
Page 1 of 23 
 

18551 : FINAL REPORT 

Group-5 Spring 2011 
 

 

 

 

 

 

MOOD GENIE 

Song Emotion Identification on a DSK 

 

 

 

Swetha Chigurupati (schiguru@andrew.cmu.edu) 

Zhi Yang Lim (zlim@andrew.cmu.edu) 

Chun How Tan (chunhowt@andrew.cmu.edu) 

 

 

 

 

 

 

 

 

mailto:schiguru@andrew.cmu.edu
mailto:zlim@andrew.cmu.edu
mailto:chunhowt@andrew.cmu.edu


Page 2 of 23 
 

Content: 

1. Introduction 

2. Problem 

3. Novelty 

4. Solution Overview 

5. Dataset 

6. Feature Extractions 

7. Emotion Classification using SVR 

8. Lab Demos 

9. DSK vs. PC breakdown 

10. Speed and memory on DSK 

11. Results 

12. Future Works 

13. Semester Schedule 

References 

 

 

 

 

 

 

 

 

 



Page 3 of 23 
 

 

1. Introduction: 
 

Songs are the embodiment of the expression of the human emotion. Often times, 

we play songs to reflect the mood that we are in. However, it can be difficult to identify 

the songs with the right emotion to play in a particular situation given a large song 

library. We propose to create an application that will classify songs based on its emotion 

content using techniques from signal processing and pattern recognition. 

 

2. Problem: 

The problem we are proposing to solve is – given a studio-recorded song (i.e. 

noiseless), we classify its emotion to be one of 4 categories of emotion, following the 

Juslin‟s theory along with Thayer‟s emotion model[1]. The 4 emotions that we proposed 

to classify are “happy”, “sad”, “angry”, and “relaxed”. Thayer‟s 2-dimensional emotion 

model uses arousal, which represents the energy of the song, for y-axis, and the valence, 

which represents the stress of the song, for x-axis. Fig 1 is the diagram of how each 

emotion is classified on the 2-D plane. 

 

Fig 1. Thayer‟s 2-D emotion model. 

 



Page 4 of 23 
 

 

3. Novelty: 

Commercial version for the emotional classification of songs exists currently (eg. 

SensMe by Sony Ericsson), but the algorithms used for these commercial software are 

proprietary. In addition, all these commercial applications are either run on the PC or do 

all their processing on the PC, then push the results to the mobile devices, in the case of 

SensMe.  

To the best of our knowledge, this procedure has never been implemented on a 

DSK. Our goal is to implement the classification algorithms on the DSK. There are a lot 

of issues to be resolved, including network transfer and memory storage because of 

DSK‟s limited processing power.  In the context of 18551, this category of projects has 

not been attempted before, and thus represents a new frontier in which to take the 

potential usages of a DSK. All other audio projects done so far in 18551 have not dealt in 

analyzing the emotional aspects of audio. 

 

4. Solution Overview: 
Our process can be split into the training and demo part.  

 

4.1. Training 
For training, we need to ensure homogenous and standardized datasets. To 

achieve that, we first normalized the songs to 89 dB using the software MP3Gain [2], and 

converted the mp3 songs into wav format using the matlab routine, mp3read [3]. Then, 

we made all the songs mono, with the same bit rate of 128 kbps and same sampling 

frequency of 44.1 kHz using the same mp3read routine. Next, we manually chose a 60 

seconds frame for each song that has the most interesting content inside, such as the 

chorus part. Refer to section 5 for more information about the standardization process.  

From the standardized songs, we extract 4 representative song features from them. 

The features are pitch, loudness, beats and spectral centroid.  Next, we generate from 

these 4 features, 8 variations of values – average energy, standard deviation of energy, 

average fundamental frequency, standard deviation of fundamental frequency, number of 

fundamental frequencies higher than 0.25 * maximum fundamental frequency, 75 

percentile beats, average spectral centroid and standard deviation of centroid.   

Using these 8 features, we brute-force all 255 combinations of them in the SVR 

training. Since SVR returns a real value, we decided to separate the SVR training on the 

arousal and valence. In general, for X some subset of 8 features above, we have 2 

independent mapping functions f: X -> O, where O   R is the valence/arousal of the 

song. Then, we chose the best combination of features for valence and best combination 



Page 5 of 23 
 

of features for arousal. Finally, we trained SVR models based on these combinations and 

store them for the second part – demo.  

