and LTI) system. This means that each information bit only
affects future coded bits, and thus, only affects future symbols (xk). Therefore, in
a finite length packet, the last few users bits are not protected sufficiently against
errors. For example, the last user bit would only affect encoding in the last stage.
Such a bit would not receive a coding gain of code, since that gain is achieved by
making the error events span several stages. To reduce errors in these last few
user bits, as a practical matter, several ‘0’ bits, which are called terminal bits are

16

appended to the end of the user bit sequence. For example, if the user bits are
11011, then the information bit sequence can be produced by appending, say,
terminal ‘0’s, to get 11011000. This information bit sequence is now encoded by
the transmitter, as usual. (Since the memory of the encoder is v bits, the terminal
‘0’ bits return the encoder to the all-zeros state. Thus, now, the source as well as
the destination state is the all-zeros state.) At the receiver, the detector knows
that the last bits are ‘0’ terminal bits, and thus, selects the ‘0’ labeled branches at
the end of the packet, returning it to the all-zeros state. Essentially, the terminal
bits serve to increase the length of the coded bit sequence, and thus allow full
error protection to the last few user bits.

4.4 Modulation:

Modulation is the process of converting information bits into signals which can be
transmitted via an analog medium. The message presented to the communication
sequence is digital for our system, this bit sequence has to be grouped into bit symbols
which are translated into analog voltage levels which are transmitted into the channel.
Modulation schemes are required to increase the bit rate and yet keep the bit error rate
low.

4.4.1 M- QAM
In M-QAM, we assume that the symbols (xk) are complex-valued. Thus, M-QAM is
applicable only to pass band modulated systems. This constellation maps b (b>2)bits
into one complex-valued symbol xk. Note that the number of points in the constellation
is M = 2b. There are three different possibilities here:

• Square-QAM:
Here, b > 2 is an even integer. A square QAM constellation is produced by defining root
M = 2b/2 equi-spaced levels on each axis, the real and the imaginary axis, of the signal
space.
Therefore, the total number of points is 2b/2 × 2b/2 = 2b = M. This is shown in figure
below, for a 16-QAM constellation, which has b = 4. The minimum distance of the
constellation is defined to be d. The requirement that b should be an even integer arises
from the requirement that pM = 2b/2 must be an integer.

17

 16 QAM 32 QAM

• Cross-QAM: Here, b>5 is an odd integer. Therefore, a Square-QAM cannot be defined
because root M is not an integer. However, a ‘Cross-QAM’ constellation can
be produced as follows. First, draw a M/2 = 2b−1 point Square-QAM constellation.
This is possible, because (b − 1) is even. Then, add the remaining M/2 = 2b−1 points
evenly on all four sides. Thus, these remaining 2b−1 points are placed in four groups of
2b−3 points each, along the four sides of the Square-QAM constellation. This is shown in
the figure above for a 32-QAM constellation, which has b = 5. From the shape of the
constellation, it is clear that the ‘corners’ of the constellation do not contain points. The
intuition behind this idea is that, the further away the points are from the origin, the
more is the power required for transmitting them. So, keeping them closer to the origin
saves power.

 8-QAM: The special case of 8-QAM, which has b = 3 (odd integer), but does not
precisely follow the construction of Cross-QAM

18

4.4.2 M- PSK:

In M-PSK, we assume that the symbols (xk) are complex-valued. Thus, M-PSK is
applicable only to passband modulated systems. This constellation maps b bits
(b>1) into one symbol. The number of points in the constellation is M = 2b. The M
points are arranged uniformly on a circle of radius r.

The M-PSK constellation is not as dense as the M-QAM constellation, because it
does not utilize the interior of the disk. Therefore, it is not very power efficient.
However, |xk| is constant (equal to radius r) for the M-PSK constellation, unlike
the M-QAM constellation. Hence, wireless systems that use the PSK constellation
can tolerate non-linearities in the various electronic amplifiers (primarily in the
high power transmitter amplifiers). Such Further, in PSK, only the phase carries
information, and so, even if the channel attenuation is unknown (i.e., unknown
|h0|), decoding of PSK is unaffected. Thus, PSK is a robust constellation.

 Fig: 8 PSK Constellations

19

4.4.3 Algorithm for Modulation:

20

4.4.4 Example of Modulation:

1) Input stream of bits: 10001011011100
2) For 4 QAM modulation.
3) b= log(4)/log(2)= 2
4) Group bunches of 2 bits, so we get 10 00 10 11 01 11 00.
5) Create conversion table of bit combinations to symbols.

6) Looking up corresponding symbols from the table:
 Symbols Transmitted: 1-j -1-j 1-j 1+j -1+j 1+j -1-j

4.5 Demodulation:
At the receiver we use minimum distance demodulation; the received symbol
with noise is compared to all the possible symbols. The symbol from which it has
least distance, would be the symbol that was most likely have been transmitted at
the transmitter, this symbol then becomes the guess of the symbol transmitted.

