

Automatic LP Digitalization

18-551 Spring 2011

Group 6: Michael Sibley, Alexander Su, Daphne Tsatsoulis

{msibley, ahs1, ptsatsou}@andrew.cmu.edu

 1

Introduction
This project was originated from our interest in doing something with music and finding a way to

incorporate digital signal processing to better music. We talked to several professor and parents

and students and found that a common problem that could be fixed with digital signal processing

is the tedious process of converting a long-playing record into an mp3 file for your computer to

utilize. We attacked the problem by analyzing the needs, by asking those with long-playing

records what the main issues were with converting their records. The main issues that were

brought up was the recording of the entire album taking a lot of time, then having to split the

songs. Also when a record is played and recorded by a turntable, there will undoubtedly be

artifacts of a dirty record or just playback on a turntable. These annoying pops and clicks need to

be subdued and removed. The need to listen to your recording and attempt to identify where

distortion of the record occurred was a big time concern for people. The need to sit there and

manually remove pops and clicks and other noises from the tracks made it undesirable to devote

hours at a time on a Saturday afternoon to convert a long-playing record into an mp3 file. We set

out to tackle these problems in a simple efficient solution by automating the entire process. That

way, one could just leave the program and record playing overnight and be presented with a

completely digitalized long-playing record in the morning.

Background
We looked through previous 18-551 projects to gain some insight as to how we should go about

tackling this problem. After searching through the semesters and years of projects, we didn’t find

any project that attempted to automate a recording, cleaning, and filtering process. We then

moved to search the Internet for different software and programs that may already exist that

could give us some guidance.

After searching for research projects online that may solve our problem or solve parts of our

problem, we concluded that there has not been a process designed to serve as a solution to our

problem. We found some software and programs that were sold, that could do the recording of

an album and split the album into separate tracks automatically. However, we did not find

anything that would automatically master and edit your split tracks. All the programs with noise

removal and pop and click removal required human judgment to determine whether or not

something needed to be filtered. We checked out the algorithms and methods of these editing

programs to try to find a way to reproduce it and automate it without the human sense of

judgment.

Our System
We decided our first order of business was to get our program to record the turntable’s output

and store into a wav file. We proposed that we needed to record it as a wav file because wav files

maintain a higher quality of audio. The more data we have in terms of music, the more we can

edit it without losing too much data to reconstruct the music. We then wanted to parse through

our entire album so that we could methodically find the long pauses in between tracks and

separate them into individual songs on the album. After separating the album into individual

tracks, we would take the songs one by one and automatically remove pops and clicks and also

remove the background noise of a noisy playback. We figured editing the album would be best

after separating the tracks because each track would have a different average level of amplitude,

making thresholds for amplitude of noise differ from track to track. After the automatic editing,

 2

we would then have the edited sound file exported in whatever form the user designates. We

wanted to have the entire process completely automated, so in addition to recording, splitting,

and editing the tracks, we wanted to label the tracks as well. To employ this we wanted to scan

or take a picture of the LP record’s case and cover and use Optical Character Recognition (OCR)

to determine what the letters on the case were. We would then take this information and tag it

onto the exported music file and we’d have a track from a fully digitalized and edited album.

Pop and Click Removal
Due to the nature of vinyl records being an analog medium of recording audio, it is susceptible to

inaccuracies in playback. If the record gets any bits of dirt on the surface, this can cause pops

and clicks in the output. If the record had been damaged by scratching at some point then clicks

could be caused on the album playback. We want to minimize these clicks in the final recording,

so we can get as close as possible to studio quality. This can be achieved to some extent by

analog means such as cleaning the record but can also be achieved using digital signal

processing.

Our Solution

In order to remove any extraneous spikes from the original input, we implemented the Phase-

Space Thresholding Method introduced by Goring and Nikora in [1]. In this method the original

time series elements and their derivatives are plotted against each other in phase-space and then

enclosed by an ellipsoid. Any points lying outside the ellipsoid are considered extraneous and are

removed via interpolation. The process is then reiterated until the number of outliers does not

change. The method is detailed below:

1. Surrogate first and second derivatives of time series are taken.

∆ui =
ui+1 − ui−1()

2

∆2ui =
(∆ui+1 − ∆ui−1)

2

2. The standard deviations σ u,σ ∆u,σ ∆2u
 are calculated along with the expected absolute

maximum λ .

λ = 2 ln(n)

3. The rotation angle of the principal axis of ∆2
ui

versus uiusing the cross correlation is

calculated.