Here is the flow chart showing our training process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Flowchart of the training process.  

All parts done on PC unless otherwise stated. 

Normalize loudness of songs using 

MP3 Gain 

Convert song to wav, mono, 44.1 

kHz, and 128 kbps using mp3read 

routine 

Extract 8 features (DSK) 

Brute-force all 255 combinations Brute-force all 255 combinations 

Arousal Valence 

Best combination Best combination 

Get SVR model for 

Arousal 

Get SVR model for 

Valence 



Page 6 of 23 
 

 

4.2. Demo 

Step 0: Preprocess the song by converting into wav format. Note that, the song need not 

be standardized as in training data. Songs of arbitrary length, arbitrary bit rates and 

loudness could be fed into our system. There are no clear distinctions of the results 

between standardized songs and arbitrary songs. Refer to Section 11 for more 

information on our results. 

Step 1: We first loaded the SVR models found for arousal and valence from the training 

part into the DSK. 

Step 2: We fed 30 seconds at each time into DSK for feature extractions. The feature 

extraction was done on each second, and so we have 30 values per feature.  

Step 3: Then, we computed the 8 features based on these 30 values and stored these 

features on DSK (averaging with old values if this is not the first 30 seconds window). 

Step 4: If there are more frames of songs, we push them into DSK again and repeat Step 

2. Else, we go to Step 5. 

Step 5: Using the averaged features, we use the SVR model stored to compute the arousal 

and valence on DSK.  

Step 6: We sent the arousal and valence back to PC for displaying on the GUI.  

 

Fig 3. Flowchart on the final demo system. 

MP3 file to wav 
format (PC)

Send 30 seconds into 
DSK

Feature Extraction 
(DSK)

Averaging features 
over segments 

(DSK)
Compute arousal and 
valence using SVR 

(DSK)

Plotting song on 
graph (PC)

while still have more frames 



Page 7 of 23 
 

5. Datasets: 
We used 71 English songs for the whole project which includes 20 angry songs, 

18 happy songs, 16 relaxed songs and 17 sad songs. Out of these 71 songs, 40 songs were 

used for training data, 15 songs for development data (used for selecting features, refer to 

Section 7 for more information) and 16 songs for testing data. Refer to Appendix 1 for 

the list of songs. The training, development and testing are chosen alphabetically, i.e. the 

first 40 songs are training, next 15 are development etc.   

 

For training, we need to ensure homogenous and standardized datasets. To 

achieve that, we first normalize the songs to 89 dB using the software MP3Gain [2]. 

According to the software‟s description, the software first uses the ReplayGain algorithm 

to calculate the loudness of the song. Then, the software does loudness normalization. 

The software adjusts and normalizes the songs so that human will perceive the songs to 

sound the same loudness, instead of doing simple peak normalization.  

 

Then, we convert the mp3 songs into wav format using the matlab routine, 

mp3read [3]. Then, we make all the songs mono with the same bit rate of 128 kbps and 

same sampling frequency of 44.1 kHz using the same mp3read routine.  

 

Next, we manually chose a 60 seconds frame for each song that has the most 

interesting content inside, such as the chorus part.  

 

After we have this list of 71 songs, all the three members independently and 

individually annotate the arousal and valence of each song clip. Finally, we take the 

average of valences and arousals across the 3 members to be considered as the ground 

truths.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 8 of 23 
 

6. Feature Extractions: 

Based upon the paper in which Professor Roger B. Dannenberg of CMU submitted to the 

10
th

 International Society for Music Information Retrieval Conference [1], we extracted the 

following features from the segment: 

 

Feature Explanation 

Average 

Energy 

The average energy in a song is an important measure for quantifying 

the loudness in a song. Also, the regularity of music can be measured by 

the standard deviation of average energy. The song is separated into 

number of frames and the average energy in each frame is calculated. 

For every frame in the song, 

1. The average energy is calculated as, 

Average Energy (x) = AE(x) =  
 

 
        

    

2. The standard deviation of average energy is calculated as, 

Standard deviation of AE =  σ (AE(x)) =   
 

 
                  

    

Where, x is an input frame, t is the time in samples, and N is the length 

of x in samples. 