Bit Combination Symbol

00 -1 -j

01 -1 + j

10 1 - j

11 1 + j

21

5. Implementation:

In the first part of this section we describe how we transferred a short burst of
signal from the transmitting SDR to the receiving SDR.
In section 5.2 we describe what we actually implemented for the demo. Since we
were unable to transfer an image using the SDRs we simulated the wireless
transfer of the image and then carried out a face recognition algorithm at the
receiver.

5.1 Transferring Short Bursts of Signal:

We setup the SDRs transmitter with the following specifications:

sock=SDR4All_Connect(0,'SlotA','TX'); % 0 stands for USRP #0

Set the communication parameters:

SDR4All_SetGain(sock,20); % Maximal TX gain

SDR4All_SetFreq(sock,2422e6);

SDR4All_SetInterpRate(sock,256); % set signal sampling period (and bandwidth)

Generate the signal to be transmitted:

22

Basic = kron(ones(5e5/10/2/4,1),[ones(10,1);-ones(10,1)]);

Vide = zeros(125000,1);

Base = [Basic;Vide];

Sig = kron(ones(20,1),Base);

Te = (1:length(Sig))/(500e3);

plot(Te,Sig);

And perform the transmission:

SDR4All_SendData(sock,Sig);

We set the receiver with the following specifications:

sock=SDR4All_Connect(0,'SlotA','RX'); % 0 stands for USRP #0

The communication with the USRP should be confirmed with a message like:

 Number of connected USRP: 2

 Communication set with USRP 1 and daugtherboard on slot A

23

The next commands are:

[gain_min,gain_max,gain_step] = SDR4All_GetGain(sock);

[freq_min,freq_max] = SDR4All_GetFreq(sock);

SDR4All_SetGain(sock,(gain_max+gain_min)/2);

SDR4All_SetDecimRate(sock,128); % set signal sampling period (and bandwidth)

SDR4All_SetFreq(sock,2422e6);

You can now start the transmission with the TX bursts soft. Use the following command

with matlab to record 5 seconds of signal (at 500kHz):

[Data] = SDR4All_GetData(sock,5*1000*500);

Te = (1:length(Data))/(500e3);

With the above setup, the signal which we transmitted was:

24

The signal we received at the receiving SDR was:

The signal received at the receiver in our simulation

5.2 Simulating Transfer of Image in MATLAB.

To reduce the time taken for processing in MATLAB we use wavelet compression
on the image to be transmitted. This data is converted into a stream of bits,
modulated using any one of the modulating schemes, encoding schemes and then
sent over the simulated channel.

25

Transmitted Image Received Signal with noise

This received signal was then feed into the face recognition algorithm to search in
the OpenCV database for a match. Even with significant amount of noise in the
image, the algorithm was successful in finding a match in the database.

26

6. Results:

We tried running different combinations of modulation and encoding schemes for
transferring the different images for different SNR values. Following are the
results for transferring a particular image at an SNR of 10dB.

Time here refers to the time taken for MATLAB to finish processing. And the bit
error rate is calculated as the number of bits in error to the total number of bits
transmitted.

7. Inferences:

• For the same SNR, M= 4 produces lesser errors than M=16. This is expected
as distance between symbols is more for M=4, hence the chances of an
error occurring is lowered.

• M=4 modulation schemes takes longer to run and process this can be
justified as M =4 produces a longer chain of symbols to be transmitted. Also
the number of bits per symbol is lesser than M=16, hence it takes longer to
transfer the same amount of data using M=4.

• Rate ½ code should have produced less errors than the 2/3 code, as rate ½
introduces more redundancy hence reduces chances of making an error
but our results are show otherwise.

• M-QAM shows better results than M-PSK for this channel. This channel is a
pure AWGN channel. If multipath and fading effects were considered then
M-PSK would have done better, as wireless channel non-linearities would
badly distort the QAM constellation.

 M-QAM M-PSK

 Time(s) BER Time(s) BER

M=4 1/2 1120.96 14.5% 941 15.8%

2/3 697.507 3.4% 578 3.9%

M=16 1/2 545.138 22 % 419 18.66%

2/3 368.906 4% 304 4%

27

8. Schedule:

Work Distribution:
Anish Menon: Codes for Encoding Schemes, Decoding, Face Recognition
Akash Gopisetty: Digital & Analog Modulation/ Demodulation schemes

28

9. References:
 The Ettus Research Group Website : www.ettus.com

 Understanding of the hardware and the available software bundles

 MATLAB interfacing for USRP1 by Tools4SDR: www.tools4sdr.com
The software interface we used with our hardware and MATLAB, setting the
transmitter and receiver parameters.

 Notes from Prof.Negi’s Class 18-450 : Digital Wireless Communication
concepts

 Eigen Vector Face Recognition code by Santiago Serrano modified by Karoly
Pados. The code was used to verify the robustness of wireless communication.

 http://groups.google.com/group/simulink-usrp:
A software interface between simulink and usrp, this group helped us with our
problems of installing the same though we were not able to get it working.

http://www.ettus.com/
http://www.tools4sdr.com/
http://groups.google.com/group/simulink-usrp