θ = tan−1
ui∆

2
ui∑

ui

2∑

4. Calculate the ellipse with the maxima and minima found in step 3. The minor and major

axes will be the product of λ and the standard deviation of the variables being plotted.

For example, when plotting ∆ui versus ui the major axis is λσ u and the minor axis is

λσ ∆u .

5. For each projection, any points outside of the ellipse are replaced. We replace the

outlying point by interpolation. We interpolate using a cubic polynomial as implemented

by MATLAB.

 3

We used a preexisting MATLAB function to implement the algorithm called Despiking created

by Nobuhito Mori [3]. His implementation of the Phase-Space Thresholding Method is the same

as the one described above.

Results

The resulting signal contained less spikes and those that remained were noticeably dampened.

Most importantly, the clarity and detail of the music was not distorted by this processing. Figure

1 shows a signal before and after the pop-removal.

Figure 1: (left) Original Input, (right) After pop-reduction

This process did not work as effectively when pops and clicks were detected in the noisy

segments between songs as can be seen in Figure 2. Though this does not affect the quality of the

music, it can be annoying between songs.

Figure 2: Pop reduction between two song clips

 4

Noise Removal

Records are an analog method of recording audio and are therefore susceptible to noise. The

audio on a record is encoded in the surface topology of the record. If there is any dust on the

surface of the record, it will cause noise on the output of the record player. Digital to analog

conversion is also susceptible to noise from electrical sources.

Our Solution

The algorithm we used to remove noise was a median filter. This is an algorithm commonly

used in image processing to remove salt-and-pepper noise. Salt-and-pepper noise is random

white and black pixels that occur over the image. A typical median filter involves iterating

through the data, taking the median of each point, uk , and the points to each side, uk−1 and uk+1 ,

and setting uk to the value of the median. This type of filter had an effect on the noise, but did

not seem to remove it completely. To increase the effectiveness, we increased the number of

points from 3 to 9. The filtered time series equals:

 uk = median(u j : j ∈[k − 4, k + 4])

By setting points to the median of the surrounding points, we smooth the signal and remove

much of the noise.

We tried several other algorithms before we settled on the median filter. Many audio editing

software programs remove noise, by taking a section of noise and reducing those frequencies

proportionally in the music. We originally planned on using a similar method, however it is

difficult to automatically detect the difference between noise and music. We also attempted using

wavelets and a basic low pass filter. Both of these attempts dampened the music too much, and

damaged the end result.

Results

Figure 3: (left) Original input, (right) After noise-removal

 5

The median filter was very effective for removing noise from the songs without dampening or

damaging them. Figure 3 shows some of the pre- and post-processed music. Figure 4 shows

music that has undergone both pop-click removal and noise removal.

Figure 4: (left) Original input, (right) After pop and noise removal

Optical Character Recognition
In this part of the project it was our intention to show that it would be possible to take an image

of the backside of a record, and convert the text on the image into labels for the record’s songs

without user input. Due to the scope of our project, we limited the input images to simply

colored images such as the ones in Figure 5.

Figure 5: Sample OCR input

Preprocessing

The input to the system is a .bmp file containing an image of song titles separated by line in Arial

font of size 48. We converted all input images to gray scale and separated the song titles by

detecting horizontal lines of only one color. Once the song titles had been separated from each

other, one title was processed at a time. We detected individual letters in the image by detecting

their edge and clipping out the box surrounding this edge as shown in Figure 6. This method was

not always successful. For example, when the letters ‘EX’ were located next to each other, they

were detected as one letter, not two. This could be avoided by feeding the entire song title into

the MACE filter (described below).

Figure 6: Letter detection

 6

Classification

In order to classify detected letters we used minimum average correlation energy (MACE) filters

[2]. A resulting MACE filter takes the form

h = D−1X(XT D−1X)−1c

where X is the training input, the matrix Dcontains the average power spectrum of the training

images along its diagonal, and c is a unit vector of length equal to the number of training images.

We trained on three sets of individual characters in different fonts. We then tested using random

phrases and song titles.

Results

The MACE filter was very successful in correctly identifying the input. Issues arose when

characters were not correctly separated, but this could be avoided by simply feeding the entire

song title into the filter rather than parsing out each character. There was some misclassification,

though it did not occur often and it was not consistent. Errors were highly dependent upon the

letters surrounding the misclassified letter, because they were often separated from each other

badly. The most highly pairs of confused letters were ‘L’ and ‘E’ and ‘I’ and ‘T’. Figure 7

displays some of the input and output pairs.