 

The Average Energy and Standard Deviation of Average Energy are 

used to represent the arousal attribute of a song. 

Fundamental 

Frequency[4] 

Pitch is the perceived fundamental frequency of the sound. Many modes 

of vibration occur simultaneously, the vibration that has the slowest rate 

is called the fundamental frequency. As such, this feature simply 

involves extracting out what the fundamental frequency of the song is. 

The first frame has been discarded to account for noise in the song. The 

pitch in each other frame is considered for classification.  

For every frame in the song, 

1. The auto-correlation output is computed. 

2. Depending on the above output, the zero crossings in the signal 

are identified. Zero crossing is where the signal changes its sign. 

3. Depending on the zero crossing rate, the frequency 

corresponding to the sample with higher slope is determined 

which represents the fundamental frequency. 

The average fundamental frequency and the standard deviation of the 

fundamental frequency are considered along with the count representing 



Page 9 of 23 
 

number of fundamental frequencies which are higher than the average 

fundamental frequency of the frames considered. 

Spectral 

Centroid[4] 

The spectral centroid is a measure used to indicate where the "center of 

mass" of the spectrum is. It is calculated as the weighted mean of the 

frequencies present in the signal, determined using a Fourier transform, 

with their magnitudes as the weights. The Hamming window is used for 

obtaining centroid in each frame of the entire song. The song is divided 

into frames and the centroid of each frame in the song is calculated. 

For every frame in the song: 

1. The center frequency and the weighted frequency value in each 

bin are determined. 

2. Using the center frequencies and weighted frequency values, the 

centroid of each bin is calculated using the following formula. 

 

where x(n) represents the weighted frequency value, or magnitude, of 

bin number n, and f(n) represents the center frequency of that bin. 

Then the average and standard deviation of the centroid values in all the 

frames are calculated and used for classification. 

 

Beats[5]
 

In designing the beat algorithm, we must take into account our algorithm 

must be able to handle all types of songs, including noisy songs such as 

rock or pop music. This immediately rules out the use of simply sound 

energy algorithms to detect beats. Therefore, the algorithm must have 

the ability to determine on which frequency subband we have a beat and 

if it is powerful enough to take it into account. Therefore, what we want 

to do is try to detect big sound energy variations in particular frequency 

subbands. According to the Parseval Theorem, the energy computing in 

the time domain is the same as the energy computed in the frequency 

domain, so there should not be any difference between computing the 

energy in the time domain or the frequency domain.  

 

For every 1024 samples: 

1. Compute the FFT of the 1024 new samples taken in.   

2. From the FFT we compute the 1024 frequency amplitudes of 

our signal by taking the square root of the sum of squares.  

http://en.wikipedia.org/wiki/Weighted_mean
http://en.wikipedia.org/wiki/Fourier_transform


Page 10 of 23 
 

3. Divide the buffer into 16 subbands, and compute the energy 

on each of these subbands and store it at Es. Thus Es will be 

16 sized and Es[i] will contain the energy of subband „i‟: 

       
  

    
              

       

      

 

4. Now, we have an energy history buffer called Ei that 

corresponds to each subband „i‟. This buffer contains the last 

44 energy copmutations for the „i‟ subbands. We compute 

the average energy Ei for the „i‟ subband simply by using: 

       
 

  
         

       

5. If the buffer is full already (i.e. we already went through 

1024 * 44 samples), we do a memmove to shift the sound 

energy history buffers Ei by 1 index.  

6. Pile in the new energy value of subband „i‟ 

            

7. For each subband „i‟ if Es[i] > Ei we have a beat! 

8. If we have a beat, we then find the beat by taking the largest 

amplitude in that subband and then converting it to frequency 

to obtain the beat value.   

We chose to use the 75 percentile of the beats for each frame.  

 

 

 

 

 

 

 

 

 

 

 

 



Page 11 of 23 
 

7. Emotion Classification using SVR 

7.1. SVR Overview 

We perform a supervised SVR training using our dataset of emotion annotations as 

detailed in the datasets section at section 5. We used nu-SVR.   

The basic idea for SVR is given a feature vector X, we want to find parameters w and 

b, where w is a vector of same size as X and b is a scalar, such that we will obtain a linear 

mapping function f(X) where: 

            

To obtain w, we want to solve a quadratic optimization problem to minimize the 

norm of w
2 

[6]. 

         
 

 
              

 

 
   

 

   

    
    

       

     
              

                    
 

     
    

  

Here,   
  and    are two slack variables to allow some misclassification to happen 

rather than always require to have 100% classification accuracy, which might be 

impossible on certain data where  we cannot split the classes nicely.  

To obtain b, we can use Karush-Kuhn-Tucker (KKT) conditions [6]. 

We can also expand our regression mapping to nonlinear functions using Kernel 

function. The idea to map values to higher order is because if some feature vectors are 

not separable at the lower order, projecting them into higher order might allow them to be 

classifiable. One of the most popular and useful kernel functions is the Radial Basis 

Function (RBF), defined as [6]: 

                
   

                                              

The whole SVR training may be complicated and become nasty as we tackle non-

linear mapping. Fortunately, we found LIBSVM, a library for SVR written in C++ and 

Java online [7]. This library supports good interface to do training with SVR.  

 



Page 12 of 23 
 

7.2. Training Approach 

LIBSVM supports multiple SVM and SVR implementations, and multiple kernels. 

We used nu-SVR and RBF function for this project.  

During training, each trial consists of doing cross-validation on the training data to 

choose the best parameters (such as epsilon, gamma and cost in the equations above). 

Once the best parameters that maximize the cross-validation were chosen, we run the 

SVR on the development data to see the accuracy rates. We ran 255 trials each for 

arousal and valence using all the possible combinations of features (8 features => 2
8
 – 1 

(empty subset) = 255 combinations) and chose the feature set that maximize the cross-

validation rates and break ties by the accuracy on the development data.  

Training results can be found in Section 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 13 of 23 
 

8. Lab Demos 

8.1. Lab Demo 1: Matlab’s Mex Interaction with DSK 
 

This program allows us to natively interact with the DSK in order to parse the 

emotion of the chosen song. The interaction of the Matlab GUI with the DSK is 

facilitated by a self-written Matlab Mex (Mtlab EXtension) function written in C. This 

facilitates the portability of our program and would potentially allow us to compile the 

program to be used across all PC platforms.  

 

 
 

Fig. 4. Lab Demo 1: Matlab‟s Mex Interation with DSK 

Chosen Song: This list the song that have been selected via the „Select Song‟ button or 

typed into the text box by the user.  

Select Song: This allows the user to select the song that he/she wants to see the emotion 

for.  

Play Song: This plays the chosen song using native Matlab functions. This allows the 

user to play the song for himself and have a general feel as to where the song might 



Page 14 of 23 
 

fall on the graph. There is an in-built error checker that prevents anything but .mp3 

file extensions from being played in order to avoid crashing the program by erroneous 

user input. This button changes to “Stop Song” when a song is being played to allow 

the user to stop the song being played at any point in time.  

Detect Emotion!: This passes the song into the DSK. Details of this procedure are 

described later on in this section. Once again, before the song is passed to the DSK, 

there is an in-built error checker that prevents anything but .mp3 file extensions from 

being passed into the DSK in order to avoid crashing the program by erroneous user 

input.  

Graph: This displays the emotion of the song once it has been determined by the 

algorithm on the DSK. The song‟s location is marked by a blue „x‟ with the song title 

placed next to it to allow easier reading of the graph once multiple songs‟ emotions 

have been detected.  

 

Once the “Detect Emotion!” button has been pressed, after the error checker module 

has been passed, the entire path of the chosen song is passed into the Matlab Mex C 

function. Once there, a busy dialog comes up on the screen that prevents the user from 

clicking any more buttons on the GUI. In the Mex C function, it connects to the DSK via 

TCP and establishes a connection. Once this happens, the song is then passed into the 

DSK in 30 second segments. The Mex C function continues to do this until the DSK has 

called for all segments of the song, and then waits for the DSK to output a singular 2 

value struct containing the final values for arousal and valence in order to plot it on the 

graph of the GUI. This value is then passed back to the GUI for plotting.  

Our program is designed to be robust and thus would be able to take in any length of 

mp3 formatted song. In testing, it was able to successfully output the arousal and valence 

for 6 minutes long songs. The performance time of the DSK algorithm is directly 

proportional to the length of the input song (8 seconds for every 60 seconds of song). 