Figure 7: Final input and output from OCR

 7

Demo

Figure 8: Screen shot of the GUI in use

Since the stimulus of our project was to create an automatic system to convert the vinyl records

into digital form, the ultimate goal would be software with which one would simply put the

record on the player, press go and start playing the record. The user would also have to input a

picture of the song information on the album cover. In the case of the demo however, we wanted

to demonstrate each step in the process, so the demo was divided up step by step. We wrote

separated the audio processes and the image processes, so that they could be run in either order.

On the audio side of things, the user selects a wav file that is the recording of the entire album

and runs the song splitting process. This enables a dropdown list of the individual tracks on the

album. The user can then select each track and process the audio to remove pops and

clicks. The GUI provides an option to listen to the track before and after processing as well as

provides a graph of the waveform. It is easy to identify clicks and pops visually on a waveform,

so we provided this as another way for the user to view the results of our algorithms.

On the image side of things, the user selects a bitmap file that is a picture of the track

information on the album. The GUI displays this image so the user can verify that they have the

correct image. The user can then process the image to run the OCR and obtain the track

titles. This is then output as a list and also integrated into the dropdown list of songs, if the user

has already done the audio processing.

Finally, the software needs to provide the user with a song file that they can add to their music

collection. The GUI provides an export file that renames the track file to the name obtained by

the OCR. This is then copied into the output folder and the folder is opened for the user.

 8

Due to the actual processing of songs taking significant time, we also implemented a demo mode

and a production mode. In production mode, the software does each step real-time and actually

processes the audio as input. In demo mode however, the software uses preprocessed audio files

so that we could demonstrate the results in a reasonable amount of time.

Future Work
Our song splitting was not of the highest quality, because the algorithm we used required a lot of

memory to process an album. At the moment, we cannot find a computer with enough random

access memory to actually process our song splitting algorithm on an entire full-length album. In

future works, a full album is just too much information to process at a time, so our suggestion is

to take the high quality wave file, and reduce its sampling rate. This will reduce the number of

points dramatically making it much less dense and requiring less memory to process. A break in

between songs that happens at 4:39 in the wave file will also happen at 4:39 in a lower sampling

rate file as well. We analyze the low sampling rate file to find out at what time the break in

between the tracks is, and save that information. We then return to the high quality album, and

cut the tracks at the desired spots obtained from this process.

Our algorithm at the moment runs on MATLAB. In the future we’d like to be able to make it run

on the DSK. A problem with the DSK and this complex problem is that there is not enough on

chip memory to process an entire song. So for future work to implement more processing on the

DSK, we’d need to write an algorithm that does the processing in small chunks, so that we can

transfer a small chunk to the DSK, process it, and grab it, and start on another small chunk. If

coded well enough, it will actually be more robust than the current code we have now.

In terms of the GUI, there are additional developments that should be done to make it into a

finished product. The recording of the album into the computer currently needs to be done with

Audacity software, independent of the GUI. In the future, this functionality could be integrated

into the GUI so that tit could be done automatically. For the final product, the GUI should be

simplified. The user does not need to see each step of the process, but would want to see some

sort of status bar to indicate how far along the process is. Also, the GUI would need a more

robust file handling. Currently, it only works if all of the files are placed in the same folder as

the code. In a production version, it should be able to handle files in any location on the

computer.

References

[1] D. G. Goring and V. I. Nikora, "Despiking Acoustic Doppler Velocimeter Data", Journal of

Hydraulic Engineering, ASCE, Vol. 128, No. 1, pp. 117-126. Discussion: Vol. 129, No. 6, pp.

484-489, (2002).

[2] A. Mahalanobis, B.V.K. Vijaya Kumar, and D. Casasent, “Minimum average correlation

energy filters,” Appl. Opt. 26, pp. 3633-3630 (1987).

[3] N. Mori, ‘Despiking’, <http://www.mathworks.com/matlabcentral/fileexchange/15361-

despiking>, 2007.

 9

Tasks
Michael Sibley

Song Splitting

Moving Average Implementation

Audacity pop removal implementation

GUI

Alexander Su

Audacity pop removal algorithm

Median filter algorithm

Testing

Daphne Tsatsoulis

Song Splitting

Wavelet algorithm

Median filter algorithm and implementation

Phase-Space pop removal algorithm

OCR algorithms and implementation