However, we do not normalize any of the songs that are fed into the DSK, thus if a song 

was ripped at a different dB level compared to our standard dB level (89 dB), the 

accuracy of the results may be affected. We do not believe this accuracy to be adversely 

affected though, as our own annotations of these songs agree with the output given by our 

system. 

One interesting initial bug of note in our program is the fact that we have to sleep the 

program for a very brief period of time before we allow any data to transfer to the DSK 

(this was eventually set at 300 milliseconds). While the root cause of this is not exactly 

known, we suspect that it is due to a lag time that requires the TCP connection to 

properly establish the three-way handshake. This sleep time is not noticeable to the end 

user, but nonetheless represents an interesting bug.  

 

 



Page 15 of 23 
 

8.2. Lab Demo 2: Java demo on Processed songs 

 

Fig 5. Lab Demo 2: Java demo on processed songs 

The second lab demo implemented in Java is developed for the end-users purpose. 

This program takes in a labeled list of songs, with the corresponding artists, arousal and 

valence value. Then, the user can use this program to pick the “emotion” they want and 

the program will play the songs that have the most similar emotions to the emotion level 

chosen. The functionality to play MP3 in Java is obtained from an implementation in [8] 

and the functionality to accept mouse and keyboard inputs from the users is credited to 

David Kosbie in [9].  

A few functionalities provided in this demo are: 

1. Users can select any point on the plot and click it. Then, the top 15 nearest songs 

will be shown on the panel on the right and the Java program will play the first 

song. User can change the song they want the Java program to play by pressing up 

or down key on the keyboard.  

2. On the plot, the blue dots show all the emotion values for every sons in the 

database accessible to this demo program. Pressing key “a” will switch between 

showing the blue dots and not showing them.  

3. The black dots on the plot are the dots representing the top 15 songs closest to the 

point chosen (shown as green dot). The red dot represents the location of the 

current song being played. 

 



Page 16 of 23 
 

9. DSK vs. PC Breakdown 

PC: 

- Standardization of songs (loudness normalization, conversion to wav, mono, 128 

kbps and 44.1 kHz) for training 

- Conversion from mp3 format to wav format for demoing 

- Take in the input choice of song from the user  

- Display the arousal and valence value from DSK on the GUI in Lab demo 1. 

- Training the features to obtain SVR models 

DSK: 

- Load the pre-trained SVR models into DSK. 

- Do feature extractions from the song 

- Perform classification based on the SVR models and the features extracted. 

 

10. Speed and Memory on DSK 
 

Our project requires great usage of memory on DSK. To avoid time wasted in allocating 

memory, we took care to initialize all memory at start up instead of allocating memory on the 

fly. Some of the demanding memory usages on DSK are: 

1. 30 seconds of song => 30 * 44100 (sampling rate) * 4 (sizeof(float)) = 5.292 MB 

2. Code size => around 58 KB 

3. Initialization for FFT => around 26.6 KB 

4. Initialization for features => around 200 KB 

5. Initialization for SVR model => around 30 KB 

Thus, in total, we used around 6 MB of the memory. 

  Speed wasn‟t a big issue in our project since we are not targeting real time emotion 

classification of songs. As a result, we didn‟t optimize for any efficient time performance. Our 

demo is able to classify a song of length 60 seconds in about 8 seconds.  

 

 

 

 



Page 17 of 23 
 

11. Results 

Method Arousal Valence Combined 

Training 95% 92.5% 87.5 % 

Cross validation 82.5% 72.5% N/A 

Development 86.67% 66.67% 53.33% 

Testing 62.5% 68.75% 50.00% 

Table 1. Final results on Nu-SVR using RBF kernel based on average labels of 3 persons 

Table 1 shows the final accuracy of our system using Nu-SVR and RBF kernel. 

For arousal, we used four features – average fundamental frequency, standard deviation 

of fundamental frequency, number of pitch higher than 0.25 * max pitch, and average 

centroid. For valence, we used five features – standard deviation of energy, average 

fundamental frequency, standard deviation of fundamental frequency, average centroid, 

and 75 percentile of beats.  

 Angry Happy Relaxed Sad 

Angry 3 0 0 2 

Happy 0 2 1 2 

Relaxed 0 0 0 1 

Sad 0 1 1 3 

Table 2. Confusion matrix for the 16 testing songs where the rows are the real ground 

truths (average arousal and valence) while the columns are the system output. 

Table 2 shows the confusion matrix of the 16 testing songs. From the confusion 

matrix, we can see that most of the classification errors are caused by errors in labeling 

between the x-axis or the y-axis, such as differentiating between sad/relaxed, 

relaxed/happy, and sad/angry. Only three errors are caused by misclassifications across 

the diagonals, where all three of them are from sad/happy. 

However, the numbers above might not be significant because emotion is 

subjective and our evaluation above is based on comparing the output of our system to 

the ground truths (defined before to be the average of our three annotations). We cannot 

be sure that the ground truths are accurate as they only include annotations from three 

persons. In fact, it is frequent that the annotations among us are so different that they 



Page 18 of 23 
 

belong to different categories of emotion. For example, for the 4
th

 song, Beautiful Soul by 

Jesse McCartney, one of the annotator labels it as happy while the other two label it as 

sad. As a result of taking the average, the song was “categorized” as angry by us. This 

suggests the flaw in our datasets and evaluation system.  

 Thus, we come up with multiple alternate ways of evaluating to gain more insight 

into our system performance. We tried instead to use each person‟s annotations as the 

ground truths and get accuracy rate per person instead.  

Method Person 1 Person 2 Person 3 

Training 62.5% 60% 57.5 % 

Development 26.67% 53.33% 66.67% 

Testing 37.5% 50.00%  32.25% 

Table 3: Results of comparing the system output with individuals‟ annotations 

Here, we are still using the exact output in the first evaluation, which was 

obtained by training on the average arousal and average valence. We tried to see whether 

the output is closer to anyone. From the results, it seems like the system performs very 

consistently with regards to Person 2‟s annotations, while it performs really badly in the 

testing data for Person 1 and Person 3. This suggests that Person 1 and Person 3 might 

not be consistent when they annotate the songs, resulting in some human errors in 

annotations. Another possible reason is that Person 2 tends to annotate values close to the 

boundary, thus making the average skewed towards Person 2‟s favor.  

   We also tried subjective evaluations of the results, by listening to the song and 

looking over the annotations and subjectively decide whether the annotations are 

acceptable. The results are shown in Table 4. As evident from the table, the accuracy rate 

increases. This makes sense because there are cases where our system annotated some 

songs to be at some boundary between two emotions. By subjectively evaluating the 

output, we are more lenient and allow songs to be considered accurate as long as the 

classification is not too absurd.  

Method Person 1 

Training 77.5% 

Development 66.67% 

Testing 68.75% 

 Table 4: Subjective evaluations of system output 



Page 19 of 23 
 

Finally, instead of averaging the features over 30 seconds frame, we tried to 

obtain a “continuous” version of annotations by looking at all partial annotations per 30-

seconds frame and check whether the emotion changes is acceptable according to the 30-

seconds frame. We tried this evaluation on a few songs and didn‟t obtain satisfying 

results. For example, when we ran our system on the first song, An Angel by Declan 

Galbraith, our system first tagged the song as an angry song for the first 30 seconds, and 

only tagged it as a sad song at the second 30-seconds. However, when we listened to the 

real song, we believe that the song should be sad for the whole period. This suggests that 

our SVR model currently doesn‟t support continuous annotations of emotions yet. This is 

most possibly because when we train our SVR model, we use the features averaged 

across 30 seconds frame, instead of smaller and independent frames. A different way of 

training the SVR model might allow us to have good results on continuous annotations of 

song emotions.  

During the final demo, we also showed that our system can detect emotions from 

songs that are not standardized as in Section 5. We ran our system on a few Korean songs 

and successfully obtain acceptable emotions that the audience agrees upon. This is 

exciting as it suggests that our system is language-independent and may be able to deal 

with songs that are not standardized. 

12. Future Works  

Our project is far from being done. There are still lots of improvements that are 

possible in our system, such as: 

1. Retrain the model to support “continuous” emotion annotations of songs by using 

smaller frame size (instead of 30 seconds) for training. 

2. Test our system on songs of different languages and see whether the system is 

language-independent. 

3. Test our system on songs of different genre such as techno, pops, classics, and etc to 

see whether our system is genre-independent.  

4. Extract more features from the song such as tempo, harmonics, key, rhythm and etc to 

hopefully capture the emotion more accurately.  

5. Investigate the use of other classification system such as linear regression to compare 

the performance.  

 

 

 

 



Page 20 of 23 
 

   

13. Semester Schedule 
 

Week 1 

Week 2 

 

 

Week 3 

Week 4 

Week 5 

 

 

Week 6 

Week 7 

Week 8 

 

 

Week 9 

 

Week 10 

Week 11 

Week 12 

 

Feb 14 

Feb 21 

 

 

Feb 28 

Mar 7 

Mar 14 

 

 

Mar 21 

Mar 28 

Apr 4 

 

 

Apr 11 

 

Apr 18 

Apr 25 

May 2 

 

Background research and reading papers (everyone). 

Decide features and look for existing 

implementations (Swetha and Zhi Yang) 

Look up information on SVR (Chun How) 

Gather the song datasets (Swetha, Chun How) 

Standardization of songs (Chun How) 

Manually annotate the songs (everyone) 

Implement features on Matlab (Swetha, Zhi Yang) 

Set up LIBSVM (Chun How) 

Run SVM trainings (Chun How) 

Midterm progress presentation (everyone) 

Porting features extraction from Matlab to C 

(Swetha, Zhi Yang) 

Run SVR trainings (Chun How) 

Get feature extractions to work on DSK (Chun How) 

Implementing lab demo 1 (Zhi Yang) 

Implementing lab demo 2 (Chun How) 

Final presentation and demo (everyone) 

Final report (everyone) 

   

   

   

   

   

   

 

 



Page 21 of 23 
 

References: 

[1]  B. Huang, S. Rho, R. Dannenberg, and E. Hwang. “SMERS: Music Emotion Recognition 

Using Support Vector Regression”. 10
th

 International Society for Music Information 

Retrieval Conference (ISMIR 2009). 2009. 

[2] MP3 Gain. http://www.cnet.com/1990-7899_1-6350954-1.html. Accessed on March 31, 

2011.  

[3]  Dan Ellis. mp3read and mp3write for Matlab. 

http://labrosa.ee.columbia.edu/matlab/mp3read.html. Accessed on March 15, 2011.  

[4]  Emmanouil  Benetos. Feature Extraction Tools for Audio. Sound Description Toolbox 

http://www.ifs.tuwien.ac.at/mir/muscle/del/audio_tools.html#SoundDescrToolbox 

[5]  Beat Detection http://archive.gamedev.net/reference/programming/features/beatdetection/  

[6]  Smola, Alex J., et.al. “A Tutorial on Support Vector Regression”. Statistics and Computing, 

Vol.14, pp.199-222, 2004. 

[7] C. Chang and C. Lin. “LIBSVM – A Library for Support Vector Machines”. 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed at Feb 13, 2011.   

[8]   Kevin Wayne. How To Play an MP3 File in Java. 

http://introcs.cs.princeton.edu/faq/mp3/mp3.html. Accessed at Apr 17, 2011. 

[9] David Kosbie. JComponentWithEvents.class. http://www.kosbie.net/cmu/spring-09/15-

100/. Accessed at Apr 3, 2009.  

 

 

 

 

 

 

 

 

 

 

 

 



Page 22 of 23 
 

Appendix 1: Songs list. 

Here is the list of songs in our datasets, along with the corresponding arousal and valence 

output by our SVR model.  

Author/Artist Song  Arousal Valence Label 

Declan Galbraith an_angel -0.48 -0.22 Sad 

Take that back_for_good -0.22 0.37 Relaxed 

Cascada bad_boy 0.28 0.42 Happy 

Jesse McCartney beautiful_soul -0.25 0.02 Relaxed 

Bon Jovi billy_get_your_gun 0.29 0.10 Happy 

Backstreet boys boys_will_be_boys -0.18 0.02 Relaxed 

Audioslave bring_em_back_alive 0.37 -0.13 Angry 

Dr Bombay calcutta 0.28 0.67 Happy 

Linkin Park crawling 0.28 -0.08 Angry 

Gym Class Heroes cupids_chokenhold -0.08 0.02 Relaxed 

Luther Vandross dance_with_my_father -0.50 -0.33 Sad 

Backstreet boys everybody 0.20 -0.05 Angry 

Britney Spears everytime -0.28 -0.17 Sad 

Audioslave exploder 0.42 -0.18 Angry 

Secondhand Serenade fall_for_you -0.43 -0.38 Sad 

Josh Groban Galileo -0.47 0.10 Relaxed 

Backstreet boys get_down 0.22 0.08 Happy 

Headlights get_going -0.22 0.15 Relaxed 

Avril Lavigne girl_friend 0.47 0.02 Happy 

Josh Groban hidden_away -0.43 -0.10 Sad 

Josh Groban higher_window -0.43 -0.07 Sad 

Greenday holiday  0.38 0.25 Happy 

Audioslave hynoptize 0.08 -0.08 Angry 

Aerosmith i_dont_want_to_miss_a_thing 0.02 -0.07 Angry 

Backstreet boys i_ll_go_anywhere_for_you -0.12 -0.15 Sad 

Nelly Furtado i_m_like_a_bird -0.23 0.05 Relaxed 

Ronan Keating if_tomorrow_never_comes -0.38 -0.13 Sad 

The Duke and the King if_you_ever_get_famous -0.50 0.02 Relaxed 

Bon Jovi just_older 0.25 0.18 Happy 

Black Eyed Peas lets_get_it_started 0.23 0.05 Happy 

Rob Thomas little_wonders -0.18 0.42 Relaxed 

Taylor Swift love_story 0.13 0.13 Happy 

Ray Greene my_best_friends 0.10 0.57 Happy 

Celine Dion my_heart_will_go_on -0.50 -0.22 Sad 

Westlife my_love 0.13 -0.18 Angry 



Page 23 of 23 
 

S Club 7 

never_had_a_dream 

_come_true -0.43 -0.20 

Sad 

Boyzone no_matter_what -0.08 -0.32 Sad 

Bosson one_in_a_million 0.03 -0.20 Angry 

Blue one_love -0.32 0.25 Relaxed 

Linkin Park papercut 0.47 -0.05 Angry 

M2M pretty_boy -0.38 0.03 Relaxed 

Backstreet boys 

quit_playing_games_ 

with_my_heart 0.32 -0.13 

Angry 

Bon Jovi runaway 0.38 -0.32 Angry 

Westlife seasons_in_the_sun -0.03 0.12 Relaxed 

Audioslave set_it_off 0.50 -0.10 Angry 

Audioslave shadow_in_the_sun 0.10 -0.33 Angry 

Audioslave show_me_how_to_live 0.47 -0.12 Angry 

Backstreet boys 

show_me_the_meaning_ 

of_being_lonely -0.12 -0.18 

Sad 

Eminem  smack_that 0.12 -0.32 Angry 

Micheal Bubble Sway -0.13 0.32 Relaxed 

Jason Mraz the_beauty_in_ugly -0.05 0.02 Relaxed 

B-52's the_chosen_one 0.17 0.28 Happy 

M2M the_day_you_went_away -0.32 0.18 Relaxed 

Europe the_final_countdown 0.25 0.22 Happy 

Giorgio Vanni, Cristina 

D'Avena the_johto_league 0.28 0.02 

Happy 

Audioslave the_last_remaining_light -0.25 -0.48 Sad 

Elizabeth Cook 

times_are_tough_in_ 

rock_n_roll -0.03 0.53 

Relaxed 

Enrique Iglesias tired_of_being_sorry 0.03 0.13 Happy 

Bon Jovi to_the_fire 0.25 -0.35 Angry 

Hope Sandoval Trouble -0.33 -0.33 Sad 

Bon Jovi u_give_love_a_bad_name 0.27 -0.30 Angry 

Natasha Bedingfield unwritten 0.08 0.18 Happy 

Nick Drake way_to_blue -0.45 -0.37 Sad 

Quuen we_are_the_champions 0.18 -0.02 Angry 

Backstreet boys we_ve_got_it_going  0.13 0.48 Happy 

Linkin Park what_i_ve_done 0.13 -0.25 Angry 

Audioslave what_you_are 0.10 -0.05 Angry 

Westlife 

when_you_tell_me_that 

_you_love_me -0.38 -0.22 

Sad 

Fort Minor where_d_you_go 0.07 0.22 Happy 

Dido white_flag -0.30 -0.27 Sad 

Blue you_make_me_wanna 0.20 0.50 Happy 

 


